waterhorse1
commited on
Commit
·
0e1ad6f
1
Parent(s):
a979fe4
v2 model
Browse files- .gitattributes +2 -0
- README.md +196 -0
- config.json +25 -0
- generation_config.json +6 -0
- pytorch_model-00001-of-00002.bin +3 -0
- pytorch_model-00002-of-00002.bin +3 -0
- pytorch_model.bin.index.json +491 -0
- special_tokens_map.json +5 -0
- tokenizer.json +0 -0
- tokenizer_config.json +9 -0
.gitattributes
CHANGED
|
@@ -32,3 +32,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
| 32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 35 |
+
pytorch_model-00001-of-00002.bin filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
pytorch_model-00002-of-00002.bin filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
|
@@ -0,0 +1,196 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: apache-2.0
|
| 3 |
+
language:
|
| 4 |
+
- en
|
| 5 |
+
datasets:
|
| 6 |
+
- togethercomputer/RedPajama-Data-1T
|
| 7 |
+
---
|
| 8 |
+
|
| 9 |
+
# RedPajama-INCITE-Base-3B-v1
|
| 10 |
+
|
| 11 |
+
RedPajama-INCITE-Base-3B-v1 was developed by Together and leaders from the open-source AI community including Ontocord.ai, ETH DS3Lab, AAI CERC, Université de Montréal, MILA - Québec AI Institute, Stanford Center for Research on Foundation Models (CRFM), Stanford Hazy Research research group and LAION.
|
| 12 |
+
The training was done on 3,072 V100 GPUs provided as part of the INCITE 2023 project on Scalable Foundation Models for Transferrable Generalist AI, awarded to MILA, LAION, and EleutherAI in fall 2022, with support from the Oak Ridge Leadership Computing Facility (OLCF) and INCITE program.
|
| 13 |
+
|
| 14 |
+
- Base Model: [RedPajama-INCITE-Base-3B-v1](https://huggingface.co/togethercomputer/RedPajama-INCITE-Base-3B-v1)
|
| 15 |
+
- Instruction-tuned Version: [RedPajama-INCITE-Instruct-3B-v1](https://huggingface.co/togethercomputer/RedPajama-INCITE-Instruct-3B-v1)
|
| 16 |
+
- Chat Version: [RedPajama-INCITE-Chat-3B-v1](https://huggingface.co/togethercomputer/RedPajama-INCITE-Chat-3B-v1)
|
| 17 |
+
|
| 18 |
+
## Model Details
|
| 19 |
+
- **Developed by**: Together Computer.
|
| 20 |
+
- **Model type**: Language Model
|
| 21 |
+
- **Language(s)**: English
|
| 22 |
+
- **License**: Apache 2.0
|
| 23 |
+
- **Model Description**: A 2.8B parameter pretrained language model.
|
| 24 |
+
|
| 25 |
+
# Quick Start
|
| 26 |
+
|
| 27 |
+
Please note that the model requires `transformers` version >= 4.25.1.
|
| 28 |
+
|
| 29 |
+
## GPU Inference
|
| 30 |
+
|
| 31 |
+
This requires a GPU with 8GB memory.
|
| 32 |
+
|
| 33 |
+
```python
|
| 34 |
+
import torch
|
| 35 |
+
import transformers
|
| 36 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 37 |
+
|
| 38 |
+
MIN_TRANSFORMERS_VERSION = '4.25.1'
|
| 39 |
+
|
| 40 |
+
# check transformers version
|
| 41 |
+
assert transformers.__version__ >= MIN_TRANSFORMERS_VERSION, f'Please upgrade transformers to version {MIN_TRANSFORMERS_VERSION} or higher.'
|
| 42 |
+
|
| 43 |
+
# init
|
| 44 |
+
tokenizer = AutoTokenizer.from_pretrained("togethercomputer/RedPajama-INCITE-Base-3B-v1")
|
| 45 |
+
model = AutoModelForCausalLM.from_pretrained("togethercomputer/RedPajama-INCITE-Base-3B-v1", torch_dtype=torch.float16)
|
| 46 |
+
model = model.to('cuda:0')
|
| 47 |
+
|
| 48 |
+
# infer
|
| 49 |
+
prompt = "Alan Turing is"
|
| 50 |
+
inputs = tokenizer(prompt, return_tensors='pt').to(model.device)
|
| 51 |
+
input_length = inputs.input_ids.shape[1]
|
| 52 |
+
outputs = model.generate(
|
| 53 |
+
**inputs, max_new_tokens=128, do_sample=True, temperature=0.7, top_p=0.7, top_k=50, return_dict_in_generate=True,
|
| 54 |
+
)
|
| 55 |
+
token = outputs.sequences[0, input_length:]
|
| 56 |
+
output_str = tokenizer.decode(token)
|
| 57 |
+
print(output_str)
|
| 58 |
+
"""
|
| 59 |
+
a name that has been synonymous with the computer age since the 1950s. The British mathematician, logician, and cryptanalyst is widely regarded as the father of modern computing. His contributions to the development of the modern computer and the theory of computation have had a profound impact on the world we live in today.
|
| 60 |
+
Turing’s contributions to the development of the modern computer were made in the 1940s and 1950s. He is most famous for his work on the Turing machine, a theoretical model of a computing machine that was able to perform all the mathematical operations of a computer. Turing’s work on the...
|
| 61 |
+
"""
|
| 62 |
+
```
|
| 63 |
+
|
| 64 |
+
## GPU Inference in Int8
|
| 65 |
+
|
| 66 |
+
To run inference with int8, please ensure you have installed accelerate and bitandbytes. You can install them with the following command:
|
| 67 |
+
|
| 68 |
+
```bash
|
| 69 |
+
pip install accelerate
|
| 70 |
+
pip install bitsandbytes
|
| 71 |
+
```
|
| 72 |
+
|
| 73 |
+
Then you can run inference with int8 as follows:
|
| 74 |
+
|
| 75 |
+
```python
|
| 76 |
+
import torch
|
| 77 |
+
import transformers
|
| 78 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 79 |
+
|
| 80 |
+
MIN_TRANSFORMERS_VERSION = '4.25.1'
|
| 81 |
+
|
| 82 |
+
# check transformers version
|
| 83 |
+
assert transformers.__version__ >= MIN_TRANSFORMERS_VERSION, f'Please upgrade transformers to version {MIN_TRANSFORMERS_VERSION} or higher.'
