File size: 11,706 Bytes
dc2b9f3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 |
#!/usr/bin/env python3
"""
Simple WrinkleBrane Demo
Shows basic functionality and a few simple optimizations working.
"""
import sys
from pathlib import Path
sys.path.append(str(Path(__file__).resolve().parent / "src"))
import torch
import numpy as np
import matplotlib.pyplot as plt
from wrinklebrane.membrane_bank import MembraneBank
from wrinklebrane.codes import hadamard_codes, dct_codes, gaussian_codes, coherence_stats
from wrinklebrane.slicer import make_slicer
from wrinklebrane.write_ops import store_pairs
from wrinklebrane.metrics import psnr, ssim
def create_test_patterns(K, H, W, device):
"""Create diverse test patterns for demonstration."""
patterns = []
for i in range(K):
pattern = torch.zeros(H, W, device=device)
if i % 4 == 0: # Circles
center = (H // 2, W // 2)
radius = 2 + (i // 4)
for y in range(H):
for x in range(W):
if (x - center[0])**2 + (y - center[1])**2 <= radius**2:
pattern[y, x] = 1.0
elif i % 4 == 1: # Squares
size = 4 + (i // 4)
start = (H - size) // 2
end = start + size
if end <= H and end <= W:
pattern[start:end, start:end] = 1.0
elif i % 4 == 2: # Horizontal lines
y = H // 2 + (i // 4) - 1
if 0 <= y < H:
pattern[y, :] = 1.0
else: # Vertical lines
x = W // 2 + (i // 4) - 1
if 0 <= x < W:
pattern[:, x] = 1.0
patterns.append(pattern)
return torch.stack(patterns)
def demonstrate_basic_functionality():
"""Show WrinkleBrane working with perfect recall."""
print("π WrinkleBrane Basic Functionality Demo")
print("="*40)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
B, L, H, W, K = 1, 32, 16, 16, 8
print(f"Configuration: L={L}, H={H}, W={W}, K={K} patterns")
print(f"Device: {device}")
# Setup
bank = MembraneBank(L, H, W, device=device)
bank.allocate(B)
C = hadamard_codes(L, K).to(device)
slicer = make_slicer(C)
patterns = create_test_patterns(K, H, W, device)
keys = torch.arange(K, device=device)
alphas = torch.ones(K, device=device)
# Store patterns
print("\nπ Storing patterns...")
M = store_pairs(bank.read(), C, keys, patterns, alphas)
bank.write(M - bank.read())
# Retrieve patterns
print("π Retrieving patterns...")
readouts = slicer(bank.read()).squeeze(0)
# Calculate fidelity
print("\nπ Fidelity Results:")
total_psnr = 0
total_ssim = 0
for i in range(K):
original = patterns[i]
retrieved = readouts[i]
psnr_val = psnr(original.cpu().numpy(), retrieved.cpu().numpy())
ssim_val = ssim(original.cpu().numpy(), retrieved.cpu().numpy())
total_psnr += psnr_val
total_ssim += ssim_val
print(f" Pattern {i}: PSNR={psnr_val:.1f}dB, SSIM={ssim_val:.4f}")
avg_psnr = total_psnr / K
avg_ssim = total_ssim / K
print(f"\nπ― Summary:")
print(f" Average PSNR: {avg_psnr:.1f}dB")
print(f" Average SSIM: {avg_ssim:.4f}")
if avg_psnr > 100:
print("β
EXCELLENT: >100dB PSNR (near-perfect recall)")
elif avg_psnr > 50:
print("β
GOOD: >50dB PSNR (high-quality recall)")
else:
print("β οΈ LOW: <50dB PSNR (may need optimization)")
return avg_psnr
def compare_code_types():
"""Compare different orthogonal code types."""
print("\n𧬠Code Types Comparison")
print("="*40)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
L, K = 32, 16
code_types = {
"Hadamard": hadamard_codes(L, K).to(device),
"DCT": dct_codes(L, K).to(device),
"Gaussian": gaussian_codes(L, K).to(device)
}
results = {}
for name, codes in code_types.items():
print(f"\n{name} Codes:")
# Orthogonality analysis
stats = coherence_stats(codes)
print(f" Max off-diagonal correlation: {stats['max_abs_offdiag']:.6f}")
print(f" Mean off-diagonal correlation: {stats['mean_abs_offdiag']:.6f}")
# Performance test
B, H, W = 1, 16, 16
bank = MembraneBank(L, H, W, device=device)
bank.allocate(B)
slicer = make_slicer(codes)
patterns = create_test_patterns(K, H, W, device)
keys = torch.arange(K, device=device)
alphas = torch.ones(K, device=device)
# Store and retrieve
M = store_pairs(bank.read(), codes, keys, patterns, alphas)
bank.write(M - bank.read())
readouts = slicer(bank.read()).squeeze(0)
# Calculate performance
psnr_values = []
for i in range(K):
psnr_val = psnr(patterns[i].cpu().numpy(), readouts[i].cpu().numpy())
psnr_values.append(psnr_val)
avg_psnr = np.mean(psnr_values)
std_psnr = np.std(psnr_values)
print(f" Performance: {avg_psnr:.1f}Β±{std_psnr:.1f}dB PSNR")
results[name] = {
'orthogonality': stats['max_abs_offdiag'],
'performance': avg_psnr
}
# Find best performer
best_code = max(results.items(), key=lambda x: x[1]['performance'])
print(f"\nπ Best Performing: {best_code[0]} ({best_code[1]['performance']:.1f}dB)")
return results
def test_capacity_scaling():
"""Test how performance scales with number of stored patterns."""
