WCNegentropy commited on
Commit
ffd9c12
Β·
verified Β·
1 Parent(s): 90fd962

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +259 -259
README.md CHANGED
@@ -1,260 +1,260 @@
1
- ---
2
- license: agpl-3.0
3
- library_name: pytorch
4
- pipeline_tag: other
5
- tags:
6
- - experimental
7
- - research
8
- - associative-memory
9
- - wave-interference
10
- - memory-systems
11
- - tensor-operations
12
- - pytorch
13
- language:
14
- - en
15
- datasets:
16
- - custom
17
- model_type: associative-memory
18
- widget:
19
- - text: "Pattern storage and retrieval demonstration"
20
- example_title: "Basic Memory Test"
21
- - text: "Wave interference pattern analysis"
22
- example_title: "Interference Analysis"
23
- inference:
24
- parameters:
25
- L: 64
26
- H: 32
27
- W: 32
28
- K: 8
29
- codes: hadamard
30
- model-index:
31
- - name: WrinkleBrane
32
- results: []
33
- ---
34
-
35
- # WrinkleBrane - Experimental Wave-Interference Memory
36
-
37
- <div align="center">
38
-
39
- **⚠️ Research Prototype ⚠️**
40
-
41
- *Early-stage experimental system requiring significant validation*
42
-
43
- ![License](https://img.shields.io/badge/License-AGPL--3.0-blue.svg)
44
- ![Status](https://img.shields.io/badge/Status-Research%20Prototype-yellow.svg)
45
- ![PyTorch](https://img.shields.io/badge/PyTorch-2.0+-red.svg)
46
-
47
- </div>
48
-
49
- ## Model Description
50
-
51
- WrinkleBrane is a novel experimental approach to associative memory that uses wave-interference patterns in tensor operations. The system stores information in stacked 2D "membranes" and retrieves it through parallel vertical slicing operations, demonstrating promising initial results on controlled test cases.
52
-
53
- **This is a research prototype with significant limitations and is not ready for production use.**
54
-
55
- ### Model Details
56
-
57
- - **Model Type**: Experimental associative memory system
58
- - **Architecture**: Wave-interference tensor operations with orthogonal code spaces
59
- - **Framework**: PyTorch
60
- - **License**: AGPL-3.0
61
- - **Research Status**: Early experimental phase requiring extensive validation
62
-
63
- ### Key Innovation
64
-
65
- - **Wave-interference memory**: Novel tensor-based approach using constructive/destructive interference patterns
66
- - **Orthogonal code spaces**: Hadamard and DCT codes for minimal cross-talk
67
- - **Parallel retrieval**: Single-pass access to all stored patterns via tensor slicing
68
- - **Mathematical foundation**: Theoretically grounded in linear algebra and signal processing
69
-
70
- ## Intended Uses
71
-
72
- ### Research Applications βœ…
73
-
74
- - **Academic research** in associative memory systems
75
- - **Algorithm development** and interference pattern studies
76
- - **Proof-of-concept** demonstrations for wave-based memory
77
- - **Educational purposes** for understanding tensor interference
78
-
79
- ### Not Suitable For ❌
80
-
81
- - **Production applications** (requires extensive validation)
82
- - **Large-scale deployment** (scalability unproven)
83
- - **Mission-critical systems** (reliability not established)
84
- - **Commercial use** without significant additional development
85
-
86
- ## Performance and Limitations
87
-
88
- ### Demonstrated Capabilities
89
-
90
- - **High precision**: 150+ dB PSNR on simple geometric test patterns
91
- - **Theoretical consistency**: Behavior matches mathematical predictions
92
- - **Orthogonal performance**: Excellent results with Hadamard codes (zero cross-correlation)
93
- - **Modular design**: Clean, well-structured PyTorch implementation
94
-
95
- ### Critical Limitations
96
-
97
- - **Limited testing**: Only validated on simple synthetic patterns
98
- - **No baselines**: No comparison to standard associative memory approaches
99
- - **Scale uncertainty**: Performance at practical scales unknown
100
- - **Dataset restriction**: Not tested on realistic, complex data
101
-
102
- ### Known Issues
103
-
104
- - Testing limited to controlled laboratory conditions
105
- - Theoretical capacity limits unconfirmed on real-world data
106
- - No robustness analysis under noise or interference
107
- - Long-term stability and persistence mechanisms underdeveloped
108
-
109
- ## Technical Specifications
110
-
111
- ### Core Operations
112
-
113
- ```python
114
- # Write Operation: Store pattern with interference