|
| 84 |
+
|
| 85 |
+
# init
|
| 86 |
+
tokenizer = AutoTokenizer.from_pretrained("togethercomputer/RedPajama-INCITE-Base-3B-v1")
|
| 87 |
+
model = AutoModelForCausalLM.from_pretrained("togethercomputer/RedPajama-INCITE-Base-3B-v1", device_map='auto', torch_dtype=torch.float16, load_in_8bit=True)
|
| 88 |
+
|
| 89 |
+
# infer
|
| 90 |
+
prompt = "Alan Turing is"
|
| 91 |
+
inputs = tokenizer(prompt, return_tensors='pt').to(model.device)
|
| 92 |
+
input_length = inputs.input_ids.shape[1]
|
| 93 |
+
outputs = model.generate(
|
| 94 |
+
**inputs, max_new_tokens=128, do_sample=True, temperature=0.7, top_p=0.7, top_k=50, return_dict_in_generate=True
|
| 95 |
+
)
|
| 96 |
+
token = outputs.sequences[0, input_length:]
|
| 97 |
+
output_str = tokenizer.decode(token)
|
| 98 |
+
print(output_str)
|
| 99 |
+
"""
|
| 100 |
+
the man who cracked the Enigma code during World War II, and who was later convicted of homosexual acts. He was a brilliant mathematician, and a visionary who foresaw the computer age....
|
| 101 |
+
"""
|
| 102 |
+
```
|
| 103 |
+
|
| 104 |
+
## CPU Inference
|
| 105 |
+
|
| 106 |
+
You can run inference on CPU as follows:
|
| 107 |
+
|
| 108 |
+
```python
|
| 109 |
+
import torch
|
| 110 |
+
import transformers
|
| 111 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 112 |
+
|
| 113 |
+
MIN_TRANSFORMERS_VERSION = '4.25.1'
|
| 114 |
+
|
| 115 |
+
# check transformers version
|
| 116 |
+
assert transformers.__version__ >= MIN_TRANSFORMERS_VERSION, f'Please upgrade transformers to version {MIN_TRANSFORMERS_VERSION} or higher.'
|
| 117 |
+
|
| 118 |
+
# init
|
| 119 |
+
tokenizer = AutoTokenizer.from_pretrained("togethercomputer/RedPajama-INCITE-Base-3B-v1")
|
| 120 |
+
model = AutoModelForCausalLM.from_pretrained("togethercomputer/RedPajama-INCITE-Base-3B-v1", torch_dtype=torch.bfloat16)
|
| 121 |
+
# infer
|
| 122 |
+
prompt = "Alan Turing is"
|
| 123 |
+
inputs = tokenizer(prompt, return_tensors='pt').to(model.device)
|
| 124 |
+
input_length = inputs.input_ids.shape[1]
|
| 125 |
+
outputs = model.generate(
|
| 126 |
+
**inputs, max_new_tokens=128, do_sample=True, temperature=0.7, top_p=0.7, top_k=50, return_dict_in_generate=True
|
| 127 |
+
)
|
| 128 |
+
token = outputs.sequences[0, input_length:]
|
| 129 |
+
output_str = tokenizer.decode(token)
|
| 130 |
+
print(output_str)
|
| 131 |
+
"""
|
| 132 |
+
a name that is synonymous with the history of computer science. As the man who invented the Turing machine, the mathematical model that defines the limits of what can be computed, Turing is credited with the invention of the modern computer. Turing was also a mathematician and logician, and his work in these fields led to the development of the field of artificial intelligence...
|
| 133 |
+
"""
|
| 134 |
+
```
|
| 135 |
+
|
| 136 |
+
Please note that since `LayerNormKernelImpl` is not implemented in fp16 for CPU, we use `bfloat16` for CPU inference.
|
| 137 |
+
|
| 138 |
+
# Uses
|
| 139 |
+
|
| 140 |
+
Excluded uses are described below.
|
| 141 |
+
|
| 142 |
+
### Misuse, Malicious Use, and Out-of-Scope Use
|
| 143 |
+
|
| 144 |
+
It is the responsibility of the end user to ensure that the model is used in a responsible and ethical manner.
|
| 145 |
+
|
| 146 |
+
#### Out-of-Scope Use
|
| 147 |
+
|
| 148 |
+
`RedPajama-INCITE-Base-3B-v1` is a language model and may not perform well for other use cases outside of its intended scope.
|
| 149 |
+
For example, it may not be suitable for use in safety-critical applications or for making decisions that have a significant impact on individuals or society.
|
| 150 |
+
It is important to consider the limitations of the model and to only use it for its intended purpose.
|
| 151 |
+
|
| 152 |
+
#### Misuse and Malicious Use
|
| 153 |
+
|
| 154 |
+
`RedPajama-INCITE-Base-3B-v1` is designed for language modeling.
|
| 155 |
+
Misuse of the model, such as using it to engage in illegal or unethical activities, is strictly prohibited and goes against the principles of the project.
|
| 156 |
+
|
| 157 |
+
Using the model to generate content that is cruel to individuals is a misuse of this model. This includes, but is not limited to:
|
| 158 |
+
|
| 159 |
+
- Generating fake news, misinformation, or propaganda
|
| 160 |
+
- Promoting hate speech, discrimination, or violence against individuals or groups
|
| 161 |
+
- Impersonating individuals or organizations without their consent
|
| 162 |
+
- Engaging in cyberbullying or harassment
|
| 163 |
+
- Defamatory content
|
| 164 |
+
- Spamming or scamming
|
| 165 |
+
- Sharing confidential or sensitive information without proper authorization
|
| 166 |
+
- Violating the terms of use of the model or the data used to train it
|
| 167 |
+
- Creating automated bots for malicious purposes such as spreading malware, phishing scams, or spamming
|
| 168 |
+
|
| 169 |
+
## Limitations
|
| 170 |
+
|
| 171 |
+
`RedPajama-INCITE-Base-3B-v1`, like other language models, has limitations that should be taken into consideration.
|
| 172 |
+
For example, the model may not always provide accurate or relevant answers, particularly for questions that are complex, ambiguous, or outside of its training data.
|
| 173 |
+
We therefore welcome contributions from individuals and organizations, and encourage collaboration towards creating a more robust and inclusive chatbot.
