import torch from torch.profiler import profile from bit_transformer import ( BitTransformerLM, quantize_dynamic, hil_safe_inference, collapse_submodel, ) from bit_transformer.training import train_loop from bit_transformer.torch_utils import cpu_autocast def train( model: BitTransformerLM, data: torch.Tensor, epochs: int = 3, compress_prob: float = 0.5, direct_prob: float = 0.0, log: bool = False, forward_kwargs: dict | None = None, ) -> list[dict]: """Train on bit sequences with optional random compression. If ``direct_prob`` is positive, some batches are fed using their run-length encoded representation packed into bits. Loss on these direct-compressed batches is tracked separately. Returns a list of per-epoch metric dictionaries containing raw and compressed loss/accuracy statistics and the mean compression ratio. """ return train_loop( model, data, epochs=epochs, compress_prob=compress_prob, direct_prob=direct_prob, log=log, forward_kwargs=forward_kwargs, ) def main() -> None: data = torch.randint(0, 2, (64, 128), dtype=torch.long) validation_bits = torch.randint(0, 2, (16, 128), dtype=torch.long) input_bits = torch.randint(0, 2, (1, 128), dtype=torch.long) bit_sequence_data = data.tolist() model = BitTransformerLM( d_model=32, nhead=4, num_layers=1, dim_feedforward=64, max_seq_len=128, use_act=True, act_threshold=0.7, reversible=True, chunk_size=128, ) for step in range(1, 13): if step % 2 == 0: model = model.double_width() else: model = model.double_layers() train(model, data, epochs=3, compress_prob=0.5, log=True) _, telemetry = model(validation_bits) K = telemetry["negentropy_logits"].mean().item() C = telemetry["lz_complexity_logits"].mean().item() S = telemetry["symbiosis_score"].mean().item() assert ( K > 0.3 and C > 0.35 and S > 0.5 ), f"Step {step} telemetry floor failure" with cpu_autocast(): model(input_bits) quantized_model = quantize_dynamic(model) quantized_model.eval() safe_output, _ = hil_safe_inference( quantized_model, input_bits, c_floor=0.35, s_floor=0.5 ) student_model, _ = collapse_submodel( bit_sequence_data, target_params=dict( d_model=16, nhead=4, num_layers=1, dim_feedforward=32, max_seq_len=128, ), floors={"negentropy": 0.3, "lz_complexity": 0.35, "symbiosis_score": 0.5}, ) compiled_model = ( torch.compile(student_model) if hasattr(torch, "compile") else student_model ) compiled_model.eval() with profile() as prof: compiled_model(input_bits) prof.export_chrome_trace("trace12.json") print("Safe output bits:", safe_output.squeeze(0).tolist()) if __name__ == "__main__": main()