# WrinkleBrane Optimization Analysis ## ๐Ÿ” Key Findings from Benchmarks ### Fidelity Performance on Synthetic Patterns - **High fidelity**: 150+ dB PSNR with SSIM (1.0000) achieved on simple geometric test patterns - **Hadamard codes** show optimal orthogonality with zero cross-correlation error - **DCT codes** achieve near-optimal results with minimal orthogonality error (0.000001) - **Gaussian codes** demonstrate expected degradation (11.1ยฑ2.8dB PSNR) due to poor orthogonality ### Capacity Behavior (Limited Testing) - **Theoretical capacity**: Up to L layers (as expected from theory) - **Within-capacity performance**: Good results maintained up to theoretical limit on test patterns - **Beyond-capacity degradation**: Expected performance drop when exceeding theoretical capacity - **Testing limitation**: Evaluation restricted to simple synthetic patterns ### Performance Scaling (Preliminary) - **Memory usage**: Linear scaling with Bร—Lร—Hร—W tensor dimensions - **Write throughput**: 6,012 to 134,041 patterns/sec across tested scales - **Read throughput**: 8,786 to 341,295 readouts/sec - **Scale effects**: Throughput per pattern decreases with larger configurations ## ๐ŸŽฏ Optimization Opportunities ### 1. Alpha Scaling Optimization **Issue**: Current implementation uses uniform alpha=1.0 for all patterns **Opportunity**: Adaptive alpha scaling based on pattern energy and orthogonality ```python def compute_adaptive_alphas(patterns, C, keys): """Compute optimal alpha values for each pattern.""" alphas = torch.ones(len(keys)) for i, key in enumerate(keys): # Scale by pattern energy pattern_energy = torch.norm(patterns[i]) alphas[i] = 1.0 / pattern_energy.clamp_min(0.1) # Consider orthogonality with existing codes code_similarity = torch.abs(C[:, key] @ C).max() alphas[i] *= (2.0 - code_similarity) return alphas ``` ### 2. Hierarchical Memory Organization **Issue**: All patterns stored at same level causing interference **Opportunity**: Multi-resolution storage with different layer allocations ```python class HierarchicalMembraneBank: def __init__(self, L, H, W, levels=3): self.levels = levels self.banks = [] for level in range(levels): bank_L = L // (2 ** level) self.banks.append(MembraneBank(bank_L, H, W)) ``` ### 3. Dynamic Code Generation **Issue**: Static Hadamard codes limit capacity to fixed dimensions **Opportunity**: Generate codes on-demand with optimal orthogonality ```python def generate_optimal_codes(L, K, existing_patterns=None): """Generate codes optimized for specific patterns.""" if K <= L: return hadamard_codes(L, K) # Use Hadamard when possible else: return gram_schmidt_codes(L, K, patterns=existing_patterns) ``` ### 4. Sparse Storage Optimization **Issue**: Dense tensor operations even for sparse patterns **Opportunity**: Leverage sparsity in both patterns and codes ```python def sparse_store_pairs(M, C, keys, values, alphas, sparsity_threshold=0.01): """Sparse implementation of store_pairs for sparse patterns.""" # Identify sparse patterns sparse_mask = torch.norm(values.view(len(values), -1), dim=1) < sparsity_threshold # Use dense storage for dense patterns, sparse for sparse ones if sparse_mask.any(): return sparse_storage_kernel(M, C, keys[sparse_mask], values[sparse_mask]) else: return store_pairs(M, C, keys, values, alphas) ``` ### 5. Batch Processing Optimization **Issue**: Current implementation processes single batches **Opportunity**: Vectorize across multiple membrane banks ```python class BatchedMembraneBank: def __init__(self, L, H, W, num_banks=8): self.banks = [MembraneBank(L, H, W) for _ in range(num_banks)] def parallel_store(self, patterns_list, keys_list): """Store different pattern sets in parallel banks.""" # Vectorized implementation across banks pass ``` ### 6. GPU Acceleration Opportunities **Issue**: No GPU acceleration benchmarked (CUDA not available in test environment) **Opportunity**: Optimize tensor operations for GPU ```python def gpu_optimized_einsum(M, C): """GPU-optimized einsum with memory coalescing.""" if M.is_cuda: # Use custom CUDA kernels for better memory access patterns return torch.cuda.compiled_einsum('blhw,lk->bkhw', M, C) else: return torch.einsum('blhw,lk->bkhw', M, C) ``` ### 7. Persistence Layer Enhancements **Issue**: Basic exponential decay persistence **Opportunity**: Adaptive persistence based on pattern importance ```python class AdaptivePersistence: def __init__(self, base_lambda=0.95): self.base_lambda = base_lambda self.access_counts = {} def compute_decay(self, pattern_keys): """Compute decay rates based on access patterns.""" lambdas = [] for key in pattern_keys: count = self.access_counts.get(key, 0) # More accessed patterns decay slower lambda_val = self.base_lambda + (1 - self.base_lambda) * count / 100 lambdas.append(min(lambda_val, 0.99)) return torch.tensor(lambdas) ``` ## ๐Ÿš€ Implementation Priority ### High Priority (Immediate Impact) 1. **Alpha Scaling Optimization** - Simple to implement, significant fidelity improvement 2. **Dynamic Code Generation** - Removes hard capacity limits 3. **GPU Acceleration** - Major performance boost for large scales ### Medium Priority (Architectural) 4. **Hierarchical Memory** - Better scaling characteristics 5. **Sparse Storage** - Memory efficiency for sparse data 6. **Adaptive Persistence** - Better long-term memory behavior ### Low Priority (Advanced) 7. **Batch Processing** - Complex but potentially high-throughput ## ๐Ÿ“Š Expected Performance Gains ### Alpha Scaling: 5-15dB PSNR improvement ### Dynamic Codes: 2-5x capacity increase ### GPU Acceleration: 10-50x throughput improvement ### Hierarchical Storage: 30-50% memory reduction ### Sparse Optimization: 60-80% memory savings for sparse data ## ๐Ÿงช Testing Strategy Each optimization should be tested with: 1. **Fidelity preservation**: PSNR โ‰ฅ 100dB for standard test cases 2. **Capacity scaling**: Linear degradation up to theoretical limits 3. **Performance benchmarks**: Throughput improvements measured 4. **Interference analysis**: Cross-talk remains minimal 5. **Edge case handling**: Robust behavior for corner cases ## ๐Ÿ“‹ Implementation Checklist - [ ] Implement adaptive alpha scaling - [ ] Add dynamic code generation - [ ] Create hierarchical memory banks - [ ] Develop sparse storage kernels - [ ] Add GPU acceleration paths - [ ] Implement adaptive persistence - [ ] Add comprehensive benchmarks - [ ] Create performance regression tests