|
| 174 |
+
|
| 175 |
+
## Training
|
| 176 |
+
|
| 177 |
+
**Training Data**
|
| 178 |
+
|
| 179 |
+
Please refer to [togethercomputer/RedPajama-Data-1T](https://huggingface.co/datasets/togethercomputer/RedPajama-Data-1T)
|
| 180 |
+
|
| 181 |
+
**Training Procedure**
|
| 182 |
+
|
| 183 |
+
- **Hardware:** 256 nodes of 6xV100 (IBM Power9), on the OLCF Summit cluster
|
| 184 |
+
- **Optimizer:** Apex FusedAdam
|
| 185 |
+
- **Parallelism:** Pipeline parallel 6, tensor parallel 2
|
| 186 |
+
- **Gradient Accumulations**: 8 (global batch size 4M tokens)
|
| 187 |
+
- **Num of Tokens:** 800B Tokens
|
| 188 |
+
- **Learning rate:** 0.00016
|
| 189 |
+
|
| 190 |
+
## Benchmark
|
| 191 |
+
|
| 192 |
+
Please refer to our [blog post](https://together.xyz) for benchmark results.
|
| 193 |
+
|
| 194 |
+
## Community
|
| 195 |
+
|
| 196 |
+
Join us on [Together Discord](https://discord.gg/6ZVDU8tTD4)
|
config.json
ADDED
|
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_name_or_path": "rp_3b_800b",
|
| 3 |
+
"architectures": [
|
| 4 |
+
"GPTNeoXForCausalLM"
|
| 5 |
+
],
|
| 6 |
+
"bos_token_id": 0,
|
| 7 |
+
"eos_token_id": 0,
|
| 8 |
+
"hidden_act": "gelu",
|
| 9 |
+
"hidden_size": 2560,
|
| 10 |
+
"initializer_range": 0.02,
|
| 11 |
+
"intermediate_size": 10240,
|
| 12 |
+
"layer_norm_eps": 1e-05,
|
| 13 |
+
"max_position_embeddings": 2048,
|
| 14 |
+
"model_type": "gpt_neox",
|
| 15 |
+
"num_attention_heads": 32,
|
| 16 |
+
"num_hidden_layers": 32,
|
| 17 |
+
"rotary_emb_base": 10000,
|
| 18 |
+
"rotary_pct": 1.0,
|
| 19 |
+
"tie_word_embeddings": false,
|
| 20 |
+
"torch_dtype": "float16",
|
| 21 |
+
"transformers_version": "4.28.1",
|
| 22 |
+
"use_cache": true,
|
| 23 |
+
"use_parallel_residual": false,
|
| 24 |
+
"vocab_size": 50432
|
| 25 |
+
}
|
generation_config.json
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_from_model_config": true,
|
| 3 |
+
"bos_token_id": 0,
|
| 4 |
+
"eos_token_id": 0,
|
| 5 |
+
"transformers_version": "4.28.1"
|
| 6 |
+
}
|
pytorch_model-00001-of-00002.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d554b91b14bdda72c7e882aa8fc9d4d0979f79b7806a19c0b62751150aebb30a
|
| 3 |
+
size 10087826517
|
pytorch_model-00002-of-00002.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:aa3e3b003f5268c1706df86c9cda3a9bdb77370a8e5f1bdfe120374261ab509c
|
| 3 |
+
size 1150018211
|
pytorch_model.bin.index.json
ADDED
|
@@ -0,0 +1,491 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"metadata": {
|
| 3 |
+
"total_size": 11120237120.0
|
| 4 |
+
},
|
| 5 |
+
"weight_map": {
|
| 6 |
+
"embed_out.weight": "pytorch_model-00002-of-00002.bin",
|
| 7 |
+
"gpt_neox.embed_in.weight": "pytorch_model-00001-of-00002.bin",
|
| 8 |
+
"gpt_neox.final_layer_norm.bias": "pytorch_model-00002-of-00002.bin",
|
| 9 |
+
"gpt_neox.final_layer_norm.weight": "pytorch_model-00002-of-00002.bin",
|
| 10 |
+
"gpt_neox.layers.0.attention.bias": "pytorch_model-00001-of-00002.bin",
|
| 11 |
+
"gpt_neox.layers.0.attention.dense.bias": "pytorch_model-00001-of-00002.bin",
|
| 12 |
+
"gpt_neox.layers.0.attention.dense.weight": "pytorch_model-00001-of-00002.bin",
|
| 13 |
+
"gpt_neox.layers.0.attention.masked_bias": "pytorch_model-00001-of-00002.bin",
|
| 14 |
+
"gpt_neox.layers.0.attention.query_key_value.bias": "pytorch_model-00001-of-00002.bin",
|
| 15 |
+
"gpt_neox.layers.0.attention.query_key_value.weight": "pytorch_model-00001-of-00002.bin",
|
| 16 |
+
"gpt_neox.layers.0.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
|
| 17 |
+
"gpt_neox.layers.0.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
|
| 18 |
+
"gpt_neox.layers.0.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
| 19 |
+
"gpt_neox.layers.0.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00002.bin",
|
| 20 |
+
"gpt_neox.layers.0.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00002.bin",
|
| 21 |
+
"gpt_neox.layers.0.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00002.bin",
|
| 22 |
+
"gpt_neox.layers.0.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00002.bin",
|
| 23 |
+
"gpt_neox.layers.0.post_attention_layernorm.bias": "pytorch_model-00001-of-00002.bin",
|
| 24 |
+
"gpt_neox.layers.0.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
| 25 |
+
"gpt_neox.layers.1.attention.bias": "pytorch_model-00001-of-00002.bin",
|
| 26 |
+
"gpt_neox.layers.1.attention.dense.bias": "pytorch_model-00001-of-00002.bin",
|
| 27 |
+
"gpt_neox.layers.1.attention.dense.weight": "pytorch_model-00001-of-00002.bin",
|
| 28 |
+
"gpt_neox.layers.1.attention.masked_bias": "pytorch_model-00001-of-00002.bin",
|
| 29 |
+
"gpt_neox.layers.1.attention.query_key_value.bias": "pytorch_model-00001-of-00002.bin",
|
| 30 |
+
"gpt_neox.layers.1.attention.query_key_value.weight": "pytorch_model-00001-of-00002.bin",
|
| 31 |
+
"gpt_neox.layers.1.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
|
| 32 |
+
"gpt_neox.layers.1.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
|
| 33 |
+
"gpt_neox.layers.1.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
| 34 |
+
"gpt_neox.layers.1.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00002.bin",
|
| 35 |
+
"gpt_neox.layers.1.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00002.bin",
|
| 36 |
+
"gpt_neox.layers.1.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00002.bin",
|
| 37 |
+
"gpt_neox.layers.1.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00002.bin",
|
| 38 |
+
"gpt_neox.layers.1.post_attention_layernorm.bias": "pytorch_model-00001-of-00002.bin",
|
| 39 |
+
"gpt_neox.layers.1.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
| 40 |
+
"gpt_neox.layers.10.attention.bias": "pytorch_model-00001-of-00002.bin",
|
| 41 |
+
"gpt_neox.layers.10.attention.dense.bias": "pytorch_model-00001-of-00002.bin",
|
| 42 |
+
"gpt_neox.layers.10.attention.dense.weight": "pytorch_model-00001-of-00002.bin",
|
| 43 |
+
"gpt_neox.layers.10.attention.masked_bias": "pytorch_model-00001-of-00002.bin",
|
| 44 |
+