print("\nπ Capacity Scaling Test")
print("="*40)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
L, H, W = 64, 16, 16
# Test different pattern counts
pattern_counts = [8, 16, 32, 64] # Up to theoretical limit L
results = []
for K in pattern_counts:
print(f"\nTesting {K} patterns (capacity: {K/L:.1%})...")
bank = MembraneBank(L, H, W, device=device)
bank.allocate(1)
# Use best codes (Hadamard)
C = hadamard_codes(L, K).to(device)
slicer = make_slicer(C)
patterns = create_test_patterns(K, H, W, device)
keys = torch.arange(K, device=device)
alphas = torch.ones(K, device=device)
# Store and retrieve
M = store_pairs(bank.read(), C, keys, patterns, alphas)
bank.write(M - bank.read())
readouts = slicer(bank.read()).squeeze(0)
# Calculate metrics
psnr_values = []
for i in range(K):
psnr_val = psnr(patterns[i].cpu().numpy(), readouts[i].cpu().numpy())
psnr_values.append(psnr_val)
avg_psnr = np.mean(psnr_values)
min_psnr = np.min(psnr_values)
print(f" PSNR: {avg_psnr:.1f}dB average, {min_psnr:.1f}dB minimum")
result = {
'K': K,
'capacity_ratio': K / L,
'avg_psnr': avg_psnr,
'min_psnr': min_psnr
}
results.append(result)
# Show scaling trend
print(f"\nπ Capacity Scaling Summary:")
for result in results:
status = "β
" if result['avg_psnr'] > 100 else "β οΈ" if result['avg_psnr'] > 50 else "β"
print(f" {result['capacity_ratio']:3.0%} capacity: {result['avg_psnr']:5.1f}dB {status}")
return results
def demonstrate_wave_interference():
"""Show the wave interference pattern that gives WrinkleBrane its name."""
print("\nπ Wave Interference Demonstration")
print("="*40)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
L, H, W = 16, 8, 8
# Create simple test case
bank = MembraneBank(L, H, W, device=device)
bank.allocate(1)
# Store two simple patterns
K = 2
C = hadamard_codes(L, K).to(device)
# Pattern 1: single point
pattern1 = torch.zeros(H, W, device=device)
pattern1[H//2, W//2] = 1.0
# Pattern 2: cross shape
pattern2 = torch.zeros(H, W, device=device)
pattern2[H//2, :] = 0.5
pattern2[:, W//2] = 0.5
patterns = torch.stack([pattern1, pattern2])
keys = torch.tensor([0, 1], device=device)
alphas = torch.ones(2, device=device)
# Store patterns and examine membrane state
M = store_pairs(bank.read(), C, keys, patterns, alphas)
bank.write(M - bank.read())
# Show interference in membrane layers
membrane_state = bank.read().squeeze(0) # Remove batch dimension: [L, H, W]
print(f"Membrane state shape: {membrane_state.shape}")
print(f"Pattern 1 energy: {torch.norm(pattern1):.3f}")
print(f"Pattern 2 energy: {torch.norm(pattern2):.3f}")
# Calculate total energy across layers
layer_energies = []
for l in range(L):
energy = torch.norm(membrane_state[l]).item()
layer_energies.append(energy)
print(f"Layer energies (first 8): {[f'{e:.3f}' for e in layer_energies[:8]]}")
# Retrieve and verify
slicer = make_slicer(C)
readouts = slicer(bank.read()).squeeze(0)
psnr1 = psnr(pattern1.cpu().numpy(), readouts[0].cpu().numpy())
psnr2 = psnr(pattern2.cpu().numpy(), readouts[1].cpu().numpy())
print(f"\nRetrieval fidelity:")
print(f" Pattern 1: {psnr1:.1f}dB PSNR")
print(f" Pattern 2: {psnr2:.1f}dB PSNR")
# Show the "wrinkle" effect - constructive/destructive interference
total_membrane_energy = torch.norm(membrane_state).item()
expected_energy = torch.norm(pattern1).item() + torch.norm(pattern2).item()
print(f"\nWave interference analysis:")
print(f" Total membrane energy: {total_membrane_energy:.3f}")
print(f" Expected (no interference): {expected_energy:.3f}")
print(f" Interference factor: {total_membrane_energy/expected_energy:.3f}")
return membrane_state
def main():
"""Run complete WrinkleBrane demonstration."""
print("π WrinkleBrane Complete Demonstration")
print("="*50)
torch.manual_seed(42) # Reproducible results
np.random.seed(42)
try:
# Basic functionality
basic_psnr = demonstrate_basic_functionality()
# Code comparison
code_results = compare_code_types()
# Capacity scaling
capacity_results = test_capacity_scaling()
# Wave interference demo
membrane_state = demonstrate_wave_interference()
print("\n" + "="*50)
print("π WrinkleBrane Demonstration Complete!")
print("="*50)
print("\nπ Key Results:")
print(f"β’ Basic fidelity: {basic_psnr:.1f}dB PSNR")
print(f"β’ Best code type: {max(code_results.items(), key=lambda x: x[1]['performance'])[0]}")
print(f"β’ Maximum capacity: {capacity_results[-1]['K']} patterns at {capacity_results[-1]['avg_psnr']:.1f}dB")
print(f"β’ Membrane state shape: {membrane_state.shape}")
if basic_psnr > 100:
print("\nπ WrinkleBrane is performing EXCELLENTLY!")
print(" Wave-interference associative memory working at near-perfect fidelity!")
else:
print(f"\nβ
WrinkleBrane is working correctly with {basic_psnr:.1f}dB fidelity")
except Exception as e:
print(f"\nβ Demo failed with error: {e}")
import traceback
traceback.print_exc()
return False
return True
if __name__ == "__main__":
main() |