File size: 2,056 Bytes
dc2b9f3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 |
#!/usr/bin/env python3
"""
WrinkleBrane Dataset Creation Script
Usage:
python create_wrinklebrane_dataset.py --token YOUR_HF_TOKEN --repo-id YOUR_REPO_NAME
This script creates a comprehensive dataset for WrinkleBrane associative memory
training and uploads it to HuggingFace Hub with proper metadata and organization.
"""
import argparse
import sys
from pathlib import Path
# Add the current directory to path
sys.path.insert(0, str(Path(__file__).parent))
from wrinklebrane_dataset_builder import create_wrinklebrane_dataset
def main():
parser = argparse.ArgumentParser(description="Create WrinkleBrane Dataset")
parser.add_argument("--token", required=True, help="HuggingFace access token")
parser.add_argument("--repo-id", default="WrinkleBrane", help="Dataset repository ID")
parser.add_argument("--private", action="store_true", default=True, help="Make dataset private")
parser.add_argument("--samples", type=int, default=20000, help="Total number of samples")
args = parser.parse_args()
print("๐ง Starting WrinkleBrane Dataset Creation")
print(f"Repository: {args.repo_id}")
print(f"Private: {args.private}")
print(f"Target samples: {args.samples}")
print("-" * 50)
try:
dataset_url = create_wrinklebrane_dataset(
hf_token=args.token,
repo_id=args.repo_id
)
print("\n" + "=" * 50)
print("๐ SUCCESS! Dataset created and uploaded")
print(f"๐ URL: {dataset_url}")
print("=" * 50)
print("\n๐ Next Steps:")
print("1. View your dataset on HuggingFace Hub")
print("2. Test loading with: `from datasets import load_dataset`")
print("3. Integrate with WrinkleBrane training pipeline")
print("4. Monitor associative memory performance metrics")
except Exception as e:
print(f"\nโ ERROR: {e}")
print("Please check your token and repository permissions.")
sys.exit(1)
if __name__ == "__main__":
main() |