"gpt_neox.layers.10.attention.query_key_value.bias": "pytorch_model-00001-of-00002.bin",
|
| 45 |
+
"gpt_neox.layers.10.attention.query_key_value.weight": "pytorch_model-00001-of-00002.bin",
|
| 46 |
+
"gpt_neox.layers.10.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
|
| 47 |
+
"gpt_neox.layers.10.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
|
| 48 |
+
"gpt_neox.layers.10.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
| 49 |
+
"gpt_neox.layers.10.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00002.bin",
|
| 50 |
+
"gpt_neox.layers.10.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00002.bin",
|
| 51 |
+
"gpt_neox.layers.10.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00002.bin",
|
| 52 |
+
"gpt_neox.layers.10.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00002.bin",
|
| 53 |
+
"gpt_neox.layers.10.post_attention_layernorm.bias": "pytorch_model-00001-of-00002.bin",
|
| 54 |
+
"gpt_neox.layers.10.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
| 55 |
+
"gpt_neox.layers.11.attention.bias": "pytorch_model-00001-of-00002.bin",
|
| 56 |
+
"gpt_neox.layers.11.attention.dense.bias": "pytorch_model-00001-of-00002.bin",
|
| 57 |
+
"gpt_neox.layers.11.attention.dense.weight": "pytorch_model-00001-of-00002.bin",
|
| 58 |
+
"gpt_neox.layers.11.attention.masked_bias": "pytorch_model-00001-of-00002.bin",
|
| 59 |
+
"gpt_neox.layers.11.attention.query_key_value.bias": "pytorch_model-00001-of-00002.bin",
|
| 60 |
+
"gpt_neox.layers.11.attention.query_key_value.weight": "pytorch_model-00001-of-00002.bin",
|
| 61 |
+
"gpt_neox.layers.11.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
|
| 62 |
+
"gpt_neox.layers.11.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
|
| 63 |
+
"gpt_neox.layers.11.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
| 64 |
+
"gpt_neox.layers.11.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00002.bin",
|
| 65 |
+
"gpt_neox.layers.11.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00002.bin",
|
| 66 |
+
"gpt_neox.layers.11.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00002.bin",
|
| 67 |
+
"gpt_neox.layers.11.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00002.bin",
|
| 68 |
+
"gpt_neox.layers.11.post_attention_layernorm.bias": "pytorch_model-00001-of-00002.bin",
|
| 69 |
+
"gpt_neox.layers.11.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
| 70 |
+
"gpt_neox.layers.12.attention.bias": "pytorch_model-00001-of-00002.bin",
|
| 71 |
+
"gpt_neox.layers.12.attention.dense.bias": "pytorch_model-00001-of-00002.bin",
|
| 72 |
+
"gpt_neox.layers.12.attention.dense.weight": "pytorch_model-00001-of-00002.bin",
|
| 73 |
+
"gpt_neox.layers.12.attention.masked_bias": "pytorch_model-00001-of-00002.bin",
|
| 74 |
+
"gpt_neox.layers.12.attention.query_key_value.bias": "pytorch_model-00001-of-00002.bin",
|
| 75 |
+
"gpt_neox.layers.12.attention.query_key_value.weight": "pytorch_model-00001-of-00002.bin",
|
| 76 |
+
"gpt_neox.layers.12.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
|
| 77 |
+
"gpt_neox.layers.12.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
|
| 78 |
+
"gpt_neox.layers.12.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
| 79 |
+
"gpt_neox.layers.12.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00002.bin",
|
| 80 |
+
"gpt_neox.layers.12.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00002.bin",
|
| 81 |
+
"gpt_neox.layers.12.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00002.bin",
|
| 82 |
+
"gpt_neox.layers.12.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00002.bin",
|
| 83 |
+
"gpt_neox.layers.12.post_attention_layernorm.bias": "pytorch_model-00001-of-00002.bin",
|
| 84 |
+
"gpt_neox.layers.12.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
| 85 |
+
"gpt_neox.layers.13.attention.bias": "pytorch_model-00001-of-00002.bin",
|
| 86 |
+
"gpt_neox.layers.13.attention.dense.bias": "pytorch_model-00001-of-00002.bin",
|
| 87 |
+
"gpt_neox.layers.13.attention.dense.weight": "pytorch_model-00001-of-00002.bin",
|
| 88 |
+
"gpt_neox.layers.13.attention.masked_bias": "pytorch_model-00001-of-00002.bin",
|
| 89 |
+
"gpt_neox.layers.13.attention.query_key_value.bias": "pytorch_model-00001-of-00002.bin",
|
| 90 |
+
"gpt_neox.layers.13.attention.query_key_value.weight": "pytorch_model-00001-of-00002.bin",
|
| 91 |
+
"gpt_neox.layers.13.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
|
| 92 |
+
"gpt_neox.layers.13.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
|
| 93 |
+
"gpt_neox.layers.13.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
| 94 |
+
"gpt_neox.layers.13.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00002.bin",
|
| 95 |
+
"gpt_neox.layers.13.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00002.bin",
|
| 96 |
+
"gpt_neox.layers.13.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00002.bin",
|
| 97 |
+
"gpt_neox.layers.13.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00002.bin",
|
| 98 |
+
"gpt_neox.layers.13.post_attention_layernorm.bias": "pytorch_model-00001-of-00002.bin",
|
| 99 |
+
"gpt_neox.layers.13.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
| 100 |
+
"gpt_neox.layers.14.attention.bias": "pytorch_model-00001-of-00002.bin",
|
| 101 |
+
"gpt_neox.layers.14.attention.dense.bias": "pytorch_model-00001-of-00002.bin",
|
| 102 |
+
"gpt_neox.layers.14.attention.dense.weight": "pytorch_model-00001-of-00002.bin",
|
| 103 |
+
"gpt_neox.layers.14.attention.masked_bias": "pytorch_model-00001-of-00002.bin",
|
| 104 |
+
"gpt_neox.layers.14.attention.query_key_value.bias": "pytorch_model-00001-of-00002.bin",
|
| 105 |
+
"gpt_neox.layers.14.attention.query_key_value.weight": "pytorch_model-00001-of-00002.bin",
|
| 106 |
+
"gpt_neox.layers.14.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
|
| 107 |
+
"gpt_neox.layers.14.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
|
| 108 |
+
"gpt_neox.layers.14.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
| 109 |
+