115
- M += Ξ£α΅’ Ξ±α΅’ Β· C[:, kα΅’] βŠ— Vα΅’
116
-
117
- # Read Operation: Parallel retrieval via tensor slicing
118
- Y = ReLU(einsum('blhw,lk->bkhw', M, C) + b)
119
- ```
120
-
121
- ### Tensor Shapes
122
-
123
- - **Membranes**: `M ∈ ℝ[B, L, H, W]` - 4D tensor storage
124
- - **Codes**: `C ∈ ℝ[L, K]` - Orthogonal slice weights
125
- - **Patterns**: `V ∈ ℝ[H, W]` - 2D information maps
126
- - **Output**: `Y ∈ ℝ[B, K, H, W]` - Retrieved patterns
127
-
128
- ### Requirements
129
-
130
- - PyTorch 2.0+
131
- - NumPy
132
- - SciPy (for code generation)
133
- - Matplotlib (for visualization)
134
-
135
- ## Getting Started
136
-
137
- ### Installation
138
-
139
- ```bash
140
- git clone https://huggingface.co/WCNegentropy/WrinkleBrane
141
- cd WrinkleBrane
142
- pip install -r requirements.txt
143
- ```
144
-
145
- ### Basic Usage
146
-
147
- ```python
148
- from wrinklebrane.membrane_bank import MembraneBank
149
- from wrinklebrane.codes import hadamard_codes
150
- from wrinklebrane.write_ops import store_pairs
151
- from wrinklebrane.slicer import make_slicer
152
-
153
- # Setup memory system
154
- B, L, H, W, K = 1, 64, 32, 32, 8
155
- bank = MembraneBank(L=L, H=H, W=W)
156
- bank.allocate(B)
157
-
158
- # Generate orthogonal codes
159
- C = hadamard_codes(L, K)
160
- slicer = make_slicer(C)
161
-
162
- # Store patterns
163
- keys = [0, 1, 2]
164
- values = [pattern1, pattern2, pattern3] # HΓ—W tensors
165
- alphas = [1.0, 1.0, 1.0]
166
-
167
- store_pairs(bank.M, C, keys, values, alphas)
168
-
169
- # Retrieve all patterns
170
- retrieved = slicer(bank.M[0]) # Shape: [K, H, W]
171
- ```
172
-
173
- ### Running Experiments
174
-
175
- ```bash
176
- # Basic associative memory test
177
- python experiments/p0_assoc_mem.py --L 64 --H 32 --W 32 --K 8 --codes hadamard
178
-
179
- # Performance benchmarking
180
- python performance_benchmark.py
181
-
182
- # Comprehensive testing
183
- python comprehensive_test.py
184
- ```
185
-
186
- ## Research Status and Validation Needs
187
-
188
- ### Current Research Phase
189
-
190
- WrinkleBrane is in **early experimental development**. While demonstrating promising technical concepts, extensive validation is required before practical applications.
191
-
192
- ### Required Validation Work
193
-
194
- **High Priority**:
195
- - Systematic comparison to established associative memory baselines
196
- - Evaluation on realistic datasets (MNIST, CIFAR, natural images)
197
- - Statistical analysis with multiple runs and confidence intervals
198
- - Large-scale performance and robustness studies
199
-
200
- **Medium Priority**:
201
- - Noise robustness characterization
202
- - Failure mode analysis and system limitations
203
- - Computational efficiency benchmarking vs alternatives
204
- - Long-term stability and persistence validation
205
-
206
- ### Honest Assessment
207
-
208
- **What WrinkleBrane Demonstrates**:
209
- - βœ… Novel tensor-based interference memory approach
210
- - βœ… High precision on controlled test patterns
211
- - βœ… Mathematical consistency with theoretical predictions
212
- - βœ… Clean, modular implementation with test coverage
213
-
214
- **What Remains Unproven**:
215
- - ❓ Performance on realistic, complex datasets
216
- - ❓ Competitive advantages over existing approaches
217
- - ❓ Scalability to practically relevant problem sizes
218
- - ❓ Robustness under real-world conditions
219
-
220
- ## Citation
221
-
222
- If you use WrinkleBrane in your research, please cite:
223
-
224
- ```bibtex
225
- @software{wrinklebrane2025,
226
- title={WrinkleBrane: Experimental Wave-Interference Memory},
227
- author={WCNegentropy Holdings LLC},
228
- year={2025},
229
- url={https://huggingface.co/WCNegentropy/WrinkleBrane},
230
- note={Research prototype - experimental software}
231
- }
232
- ```
233
-
234
- ## Documentation
235
-
236
- - πŸ“‹ **[Research Status](RESEARCH_STATUS.md)** - Current limitations and validation needs
237
- - πŸ”¬ **[Assessment Report](WRINKLEBRANE_ASSESSMENT.md)** - Experimental results and analysis
238
- - ⚑ **[Optimization Analysis](OPTIMIZATION_ANALYSIS.md)** - Performance characteristics
239
- - πŸ› οΈ **[Development Workflow](AGENTS.md)** - Testing and development procedures
240
-
241
- ## License and Disclaimer
242
-
243
- This software is released under the AGPL-3.0 license.
