import torch import torch.nn as nn import torch.distributed as dist from typing import List, Optional, Dict, Any, Tuple import logging import os from contextlib import contextmanager from torch.distributed.fsdp import FullyShardedDataParallel, ShardingStrategy from torch.distributed.fsdp.wrap import transformer_auto_wrap_policy try: from torch.distributed.pipeline.sync import Pipe from torch.distributed._pipeline.sync import balance except Exception: # pragma: no cover - Pipe may not be available in CPU builds Pipe = None balance = None from .model import BitTransformerLM, LoggingTransformerEncoderLayer from .error_handling import with_error_recovery, safe_operation from .types import DeviceType, WorldSize, ProcessRank @with_error_recovery(max_retries=2) def setup_distributed(rank: ProcessRank = 0, world_size: WorldSize = 1, backend: str = "nccl", init_method: str = "tcp://localhost:23456") -> bool: """Initialize distributed training environment.""" if world_size <= 1: return False try: dist.init_process_group( backend=backend, init_method=init_method, world_size=world_size, rank=rank ) logging.info(f"Initialized distributed training: rank {rank}/{world_size}") return True except Exception as e: logging.error(f"Failed to initialize distributed training: {e}") return False def wrap_fsdp(model: BitTransformerLM, sharding_strategy: ShardingStrategy = ShardingStrategy.FULL_SHARD, **kwargs) -> FullyShardedDataParallel: """Return an optimized FSDP wrapped model with transformer-aware sharding.""" device = kwargs.pop("device_id", None) if device is None and torch.cuda.is_available(): device = torch.cuda.current_device() # Configure FSDP with transformer-specific optimizations fsdp_config = { "sharding_strategy": sharding_strategy, "cpu_offload": kwargs.pop("cpu_offload", None), "mixed_precision": kwargs.pop("mixed_precision", None), "auto_wrap_policy": transformer_auto_wrap_policy, "backward_prefetch": kwargs.pop("backward_prefetch", None), "forward_prefetch": kwargs.pop("forward_prefetch", False), "limit_all_gathers": kwargs.pop("limit_all_gathers", True), "use_orig_params": kwargs.pop("use_orig_params", True), **kwargs } # Remove None values fsdp_config = {k: v for k, v in fsdp_config.items() if v is not None} if device is not None: model = model.to(device) fsdp_config["device_id"] = device return FullyShardedDataParallel(model, **fsdp_config) class OptimizedPipeline(nn.Module): """Enhanced pipeline parallelism with BitTransformerLM optimizations.""" def __init__(self, model: BitTransformerLM, num_stages: int = 1, chunks: int = 1, checkpoint: bool = True): super().__init__() if Pipe is None: raise RuntimeError("Pipeline parallelism not available in this build") self.num_stages = num_stages self.chunks = chunks self.checkpoint = checkpoint # Split model across pipeline stages if num_stages > 1: self.pipeline_model = self._create_pipeline_stages(model, num_stages) else: self.pipeline_model = Pipe(nn.Sequential(model), chunks=chunks) def _create_pipeline_stages(self, model: BitTransformerLM, num_stages: int) -> Pipe: """Create optimized pipeline stages for BitTransformerLM.""" # Extract layers for pipeline partitioning layers = [] # Add embedding layers if hasattr(model, 'embedding'): layers.append(model.embedding) if hasattr(model, 'pos_encoding'): layers.append(model.pos_encoding) # Add transformer layers if hasattr(model, 'layers'): layers.extend(model.layers) elif hasattr(model, 'transformer'): layers.extend(model.transformer.layers) # Add output layers if hasattr(model, 'output_projection'): layers.append(model.output_projection) # Balance layers across stages if balance is not None: partitions = balance(len(layers), num_stages) else: # Simple equal partitioning layers_per_stage = len(layers) // num_stages partitions = [layers_per_stage] * num_stages partitions[-1] += len(layers) % num_stages # Create stages stages = [] start_idx = 0 for partition_size in partitions: end_idx = start_idx + partition_size stage_layers = layers[start_idx:end_idx] stages.append(nn.Sequential(*stage_layers)) start_idx = end_idx return Pipe(nn.Sequential(*stages), chunks=self.chunks) def forward(self, x: torch.Tensor) -> torch.Tensor: """Forward pass through pipeline.""" return self.pipeline_model(x) def make_pipeline(model: BitTransformerLM, chunks: int = 1, num_stages: int = 1, checkpoint: bool = True) -> OptimizedPipeline: """Create an optimized pipeline with advanced parallelism features.""" return OptimizedPipeline( model=model, num_stages=num_stages, chunks=chunks, checkpoint=checkpoint ) class DistributedTrainingManager: """Manages distributed training configuration and optimization.""" def __init__(self, world_size: WorldSize, rank: ProcessRank, use_pipeline: bool = False, use_fsdp: bool = True): self.world_size = world_size self.rank = rank self.use_pipeline = use_pipeline self.use_fsdp = use_fsdp self.is_distributed = world_size > 1 self.logger = logging.getLogger(__name__) def setup_model(self, model: BitTransformerLM, pipeline_stages: int = 1, fsdp_config: Optional[Dict[str, Any]] = None) -> nn.Module: """Set up model for distributed training.""" if not self.is_distributed: return model with safe_operation("distributed_model_setup"): if self.use_pipeline and pipeline_stages > 1: self.logger.info(f"Setting up pipeline parallelism with {pipeline_stages} stages") return make_pipeline( model, chunks=2, num_stages=pipeline_stages ) elif self.use_fsdp: self.logger.info("Setting up FSDP for data parallelism") fsdp_config = fsdp_config or {} return wrap_fsdp(model, **fsdp_config) else: self.logger.info("Using standard DistributedDataParallel") return nn.parallel.DistributedDataParallel(model) def optimize_communication(self, model: nn.Module) -> None: """Apply communication optimizations for distributed training.""" if not self.is_distributed: return # Enable bucketing for DDP if isinstance(model, nn.parallel.DistributedDataParallel): # Set reasonable bucket size for gradient communication model._set_ddp_bucket_cap_mb(25) # 25 MB buckets # Apply gradient compression if available try: if hasattr(model, '_register_comm_hook'): from torch.distributed.algorithms.ddp_comm_hooks import default model.register_comm_hook( dist.group.WORLD, default.fp16_compress_hook ) except ImportError: pass @contextmanager def training_context(self): """Context manager for distributed training setup.""" try: if self.is_distributed: self.logger.info("Entering distributed training context") # Set CUDA device for current rank if torch.cuda.is_available(): torch.cuda.set_device(self.rank) yield finally: if self.is_distributed: self.logger.info("Exiting distributed training context") def cleanup_distributed(): """Clean up distributed training environment.""" if dist.is_initialized(): dist.destroy_process_group() logging.info("Distributed training cleaned up") def get_distributed_config() -> Dict[str, Any]: """Get current distributed training configuration.""" if not dist.is_initialized(): return {"distributed": False} return { "distributed": True, "world_size": dist.get_world_size(), "rank": dist.get_rank(), "backend": dist.get_backend(), "local_rank": int(os.environ.get("LOCAL_RANK", 0)) if "LOCAL_RANK" in os.environ else None, } # Utility functions for distributed operations def all_reduce_tensor(tensor: torch.Tensor, op: dist.ReduceOp = dist.ReduceOp.SUM) -> torch.Tensor: """All-reduce operation on tensor across all processes.""" if not dist.is_initialized(): return tensor dist.all_reduce(tensor, op=op) return tensor def gather_tensors(tensor: torch.Tensor, dst: int = 0) -> Optional[List[torch.Tensor]]: """Gather tensors from all processes to destination rank.""" if not dist.is_initialized(): return [tensor] if dist.get_rank() == dst: tensor_list = [torch.zeros_like(tensor) for _ in range(dist.get_world_size())] dist.gather(tensor, tensor_list, dst=dst) return tensor_list else: dist.gather(tensor, dst=dst) return None def broadcast_tensor(tensor: torch.Tensor, src: int = 0) -> torch.Tensor: """Broadcast tensor from source rank to all processes.""" if not dist.is_initialized(): return tensor dist.broadcast(tensor, src=src) return tensor # Advanced pipeline scheduling optimization class PipelineScheduler: """Advanced scheduler for pipeline parallelism with load balancing.""" def __init__(self, num_stages: int, world_size: int): self.num_stages = num_stages self.world_size = world_size self.stage_times = [0.0] * num_stages self.load_balance_enabled = True def update_stage_timing(self, stage_id: int, execution_time: float): """Update execution time for a pipeline stage.""" if 0 <= stage_id < self.num_stages: # Exponential moving average for timing alpha = 0.1 self.stage_times[stage_id] = (1 - alpha) * self.stage_times[stage_id] + alpha * execution_time def get_optimal_chunks(self, batch_size: int) -> int: """Calculate optimal number of chunks based on stage timing.""" if not self.load_balance_enabled: return max(1, batch_size // 8) # Default chunking # Balance based on slowest stage max_stage_time = max(self.stage_times) if any(self.stage_times) else 1.0 avg_stage_time = sum(self.stage_times) / len(self.stage_times) if self.stage_times else 1.0 # More chunks for imbalanced pipelines imbalance_factor = max_stage_time / max(avg_stage_time, 1e-6) optimal_chunks = max(2, min(batch_size, int(4 * imbalance_factor))) return optimal_chunks # Memory-efficient gradient synchronization def efficient_gradient_sync(model: nn.Module, gradient_clipping: float = 1.0): """Perform memory-efficient gradient synchronization across processes.""" if not dist.is_initialized(): return # Gradient clipping before synchronization if gradient_clipping > 0: total_norm = torch.nn.utils.clip_grad_norm_(model.parameters(), gradient_clipping) # Broadcast clipping statistics for monitoring if dist.get_rank() == 0: logging.debug(f"Gradient norm before clipping: {total_norm.item():.4f}") # Efficient gradient all-reduce with bucketing bucket_size_mb = 25 # 25MB buckets for optimal network usage parameters = list(model.parameters()) for param in parameters: if param.grad is not None: # Asynchronous all-reduce for better overlap dist.all_reduce(param.grad, async_op=False) param.grad /= dist.get_world_size() # Advanced memory management for distributed training class DistributedMemoryManager: """Manages memory efficiently across distributed processes.""" def __init__(self, enable_cpu_offload: bool = False): self.enable_cpu_offload = enable_cpu_offload self.memory_stats = {} self.peak_memory = 0 def monitor_memory(self): """Monitor GPU memory usage across processes.""" if torch.cuda.is_available(): current_memory = torch.cuda.memory_allocated() max_memory = torch.cuda.max_memory_allocated() self.memory_stats = { "current_gb": current_memory / 1e9, "peak_gb": max_memory / 1e9, "rank": dist.get_rank() if dist.is_initialized() else 0 } self.peak_memory = max(self.peak_memory, current_memory) def optimize_memory_usage(self): """Apply memory optimizations based on current usage.""" if torch.cuda.is_available(): # Clear cache if memory usage is high if torch.cuda.memory_allocated() > 0.8 * torch.cuda.max_memory_allocated(): torch.cuda.empty_cache() logging.info("Cleared CUDA cache due to high memory usage") def get_memory_report(self) -> Dict[str, float]: """Get comprehensive memory usage report.""" self.monitor_memory() return self.memory_stats # Global instances for advanced features pipeline_scheduler = PipelineScheduler(num_stages=1, world_size=1) memory_manager = DistributedMemoryManager() def setup_advanced_distributed_training( rank: ProcessRank, world_size: WorldSize, enable_memory_monitoring: bool = True, enable_pipeline_scheduling: bool = True ) -> Dict[str, Any]: """Set up advanced distributed training with optimizations.""" global pipeline_scheduler, memory_manager # Initialize base distributed setup success = setup_distributed(rank, world_size) if not success: return {"distributed": False} # Initialize advanced features if enable_pipeline_scheduling: pipeline_scheduler = PipelineScheduler(num_stages=world_size, world_size=world_size) if enable_memory_monitoring: memory_manager = DistributedMemoryManager() memory_manager.monitor_memory() config = get_distributed_config() config.update({ "pipeline_scheduling": enable_pipeline_scheduling, "memory_monitoring": enable_memory_monitoring, "advanced_features": True }) logging.info(f"Advanced distributed training initialized on rank {rank}") return config