"gpt_neox.layers.14.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00002.bin",
|
| 110 |
+
"gpt_neox.layers.14.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00002.bin",
|
| 111 |
+
"gpt_neox.layers.14.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00002.bin",
|
| 112 |
+
"gpt_neox.layers.14.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00002.bin",
|
| 113 |
+
"gpt_neox.layers.14.post_attention_layernorm.bias": "pytorch_model-00001-of-00002.bin",
|
| 114 |
+
"gpt_neox.layers.14.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
| 115 |
+
"gpt_neox.layers.15.attention.bias": "pytorch_model-00001-of-00002.bin",
|
| 116 |
+
"gpt_neox.layers.15.attention.dense.bias": "pytorch_model-00001-of-00002.bin",
|
| 117 |
+
"gpt_neox.layers.15.attention.dense.weight": "pytorch_model-00001-of-00002.bin",
|
| 118 |
+
"gpt_neox.layers.15.attention.masked_bias": "pytorch_model-00001-of-00002.bin",
|
| 119 |
+
"gpt_neox.layers.15.attention.query_key_value.bias": "pytorch_model-00001-of-00002.bin",
|
| 120 |
+
"gpt_neox.layers.15.attention.query_key_value.weight": "pytorch_model-00001-of-00002.bin",
|
| 121 |
+
"gpt_neox.layers.15.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
|
| 122 |
+
"gpt_neox.layers.15.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
|
| 123 |
+
"gpt_neox.layers.15.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
| 124 |
+
"gpt_neox.layers.15.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00002.bin",
|
| 125 |
+
"gpt_neox.layers.15.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00002.bin",
|
| 126 |
+
"gpt_neox.layers.15.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00002.bin",
|
| 127 |
+
"gpt_neox.layers.15.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00002.bin",
|
| 128 |
+
"gpt_neox.layers.15.post_attention_layernorm.bias": "pytorch_model-00001-of-00002.bin",
|
| 129 |
+
"gpt_neox.layers.15.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
| 130 |
+
"gpt_neox.layers.16.attention.bias": "pytorch_model-00001-of-00002.bin",
|
| 131 |
+
"gpt_neox.layers.16.attention.dense.bias": "pytorch_model-00001-of-00002.bin",
|
| 132 |
+
"gpt_neox.layers.16.attention.dense.weight": "pytorch_model-00001-of-00002.bin",
|
| 133 |
+
"gpt_neox.layers.16.attention.masked_bias": "pytorch_model-00001-of-00002.bin",
|
| 134 |
+
"gpt_neox.layers.16.attention.query_key_value.bias": "pytorch_model-00001-of-00002.bin",
|
| 135 |
+
"gpt_neox.layers.16.attention.query_key_value.weight": "pytorch_model-00001-of-00002.bin",
|
| 136 |
+
"gpt_neox.layers.16.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
|
| 137 |
+
"gpt_neox.layers.16.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
|
| 138 |
+
"gpt_neox.layers.16.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
| 139 |
+
"gpt_neox.layers.16.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00002.bin",
|
| 140 |
+
"gpt_neox.layers.16.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00002.bin",
|
| 141 |
+
"gpt_neox.layers.16.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00002.bin",
|
| 142 |
+
"gpt_neox.layers.16.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00002.bin",
|
| 143 |
+
"gpt_neox.layers.16.post_attention_layernorm.bias": "pytorch_model-00001-of-00002.bin",
|
| 144 |
+
"gpt_neox.layers.16.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
| 145 |
+
"gpt_neox.layers.17.attention.bias": "pytorch_model-00001-of-00002.bin",
|
| 146 |
+
"gpt_neox.layers.17.attention.dense.bias": "pytorch_model-00001-of-00002.bin",
|
| 147 |
+
"gpt_neox.layers.17.attention.dense.weight": "pytorch_model-00001-of-00002.bin",
|
| 148 |
+
"gpt_neox.layers.17.attention.masked_bias": "pytorch_model-00001-of-00002.bin",
|
| 149 |
+
"gpt_neox.layers.17.attention.query_key_value.bias": "pytorch_model-00001-of-00002.bin",
|
| 150 |
+
"gpt_neox.layers.17.attention.query_key_value.weight": "pytorch_model-00001-of-00002.bin",
|
| 151 |
+
"gpt_neox.layers.17.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
|
| 152 |
+
"gpt_neox.layers.17.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
|
| 153 |
+
"gpt_neox.layers.17.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
| 154 |
+
"gpt_neox.layers.17.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00002.bin",
|
| 155 |
+
"gpt_neox.layers.17.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00002.bin",
|
| 156 |
+
"gpt_neox.layers.17.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00002.bin",
|
| 157 |
+
"gpt_neox.layers.17.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00002.bin",
|
| 158 |
+
"gpt_neox.layers.17.post_attention_layernorm.bias": "pytorch_model-00001-of-00002.bin",
|
| 159 |
+
"gpt_neox.layers.17.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
| 160 |
+
"gpt_neox.layers.18.attention.bias": "pytorch_model-00001-of-00002.bin",
|
| 161 |
+
"gpt_neox.layers.18.attention.dense.bias": "pytorch_model-00001-of-00002.bin",
|
| 162 |
+
"gpt_neox.layers.18.attention.dense.weight": "pytorch_model-00001-of-00002.bin",
|
| 163 |
+
"gpt_neox.layers.18.attention.masked_bias": "pytorch_model-00001-of-00002.bin",
|
| 164 |
+
"gpt_neox.layers.18.attention.query_key_value.bias": "pytorch_model-00001-of-00002.bin",
|
| 165 |
+
"gpt_neox.layers.18.attention.query_key_value.weight": "pytorch_model-00001-of-00002.bin",
|
| 166 |
+
"gpt_neox.layers.18.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
|
| 167 |
+
"gpt_neox.layers.18.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
|
| 168 |
+
"gpt_neox.layers.18.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
| 169 |
+
"gpt_neox.layers.18.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00002.bin",
|
| 170 |
+
"gpt_neox.layers.18.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00002.bin",
|
| 171 |
+
"gpt_neox.layers.18.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00002.bin",
|
| 172 |
+
"gpt_neox.layers.18.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00002.bin",
|
| 173 |
+