244
-
245
- **EXPERIMENTAL SOFTWARE DISCLAIMER**: WrinkleBrane is experimental research software. It has not been validated for production use and may contain bugs, limitations, or unexpected behaviors. Use at your own risk and conduct thorough testing before any practical applications.
246
-
247
- ## Contributing
248
-
249
- We welcome contributions to help validate and improve WrinkleBrane:
250
-
251
- - **Research validation**: Comparative studies and benchmarking
252
- - **Testing**: Evaluation on new datasets and use cases
253
- - **Optimization**: Performance improvements and scaling studies
254
- - **Documentation**: Improved explanations and tutorials
255
-
256
- Please see our research status document for priority validation needs.
257
-
258
- ---
259
-
260
  *WrinkleBrane represents early-stage research in wave-interference memory systems. While showing promise, it requires substantial additional validation before practical applications.*
 
1
+ ---
2
+ license: agpl-3.0
3
+ library_name: pytorch
4
+ pipeline_tag: other
5
+ tags:
6
+ - experimental
7
+ - research
8
+ - associative-memory
9
+ - wave-interference
10
+ - memory-systems
11
+ - tensor-operations
12
+ - pytorch
13
+ language:
14
+ - en
15
+ datasets:
16
+ - custom
17
+ model_type: associative-memory
18
+ widget:
19
+ - text: "Pattern storage and retrieval demonstration"
20
+ example_title: "Basic Memory Test"
21
+ - text: "Wave interference pattern analysis"
22
+ example_title: "Interference Analysis"
23
+ inference:
24
+ parameters:
25
+ L: 64
26
+ H: 32
27
+ W: 32
28
+ K: 8
29
+ codes: hadamard
30
+ model-index:
31
+ - name: WrinkleBrane
32
+ results: []
33
+ ---
34
+
35
+ # WrinkleBrane - Experimental Wave-Interference Memory
36
+
37
+ <div align="center">
38
+
39
+ **⚠️ Research Prototype ⚠️**
40
+
41
+ *Early-stage experimental system requiring significant validation*
42
+
43
+ ![License](https://img.shields.io/badge/License-AGPL--3.0-blue.svg)
44
+ ![Status](https://img.shields.io/badge/Status-Research%20Prototype-yellow.svg)
45
+ ![PyTorch](https://img.shields.io/badge/PyTorch-2.0+-red.svg)
46
+
47
+ </div>
48
+
49
+ ## Model Description
50
+
51
+ WrinkleBrane is a novel experimental approach to associative memory that uses wave-interference patterns in tensor operations. The system stores information in stacked 2D "membranes" and retrieves it through parallel vertical slicing operations, demonstrating promising initial results on controlled test cases.
