File size: 6,882 Bytes
dc2b9f3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 |
# WrinkleBrane Optimization Analysis
## 🔍 Key Findings from Benchmarks
### Fidelity Performance on Synthetic Patterns
- **High fidelity**: 150+ dB PSNR with SSIM (1.0000) achieved on simple geometric test patterns
- **Hadamard codes** show optimal orthogonality with zero cross-correlation error
- **DCT codes** achieve near-optimal results with minimal orthogonality error (0.000001)
- **Gaussian codes** demonstrate expected degradation (11.1±2.8dB PSNR) due to poor orthogonality
### Capacity Behavior (Limited Testing)
- **Theoretical capacity**: Up to L layers (as expected from theory)
- **Within-capacity performance**: Good results maintained up to theoretical limit on test patterns
- **Beyond-capacity degradation**: Expected performance drop when exceeding theoretical capacity
- **Testing limitation**: Evaluation restricted to simple synthetic patterns
### Performance Scaling (Preliminary)
- **Memory usage**: Linear scaling with B×L×H×W tensor dimensions
- **Write throughput**: 6,012 to 134,041 patterns/sec across tested scales
- **Read throughput**: 8,786 to 341,295 readouts/sec
- **Scale effects**: Throughput per pattern decreases with larger configurations
## 🎯 Optimization Opportunities
### 1. Alpha Scaling Optimization
**Issue**: Current implementation uses uniform alpha=1.0 for all patterns
**Opportunity**: Adaptive alpha scaling based on pattern energy and orthogonality
```python
def compute_adaptive_alphas(patterns, C, keys):
"""Compute optimal alpha values for each pattern."""
alphas = torch.ones(len(keys))
for i, key in enumerate(keys):
# Scale by pattern energy
pattern_energy = torch.norm(patterns[i])
alphas[i] = 1.0 / pattern_energy.clamp_min(0.1)
# Consider orthogonality with existing codes
code_similarity = torch.abs(C[:, key] @ C).max()
alphas[i] *= (2.0 - code_similarity)
return alphas
```
### 2. Hierarchical Memory Organization
**Issue**: All patterns stored at same level causing interference
**Opportunity**: Multi-resolution storage with different layer allocations
```python
class HierarchicalMembraneBank:
def __init__(self, L, H, W, levels=3):
self.levels = levels
self.banks = []
for level in range(levels):
bank_L = L // (2 ** level)
self.banks.append(MembraneBank(bank_L, H, W))
```
### 3. Dynamic Code Generation
**Issue**: Static Hadamard codes limit capacity to fixed dimensions
**Opportunity**: Generate codes on-demand with optimal orthogonality
```python
def generate_optimal_codes(L, K, existing_patterns=None):
"""Generate codes optimized for specific patterns."""
if K <= L:
return hadamard_codes(L, K) # Use Hadamard when possible
else:
return gram_schmidt_codes(L, K, patterns=existing_patterns)
```
### 4. Sparse Storage Optimization
**Issue**: Dense tensor operations even for sparse patterns
**Opportunity**: Leverage sparsity in both patterns and codes
```python
def sparse_store_pairs(M, C, keys, values, alphas, sparsity_threshold=0.01):
"""Sparse implementation of store_pairs for sparse patterns."""
# Identify sparse patterns
sparse_mask = torch.norm(values.view(len(values), -1), dim=1) < sparsity_threshold
# Use dense storage for dense patterns, sparse for sparse ones
if sparse_mask.any():
return sparse_storage_kernel(M, C, keys[sparse_mask], values[sparse_mask])
else:
return store_pairs(M, C, keys, values, alphas)
```
### 5. Batch Processing Optimization
**Issue**: Current implementation processes single batches
**Opportunity**: Vectorize across multiple membrane banks
```python
class BatchedMembraneBank:
def __init__(self, L, H, W, num_banks=8):
self.banks = [MembraneBank(L, H, W) for _ in range(num_banks)]
def parallel_store(self, patterns_list, keys_list):
"""Store different pattern sets in parallel banks."""
# Vectorized implementation across banks
pass
```
### 6. GPU Acceleration Opportunities
**Issue**: No GPU acceleration benchmarked (CUDA not available in test environment)
**Opportunity**: Optimize tensor operations for GPU
```python
def gpu_optimized_einsum(M, C):
"""GPU-optimized einsum with memory coalescing."""
if M.is_cuda:
# Use custom CUDA kernels for better memory access patterns
return torch.cuda.compiled_einsum('blhw,lk->bkhw', M, C)
else:
return torch.einsum('blhw,lk->bkhw', M, C)
```
### 7. Persistence Layer Enhancements
**Issue**: Basic exponential decay persistence
**Opportunity**: Adaptive persistence based on pattern importance
```python
class AdaptivePersistence:
def __init__(self, base_lambda=0.95):
self.base_lambda = base_lambda
self.access_counts = {}
def compute_decay(self, pattern_keys):
"""Compute decay rates based on access patterns."""
lambdas = []
for key in pattern_keys:
count = self.access_counts.get(key, 0)
# More accessed patterns decay slower
lambda_val = self.base_lambda + (1 - self.base_lambda) * count / 100
lambdas.append(min(lambda_val, 0.99))
return torch.tensor(lambdas)
```
## 🚀 Implementation Priority
### High Priority (Immediate Impact)
1. **Alpha Scaling Optimization** - Simple to implement, significant fidelity improvement
2. **Dynamic Code Generation** - Removes hard capacity limits
3. **GPU Acceleration** - Major performance boost for large scales
### Medium Priority (Architectural)
4. **Hierarchical Memory** - Better scaling characteristics
5. **Sparse Storage** - Memory efficiency for sparse data
6. **Adaptive Persistence** - Better long-term memory behavior
### Low Priority (Advanced)
7. **Batch Processing** - Complex but potentially high-throughput
## 📊 Expected Performance Gains
### Alpha Scaling: 5-15dB PSNR improvement
### Dynamic Codes: 2-5x capacity increase
### GPU Acceleration: 10-50x throughput improvement
### Hierarchical Storage: 30-50% memory reduction
### Sparse Optimization: 60-80% memory savings for sparse data
## 🧪 Testing Strategy
Each optimization should be tested with:
1. **Fidelity preservation**: PSNR ≥ 100dB for standard test cases
2. **Capacity scaling**: Linear degradation up to theoretical limits
3. **Performance benchmarks**: Throughput improvements measured
4. **Interference analysis**: Cross-talk remains minimal
5. **Edge case handling**: Robust behavior for corner cases
## 📋 Implementation Checklist
- [ ] Implement adaptive alpha scaling
- [ ] Add dynamic code generation
- [ ] Create hierarchical memory banks
- [ ] Develop sparse storage kernels
- [ ] Add GPU acceleration paths
- [ ] Implement adaptive persistence
- [ ] Add comprehensive benchmarks
- [ ] Create performance regression tests |