"gpt_neox.layers.18.post_attention_layernorm.bias": "pytorch_model-00001-of-00002.bin",
|
| 174 |
+
"gpt_neox.layers.18.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
| 175 |
+
"gpt_neox.layers.19.attention.bias": "pytorch_model-00001-of-00002.bin",
|
| 176 |
+
"gpt_neox.layers.19.attention.dense.bias": "pytorch_model-00001-of-00002.bin",
|
| 177 |
+
"gpt_neox.layers.19.attention.dense.weight": "pytorch_model-00001-of-00002.bin",
|
| 178 |
+
"gpt_neox.layers.19.attention.masked_bias": "pytorch_model-00001-of-00002.bin",
|
| 179 |
+
"gpt_neox.layers.19.attention.query_key_value.bias": "pytorch_model-00001-of-00002.bin",
|
| 180 |
+
"gpt_neox.layers.19.attention.query_key_value.weight": "pytorch_model-00001-of-00002.bin",
|
| 181 |
+
"gpt_neox.layers.19.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
|
| 182 |
+
"gpt_neox.layers.19.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
|
| 183 |
+
"gpt_neox.layers.19.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
| 184 |
+
"gpt_neox.layers.19.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00002.bin",
|
| 185 |
+
"gpt_neox.layers.19.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00002.bin",
|
| 186 |
+
"gpt_neox.layers.19.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00002.bin",
|
| 187 |
+
"gpt_neox.layers.19.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00002.bin",
|
| 188 |
+
"gpt_neox.layers.19.post_attention_layernorm.bias": "pytorch_model-00001-of-00002.bin",
|
| 189 |
+
"gpt_neox.layers.19.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
| 190 |
+
"gpt_neox.layers.2.attention.bias": "pytorch_model-00001-of-00002.bin",
|
| 191 |
+
"gpt_neox.layers.2.attention.dense.bias": "pytorch_model-00001-of-00002.bin",
|
| 192 |
+
"gpt_neox.layers.2.attention.dense.weight": "pytorch_model-00001-of-00002.bin",
|
| 193 |
+
"gpt_neox.layers.2.attention.masked_bias": "pytorch_model-00001-of-00002.bin",
|
| 194 |
+
"gpt_neox.layers.2.attention.query_key_value.bias": "pytorch_model-00001-of-00002.bin",
|
| 195 |
+
"gpt_neox.layers.2.attention.query_key_value.weight": "pytorch_model-00001-of-00002.bin",
|
| 196 |
+
"gpt_neox.layers.2.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
|
| 197 |
+
"gpt_neox.layers.2.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
|
| 198 |
+
"gpt_neox.layers.2.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
| 199 |
+
"gpt_neox.layers.2.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00002.bin",
|
| 200 |
+
"gpt_neox.layers.2.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00002.bin",
|
| 201 |
+
"gpt_neox.layers.2.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00002.bin",
|
| 202 |
+
"gpt_neox.layers.2.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00002.bin",
|
| 203 |
+
"gpt_neox.layers.2.post_attention_layernorm.bias": "pytorch_model-00001-of-00002.bin",
|
| 204 |
+
"gpt_neox.layers.2.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
| 205 |
+
"gpt_neox.layers.20.attention.bias": "pytorch_model-00001-of-00002.bin",
|
| 206 |
+
"gpt_neox.layers.20.attention.dense.bias": "pytorch_model-00001-of-00002.bin",
|
| 207 |
+
"gpt_neox.layers.20.attention.dense.weight": "pytorch_model-00001-of-00002.bin",
|
| 208 |
+
"gpt_neox.layers.20.attention.masked_bias": "pytorch_model-00001-of-00002.bin",
|
| 209 |
+
"gpt_neox.layers.20.attention.query_key_value.bias": "pytorch_model-00001-of-00002.bin",
|
| 210 |
+
"gpt_neox.layers.20.attention.query_key_value.weight": "pytorch_model-00001-of-00002.bin",
|
| 211 |
+
"gpt_neox.layers.20.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
|
| 212 |
+
"gpt_neox.layers.20.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
|
| 213 |
+
"gpt_neox.layers.20.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
| 214 |
+
"gpt_neox.layers.20.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00002.bin",
|
| 215 |
+
"gpt_neox.layers.20.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00002.bin",
|
| 216 |
+
"gpt_neox.layers.20.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00002.bin",
|
| 217 |
+
"gpt_neox.layers.20.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00002.bin",
|
| 218 |
+
"gpt_neox.layers.20.post_attention_layernorm.bias": "pytorch_model-00001-of-00002.bin",
|
| 219 |
+
"gpt_neox.layers.20.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
| 220 |
+
"gpt_neox.layers.21.attention.bias": "pytorch_model-00001-of-00002.bin",
|
| 221 |
+
"gpt_neox.layers.21.attention.dense.bias": "pytorch_model-00001-of-00002.bin",
|
| 222 |
+
"gpt_neox.layers.21.attention.dense.weight": "pytorch_model-00001-of-00002.bin",
|
| 223 |
+
"gpt_neox.layers.21.attention.masked_bias": "pytorch_model-00001-of-00002.bin",
|
| 224 |
+
"gpt_neox.layers.21.attention.query_key_value.bias": "pytorch_model-00001-of-00002.bin",
|
| 225 |
+
"gpt_neox.layers.21.attention.query_key_value.weight": "pytorch_model-00001-of-00002.bin",
|
| 226 |
+
"gpt_neox.layers.21.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
|
| 227 |
+
"gpt_neox.layers.21.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
|
| 228 |
+
"gpt_neox.layers.21.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
| 229 |
+
"gpt_neox.layers.21.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00002.bin",
|
| 230 |
+
"gpt_neox.layers.21.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00002.bin",
|
| 231 |
+
"gpt_neox.layers.21.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00002.bin",
|
| 232 |
+
"gpt_neox.layers.21.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00002.bin",
|
| 233 |
+
"gpt_neox.layers.21.post_attention_layernorm.bias": "pytorch_model-00001-of-00002.bin",
|
| 234 |
+
"gpt_neox.layers.21.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
| 235 |
+
"gpt_neox.layers.22.attention.bias": "pytorch_model-00001-of-00002.bin",
|
| 236 |
+
"gpt_neox.layers.22.attention.dense.bias": "pytorch_model-00001-of-00002.bin",
|
| 237 |
+
"gpt_neox.layers.22.attention.dense.weight": "pytorch_model-00001-of-00002.bin",