52
+
53
+ **This is a research prototype with significant limitations and is not ready for production use.**
54
+
55
+ ### Model Details
56
+
57
+ - **Model Type**: Experimental associative memory system
58
+ - **Architecture**: Wave-interference tensor operations with orthogonal code spaces
59
+ - **Framework**: PyTorch
60
+ - **License**: AGPL-3.0
61
+ - **Research Status**: Early experimental phase requiring extensive validation
62
+
63
+ ### Key Innovation
64
+
65
+ - **Wave-interference memory**: Novel tensor-based approach using constructive/destructive interference patterns
66
+ - **Orthogonal code spaces**: Hadamard and DCT codes for minimal cross-talk
67
+ - **Parallel retrieval**: Single-pass access to all stored patterns via tensor slicing
68
+ - **Mathematical foundation**: Theoretically grounded in linear algebra and signal processing
69
+
70
+ ## Intended Uses
71
+
72
+ ### Research Applications βœ…
73
+
74
+ - **Academic research** in associative memory systems
75
+ - **Algorithm development** and interference pattern studies
76
+ - **Proof-of-concept** demonstrations for wave-based memory
77
+ - **Educational purposes** for understanding tensor interference
78
+
79
+ ### Not Suitable For ❌
80
+
81
+ - **Production applications** (requires extensive validation)
82
+ - **Large-scale deployment** (scalability unproven)
83
+ - **Mission-critical systems** (reliability not established)
84
+ - **Commercial use** without significant additional development
85
+
86
+ ## Performance and Limitations
87
+
88
+ ### Demonstrated Capabilities
89
+
90
+ - **High precision**: 150+ dB PSNR on simple geometric test patterns
91
+ - **Theoretical consistency**: Behavior matches mathematical predictions
92
+ - **Orthogonal performance**: Excellent results with Hadamard codes (zero cross-correlation)
93
+ - **Modular design**: Clean, well-structured PyTorch implementation
94
+
95
+ ### Critical Limitations
96
+
97
+ - **Limited testing**: Only validated on simple synthetic patterns
98
+ - **No baselines**: No comparison to standard associative memory approaches
99
+ - **Scale uncertainty**: Performance at practical scales unknown
100
+ - **Dataset restriction**: Not tested on realistic, complex data
101
+
102
+ ### Known Issues
103
+
104
+ - Testing limited to controlled laboratory conditions
105
+ - Theoretical capacity limits unconfirmed on real-world data
106
+ - No robustness analysis under noise or interference
107
+ - Long-term stability and persistence mechanisms underdeveloped
108
+
109
+ ## Technical Specifications
110
+
111
+ ### Core Operations
112
+
113
+ ```python
114
+ # Write Operation: Store pattern with interference
115
+ M += Ξ£α΅’ Ξ±α΅’ Β· C[:, kα΅’] βŠ— Vα΅’
116
+
117
+ # Read Operation: Parallel retrieval via tensor slicing
118
+ Y = ReLU(einsum('blhw,lk->bkhw', M, C) + b)
119
+ ```
120
+
121
+ ### Tensor Shapes
122
+
123
+ - **Membranes**: `M ∈ ℝ[B, L, H, W]` - 4D tensor storage
124
+ - **Codes**: `C ∈ ℝ[L, K]` - Orthogonal slice weights
125
+ - **Patterns**: `V ∈ ℝ[H, W]` - 2D information maps
126
+ - **Output**: `Y ∈ ℝ[B, K, H, W]` - Retrieved patterns
127
+
128
+ ### Requirements
129
+
130
+ - PyTorch 2.0+
131
+ - NumPy
132
+ - SciPy (for code generation)
133
+ - Matplotlib (for visualization)
134
+
135
+ ## Getting Started
136
+
137
+ ### Installation
138
+
139
+ ```bash
140
+ git clone https://huggingface.co/WCNegentropy/WrinkleBrane
141
+ cd WrinkleBrane
142
+ pip install -r requirements.txt
143
+ ```
144
+
145
+ ### Basic Usage
146
+
147
+ ```python
148
+ from wrinklebrane.membrane_bank import MembraneBank
149
+ from wrinklebrane.codes import hadamard_codes
150
+ from wrinklebrane.write_ops import store_pairs
151
+ from wrinklebrane.slicer import make_slicer
152
+
153
+ # Setup memory system
154
+ B, L, H, W, K = 1, 64, 32, 32, 8
155
+ bank = MembraneBank(L=L, H=H, W=W)
156
+ bank.allocate(B)
157
+
158
+ # Generate orthogonal codes
159
+ C = hadamard_codes(L, K)
160
+ slicer = make_slicer(C)
161
+
162
+ # Store patterns
163
+ keys = [0, 1, 2]
164
+ values = [pattern1, pattern2, pattern3] # HΓ—W tensors
165
+ alphas = [1.0, 1.0, 1.0]
166
+
167
+ store_pairs(bank.M, C, keys, values, alphas)
168
+
169
+ # Retrieve all patterns
170
+ retrieved = slicer(bank.M[0]) # Shape: [K, H, W]
171
+ ```
172
+
173
+ ### Running Experiments
174
+
175
+ ```bash
176
+ # Basic associative memory test
177
+ python experiments/p0_assoc_mem.py --L 64 --H 32 --W 32 --K 8 --codes hadamard
178
+
179
+ # Performance benchmarking
180
+ python performance_benchmark.py
181
+
182
+ # Comprehensive testing
183
+ python comprehensive_test.py
184
+ ```
185
+
186
+ ## Research Status and Validation Needs
187
+
188
+ ### Current Research Phase
189
+
190
+ WrinkleBrane is in **early experimental development**. While demonstrating promising technical concepts, extensive validation is required before practical applications.
