import torch import torch.nn.functional as F from torch.profiler import profile from bit_transformer import ( BitTransformerLM, quantize_dynamic, hil_safe_inference, collapse_submodel, ) from bit_transformer.training import train_loop from bit_transformer.torch_utils import cpu_autocast def train( model: BitTransformerLM, data: torch.Tensor, epochs: int = 1, compress_prob: float = 0.5, log: bool = False, forward_kwargs: dict | None = None, ) -> list[dict]: """Train with random compression; returns per-epoch metrics.""" return train_loop( model, data, epochs=epochs, compress_prob=compress_prob, direct_prob=0.0, log=log, forward_kwargs=forward_kwargs, ) def recursive_integration_flow(steps: int = 4, max_len: int = 64) -> None: """Run a dynamic scale-up loop with telemetry-based gating.""" train_bits = torch.randint(0, 2, (64, max_len), dtype=torch.long) valid_bits = torch.randint(0, 2, (16, max_len), dtype=torch.long) input_bits = torch.randint(0, 2, (1, max_len), dtype=torch.long) bit_sequence_data = train_bits.tolist() best_K = best_C = best_S = 0.0 model = BitTransformerLM( d_model=32, nhead=4, num_layers=1, dim_feedforward=64, max_seq_len=max_len, use_act=True, act_threshold=0.7, reversible=True, chunk_size=max_len, use_autocast=True, ) results = [] for step in range(steps + 1): epochs = min(10, 2 + step // 2) train(model, train_bits, epochs=epochs, compress_prob=0.5, log=True) with torch.no_grad(): with cpu_autocast(): logits, telemetry = model(valid_bits) pred = logits[:, :-1, :].reshape(-1, 2) target = valid_bits[:, 1:].reshape(-1) val_loss = F.cross_entropy(pred, target).item() k = telemetry["negentropy_logits"].mean().item() c = telemetry["lz_complexity_logits"].mean().item() s = telemetry["symbiosis_score"].mean().item() print(f"Step {step} validation loss: {val_loss:.4f} K={k:.3f} C={c:.3f} S={s:.3f}") results.append((step, val_loss, k, c, s)) if step > 0: if k < best_K - 0.3 or c < best_C - 0.3 or s < best_S - 0.3: print(f"\u26a0\ufe0f Step {step} regressed below metric floor. Halting.") break best_K = max(best_K, k) best_C = max(best_C, c) best_S = max(best_S, s) if step < steps: if step % 2 == 0: model = model.double_width() else: model = model.double_layers() # Post-scaling optimizations with cpu_autocast(): model(input_bits) qmodel = quantize_dynamic(model) qmodel.eval() safe_output = hil_safe_inference( qmodel, input_bits, c_floor=0.5, s_floor=0.2 ) student_model, _ = collapse_submodel( bit_sequence_data, target_params=dict( d_model=16, nhead=4, num_layers=1, dim_feedforward=32, max_seq_len=max_len, ), floors={"negentropy": 0.2, "lz_complexity": 0.5, "symbiosis_score": 0.2}, ) if hasattr(torch, "compile"): try: compiled = torch.compile(student_model) except RuntimeError as exc: print(f"Compilation skipped: {exc}") compiled = student_model else: compiled = student_model compiled.eval() with profile() as prof: compiled(input_bits) prof.export_chrome_trace("trace12.json") print("Safe output bits:", safe_output[0].tolist()) if __name__ == "__main__": recursive_integration_flow()