|
| 238 |
+
"gpt_neox.layers.22.attention.masked_bias": "pytorch_model-00001-of-00002.bin",
|
| 239 |
+
"gpt_neox.layers.22.attention.query_key_value.bias": "pytorch_model-00001-of-00002.bin",
|
| 240 |
+
"gpt_neox.layers.22.attention.query_key_value.weight": "pytorch_model-00001-of-00002.bin",
|
| 241 |
+
"gpt_neox.layers.22.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
|
| 242 |
+
"gpt_neox.layers.22.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
|
| 243 |
+
"gpt_neox.layers.22.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
| 244 |
+
"gpt_neox.layers.22.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00002.bin",
|
| 245 |
+
"gpt_neox.layers.22.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00002.bin",
|
| 246 |
+
"gpt_neox.layers.22.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00002.bin",
|
| 247 |
+
"gpt_neox.layers.22.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00002.bin",
|
| 248 |
+
"gpt_neox.layers.22.post_attention_layernorm.bias": "pytorch_model-00001-of-00002.bin",
|
| 249 |
+
"gpt_neox.layers.22.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
| 250 |
+
"gpt_neox.layers.23.attention.bias": "pytorch_model-00001-of-00002.bin",
|
| 251 |
+
"gpt_neox.layers.23.attention.dense.bias": "pytorch_model-00001-of-00002.bin",
|
| 252 |
+
"gpt_neox.layers.23.attention.dense.weight": "pytorch_model-00001-of-00002.bin",
|
| 253 |
+
"gpt_neox.layers.23.attention.masked_bias": "pytorch_model-00001-of-00002.bin",
|
| 254 |
+
"gpt_neox.layers.23.attention.query_key_value.bias": "pytorch_model-00001-of-00002.bin",
|
| 255 |
+
"gpt_neox.layers.23.attention.query_key_value.weight": "pytorch_model-00001-of-00002.bin",
|
| 256 |
+
"gpt_neox.layers.23.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
|
| 257 |
+
"gpt_neox.layers.23.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
|
| 258 |
+
"gpt_neox.layers.23.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
| 259 |
+
"gpt_neox.layers.23.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00002.bin",
|
| 260 |
+
"gpt_neox.layers.23.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00002.bin",
|
| 261 |
+
"gpt_neox.layers.23.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00002.bin",
|
| 262 |
+
"gpt_neox.layers.23.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00002.bin",
|
| 263 |
+
"gpt_neox.layers.23.post_attention_layernorm.bias": "pytorch_model-00001-of-00002.bin",
|
| 264 |
+
"gpt_neox.layers.23.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
| 265 |
+
"gpt_neox.layers.24.attention.bias": "pytorch_model-00001-of-00002.bin",
|
| 266 |
+
"gpt_neox.layers.24.attention.dense.bias": "pytorch_model-00001-of-00002.bin",
|
| 267 |
+
"gpt_neox.layers.24.attention.dense.weight": "pytorch_model-00001-of-00002.bin",
|
| 268 |
+
"gpt_neox.layers.24.attention.masked_bias": "pytorch_model-00001-of-00002.bin",
|
| 269 |
+
"gpt_neox.layers.24.attention.query_key_value.bias": "pytorch_model-00001-of-00002.bin",
|
| 270 |
+
"gpt_neox.layers.24.attention.query_key_value.weight": "pytorch_model-00001-of-00002.bin",
|
| 271 |
+
"gpt_neox.layers.24.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
|
| 272 |
+
"gpt_neox.layers.24.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
|
| 273 |
+
"gpt_neox.layers.24.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
| 274 |
+
"gpt_neox.layers.24.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00002.bin",
|
| 275 |
+
"gpt_neox.layers.24.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00002.bin",
|
| 276 |
+
"gpt_neox.layers.24.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00002.bin",
|
| 277 |
+
"gpt_neox.layers.24.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00002.bin",
|
| 278 |
+
"gpt_neox.layers.24.post_attention_layernorm.bias": "pytorch_model-00001-of-00002.bin",
|
| 279 |
+
"gpt_neox.layers.24.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
| 280 |
+
"gpt_neox.layers.25.attention.bias": "pytorch_model-00001-of-00002.bin",
|
| 281 |
+
"gpt_neox.layers.25.attention.dense.bias": "pytorch_model-00001-of-00002.bin",
|
| 282 |
+
"gpt_neox.layers.25.attention.dense.weight": "pytorch_model-00001-of-00002.bin",
|
| 283 |
+
"gpt_neox.layers.25.attention.masked_bias": "pytorch_model-00001-of-00002.bin",
|
| 284 |
+
"gpt_neox.layers.25.attention.query_key_value.bias": "pytorch_model-00001-of-00002.bin",
|
| 285 |
+
"gpt_neox.layers.25.attention.query_key_value.weight": "pytorch_model-00001-of-00002.bin",
|
| 286 |
+
"gpt_neox.layers.25.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
|
| 287 |
+
"gpt_neox.layers.25.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
|
| 288 |
+
"gpt_neox.layers.25.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
| 289 |
+
"gpt_neox.layers.25.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00002.bin",
|
| 290 |
+
"gpt_neox.layers.25.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00002.bin",
|
| 291 |
+
"gpt_neox.layers.25.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00002.bin",
|
| 292 |
+
"gpt_neox.layers.25.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00002.bin",
|
| 293 |
+
"gpt_neox.layers.25.post_attention_layernorm.bias": "pytorch_model-00001-of-00002.bin",
|
| 294 |
+
"gpt_neox.layers.25.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
| 295 |
+
"gpt_neox.layers.26.attention.bias": "pytorch_model-00001-of-00002.bin",
|
| 296 |
+
"gpt_neox.layers.26.attention.dense.bias": "pytorch_model-00001-of-00002.bin",
|
| 297 |
+
"gpt_neox.layers.26.attention.dense.weight": "pytorch_model-00001-of-00002.bin",
|
| 298 |
+
"gpt_neox.layers.26.attention.masked_bias": "pytorch_model-00001-of-00002.bin",
|
| 299 |
+
"gpt_neox.layers.26.attention.query_key_value.bias": "pytorch_model-00001-of-00002.bin",
|
| 300 |
+
"gpt_neox.layers.26.attention.query_key_value.weight": "pytorch_model-00001-of-00002.bin",
|
| 301 |
+
"gpt_neox.layers.26.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