191
+
192
+ ### Required Validation Work
193
+
194
+ **High Priority**:
195
+ - Systematic comparison to established associative memory baselines
196
+ - Evaluation on realistic datasets (MNIST, CIFAR, natural images)
197
+ - Statistical analysis with multiple runs and confidence intervals
198
+ - Large-scale performance and robustness studies
199
+
200
+ **Medium Priority**:
201
+ - Noise robustness characterization
202
+ - Failure mode analysis and system limitations
203
+ - Computational efficiency benchmarking vs alternatives
204
+ - Long-term stability and persistence validation
205
+
206
+ ### Honest Assessment
207
+
208
+ **What WrinkleBrane Demonstrates**:
209
+ - βœ… Novel tensor-based interference memory approach
210
+ - βœ… High precision on controlled test patterns
211
+ - βœ… Mathematical consistency with theoretical predictions
212
+ - βœ… Clean, modular implementation with test coverage
213
+
214
+ **What Remains Unproven**:
215
+ - ❓ Performance on realistic, complex datasets
216
+ - ❓ Competitive advantages over existing approaches
217
+ - ❓ Scalability to practically relevant problem sizes
218
+ - ❓ Robustness under real-world conditions
219
+
220
+ ## Citation
221
+
222
+ If you use WrinkleBrane in your research, please cite:
223
+
224
+ ```bibtex
225
+ @software{wrinklebrane2025,
226
+ title={WrinkleBrane: Experimental Wave-Interference Memory},
227
+ author={WCNEGENTROPY HOLDINGS LLC},
228
+ year={2025},
229
+ url={https://huggingface.co/WCNegentropy/WrinkleBrane},
230
+ note={Research prototype - experimental software}
231
+ }
232
+ ```
233
+
234
+ ## Documentation
235
+
236
+ - πŸ“‹ **[Research Status](RESEARCH_STATUS.md)** - Current limitations and validation needs
237
+ - πŸ”¬ **[Assessment Report](WRINKLEBRANE_ASSESSMENT.md)** - Experimental results and analysis
238
+ - ⚑ **[Optimization Analysis](OPTIMIZATION_ANALYSIS.md)** - Performance characteristics
239
+ - πŸ› οΈ **[Development Workflow](AGENTS.md)** - Testing and development procedures
240
+
241
+ ## License and Disclaimer
242
+
243
+ This software is released under the AGPL-3.0 license.
244
+
245
+ **EXPERIMENTAL SOFTWARE DISCLAIMER**: WrinkleBrane is experimental research software. It has not been validated for production use and may contain bugs, limitations, or unexpected behaviors. Use at your own risk and conduct thorough testing before any practical applications.
246
+
247
+ ## Contributing
248
+
249
+ We welcome contributions to help validate and improve WrinkleBrane:
250
+
251
+ - **Research validation**: Comparative studies and benchmarking
252
+ - **Testing**: Evaluation on new datasets and use cases
253
+ - **Optimization**: Performance improvements and scaling studies
254
+ - **Documentation**: Improved explanations and tutorials
255
+
256
+ Please see our research status document for priority validation needs.
257
+
258
+ ---
259
+
260
  *WrinkleBrane represents early-stage research in wave-interference memory systems. While showing promise, it requires substantial additional validation before practical applications.*