File size: 6,882 Bytes
dc2b9f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
# WrinkleBrane Optimization Analysis

## 🔍 Key Findings from Benchmarks

### Fidelity Performance on Synthetic Patterns
- **High fidelity**: 150+ dB PSNR with SSIM (1.0000) achieved on simple geometric test patterns
- **Hadamard codes** show optimal orthogonality with zero cross-correlation error
- **DCT codes** achieve near-optimal results with minimal orthogonality error (0.000001)
- **Gaussian codes** demonstrate expected degradation (11.1±2.8dB PSNR) due to poor orthogonality

### Capacity Behavior (Limited Testing)
- **Theoretical capacity**: Up to L layers (as expected from theory)
- **Within-capacity performance**: Good results maintained up to theoretical limit on test patterns
- **Beyond-capacity degradation**: Expected performance drop when exceeding theoretical capacity
- **Testing limitation**: Evaluation restricted to simple synthetic patterns

### Performance Scaling (Preliminary)
- **Memory usage**: Linear scaling with B×L×H×W tensor dimensions
- **Write throughput**: 6,012 to 134,041 patterns/sec across tested scales
- **Read throughput**: 8,786 to 341,295 readouts/sec
- **Scale effects**: Throughput per pattern decreases with larger configurations

## 🎯 Optimization Opportunities

### 1. Alpha Scaling Optimization
**Issue**: Current implementation uses uniform alpha=1.0 for all patterns
**Opportunity**: Adaptive alpha scaling based on pattern energy and orthogonality

```python
def compute_adaptive_alphas(patterns, C, keys):
    """Compute optimal alpha values for each pattern."""
    alphas = torch.ones(len(keys))
    
    for i, key in enumerate(keys):
        # Scale by pattern energy
        pattern_energy = torch.norm(patterns[i])
        alphas[i] = 1.0 / pattern_energy.clamp_min(0.1)
        
        # Consider orthogonality with existing codes
        code_similarity = torch.abs(C[:, key] @ C).max()
        alphas[i] *= (2.0 - code_similarity)
    
    return alphas
```

### 2. Hierarchical Memory Organization
**Issue**: All patterns stored at same level causing interference
**Opportunity**: Multi-resolution storage with different layer allocations

```python
class HierarchicalMembraneBank:
    def __init__(self, L, H, W, levels=3):
        self.levels = levels
        self.banks = []
        for level in range(levels):
            bank_L = L // (2 ** level)
            self.banks.append(MembraneBank(bank_L, H, W))
```

### 3. Dynamic Code Generation
**Issue**: Static Hadamard codes limit capacity to fixed dimensions
**Opportunity**: Generate codes on-demand with optimal orthogonality

```python
def generate_optimal_codes(L, K, existing_patterns=None):
    """Generate codes optimized for specific patterns."""
    if K <= L:
        return hadamard_codes(L, K)  # Use Hadamard when possible
    else:
        return gram_schmidt_codes(L, K, patterns=existing_patterns)
```

### 4. Sparse Storage Optimization  
**Issue**: Dense tensor operations even for sparse patterns
**Opportunity**: Leverage sparsity in both patterns and codes

```python
def sparse_store_pairs(M, C, keys, values, alphas, sparsity_threshold=0.01):
    """Sparse implementation of store_pairs for sparse patterns."""
    # Identify sparse patterns
    sparse_mask = torch.norm(values.view(len(values), -1), dim=1) < sparsity_threshold
    
    # Use dense storage for dense patterns, sparse for sparse ones
    if sparse_mask.any():
        return sparse_storage_kernel(M, C, keys[sparse_mask], values[sparse_mask])
    else:
        return store_pairs(M, C, keys, values, alphas)
```

### 5. Batch Processing Optimization
**Issue**: Current implementation processes single batches
**Opportunity**: Vectorize across multiple membrane banks

```python
class BatchedMembraneBank:
    def __init__(self, L, H, W, num_banks=8):
        self.banks = [MembraneBank(L, H, W) for _ in range(num_banks)]
    
    def parallel_store(self, patterns_list, keys_list):
        """Store different pattern sets in parallel banks."""
        # Vectorized implementation across banks
        pass
```

### 6. GPU Acceleration Opportunities
**Issue**: No GPU acceleration benchmarked (CUDA not available in test environment)
**Opportunity**: Optimize tensor operations for GPU

```python
def gpu_optimized_einsum(M, C):
    """GPU-optimized einsum with memory coalescing."""
    if M.is_cuda:
        # Use custom CUDA kernels for better memory access patterns
        return torch.cuda.compiled_einsum('blhw,lk->bkhw', M, C)
    else:
        return torch.einsum('blhw,lk->bkhw', M, C)
```

### 7. Persistence Layer Enhancements
**Issue**: Basic exponential decay persistence
**Opportunity**: Adaptive persistence based on pattern importance

```python
class AdaptivePersistence:
    def __init__(self, base_lambda=0.95):
        self.base_lambda = base_lambda
        self.access_counts = {}
        
    def compute_decay(self, pattern_keys):
        """Compute decay rates based on access patterns."""
        lambdas = []
        for key in pattern_keys:
            count = self.access_counts.get(key, 0)
            # More accessed patterns decay slower
            lambda_val = self.base_lambda + (1 - self.base_lambda) * count / 100
            lambdas.append(min(lambda_val, 0.99))
        return torch.tensor(lambdas)
```

## 🚀 Implementation Priority

### High Priority (Immediate Impact)
1. **Alpha Scaling Optimization** - Simple to implement, significant fidelity improvement
2. **Dynamic Code Generation** - Removes hard capacity limits
3. **GPU Acceleration** - Major performance boost for large scales

### Medium Priority (Architectural)
4. **Hierarchical Memory** - Better scaling characteristics
5. **Sparse Storage** - Memory efficiency for sparse data
6. **Adaptive Persistence** - Better long-term memory behavior

### Low Priority (Advanced)
7. **Batch Processing** - Complex but potentially high-throughput

## 📊 Expected Performance Gains

### Alpha Scaling: 5-15dB PSNR improvement
### Dynamic Codes: 2-5x capacity increase  
### GPU Acceleration: 10-50x throughput improvement
### Hierarchical Storage: 30-50% memory reduction
### Sparse Optimization: 60-80% memory savings for sparse data

## 🧪 Testing Strategy

Each optimization should be tested with:
1. **Fidelity preservation**: PSNR ≥ 100dB for standard test cases
2. **Capacity scaling**: Linear degradation up to theoretical limits  
3. **Performance benchmarks**: Throughput improvements measured
4. **Interference analysis**: Cross-talk remains minimal
5. **Edge case handling**: Robust behavior for corner cases

## 📋 Implementation Checklist

- [ ] Implement adaptive alpha scaling
- [ ] Add dynamic code generation
- [ ] Create hierarchical memory banks
- [ ] Develop sparse storage kernels  
- [ ] Add GPU acceleration paths
- [ ] Implement adaptive persistence
- [ ] Add comprehensive benchmarks
- [ ] Create performance regression tests