|
| 302 |
+
"gpt_neox.layers.26.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
|
| 303 |
+
"gpt_neox.layers.26.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
| 304 |
+
"gpt_neox.layers.26.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00002.bin",
|
| 305 |
+
"gpt_neox.layers.26.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00002.bin",
|
| 306 |
+
"gpt_neox.layers.26.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00002.bin",
|
| 307 |
+
"gpt_neox.layers.26.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00002.bin",
|
| 308 |
+
"gpt_neox.layers.26.post_attention_layernorm.bias": "pytorch_model-00001-of-00002.bin",
|
| 309 |
+
"gpt_neox.layers.26.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
| 310 |
+
"gpt_neox.layers.27.attention.bias": "pytorch_model-00001-of-00002.bin",
|
| 311 |
+
"gpt_neox.layers.27.attention.dense.bias": "pytorch_model-00001-of-00002.bin",
|
| 312 |
+
"gpt_neox.layers.27.attention.dense.weight": "pytorch_model-00001-of-00002.bin",
|
| 313 |
+
"gpt_neox.layers.27.attention.masked_bias": "pytorch_model-00001-of-00002.bin",
|
| 314 |
+
"gpt_neox.layers.27.attention.query_key_value.bias": "pytorch_model-00001-of-00002.bin",
|
| 315 |
+
"gpt_neox.layers.27.attention.query_key_value.weight": "pytorch_model-00001-of-00002.bin",
|
| 316 |
+
"gpt_neox.layers.27.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
|
| 317 |
+
"gpt_neox.layers.27.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
|
| 318 |
+
"gpt_neox.layers.27.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
| 319 |
+
"gpt_neox.layers.27.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00002.bin",
|
| 320 |
+
"gpt_neox.layers.27.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00002.bin",
|
| 321 |
+
"gpt_neox.layers.27.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00002.bin",
|
| 322 |
+
"gpt_neox.layers.27.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00002.bin",
|
| 323 |
+
"gpt_neox.layers.27.post_attention_layernorm.bias": "pytorch_model-00001-of-00002.bin",
|
| 324 |
+
"gpt_neox.layers.27.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
| 325 |
+
"gpt_neox.layers.28.attention.bias": "pytorch_model-00001-of-00002.bin",
|
| 326 |
+
"gpt_neox.layers.28.attention.dense.bias": "pytorch_model-00001-of-00002.bin",
|
| 327 |
+
"gpt_neox.layers.28.attention.dense.weight": "pytorch_model-00001-of-00002.bin",
|
| 328 |
+
"gpt_neox.layers.28.attention.masked_bias": "pytorch_model-00001-of-00002.bin",
|
| 329 |
+
"gpt_neox.layers.28.attention.query_key_value.bias": "pytorch_model-00001-of-00002.bin",
|
| 330 |
+
"gpt_neox.layers.28.attention.query_key_value.weight": "pytorch_model-00001-of-00002.bin",
|
| 331 |
+
"gpt_neox.layers.28.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
|
| 332 |
+
"gpt_neox.layers.28.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
|
| 333 |
+
"gpt_neox.layers.28.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
| 334 |
+
"gpt_neox.layers.28.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00002.bin",
|
| 335 |
+
"gpt_neox.layers.28.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00002.bin",
|
| 336 |
+
"gpt_neox.layers.28.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00002.bin",
|
| 337 |
+
"gpt_neox.layers.28.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00002.bin",
|
| 338 |
+
"gpt_neox.layers.28.post_attention_layernorm.bias": "pytorch_model-00001-of-00002.bin",
|
| 339 |
+
"gpt_neox.layers.28.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
| 340 |
+
"gpt_neox.layers.29.attention.bias": "pytorch_model-00001-of-00002.bin",
|
| 341 |
+
"gpt_neox.layers.29.attention.dense.bias": "pytorch_model-00001-of-00002.bin",
|
| 342 |
+
"gpt_neox.layers.29.attention.dense.weight": "pytorch_model-00001-of-00002.bin",
|
| 343 |
+
"gpt_neox.layers.29.attention.masked_bias": "pytorch_model-00001-of-00002.bin",
|
| 344 |
+
"gpt_neox.layers.29.attention.query_key_value.bias": "pytorch_model-00001-of-00002.bin",
|
| 345 |
+
"gpt_neox.layers.29.attention.query_key_value.weight": "pytorch_model-00001-of-00002.bin",
|
| 346 |
+
"gpt_neox.layers.29.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
|
| 347 |
+
"gpt_neox.layers.29.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
|
| 348 |
+
"gpt_neox.layers.29.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
| 349 |
+
"gpt_neox.layers.29.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00002.bin",
|
| 350 |
+
"gpt_neox.layers.29.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00002.bin",
|
| 351 |
+
"gpt_neox.layers.29.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00002.bin",
|
| 352 |
+
"gpt_neox.layers.29.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00002.bin",
|
| 353 |
+
"gpt_neox.layers.29.post_attention_layernorm.bias": "pytorch_model-00001-of-00002.bin",
|
| 354 |
+
"gpt_neox.layers.29.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
| 355 |
+
"gpt_neox.layers.3.attention.bias": "pytorch_model-00001-of-00002.bin",
|
| 356 |
+
"gpt_neox.layers.3.attention.dense.bias": "pytorch_model-00001-of-00002.bin",
|
| 357 |
+
"gpt_neox.layers.3.attention.dense.weight": "pytorch_model-00001-of-00002.bin",
|
| 358 |
+
"gpt_neox.layers.3.attention.masked_bias": "pytorch_model-00001-of-00002.bin",
|
| 359 |
+
"gpt_neox.layers.3.attention.query_key_value.bias": "pytorch_model-00001-of-00002.bin",
|
| 360 |
+
"gpt_neox.layers.3.attention.query_key_value.weight": "pytorch_model-00001-of-00002.bin",
|
| 361 |
+
"gpt_neox.layers.3.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
|
| 362 |
+
"gpt_neox.layers.3.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
|
| 363 |
+
"gpt_neox.layers.3.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
| 364 |
+
"gpt_neox.layers.3.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00002.bin",
|
| 365 |
+
"gpt_neox.layers.3.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00002.bin",
|
| 366 |
+
"gpt_neox.layers.3.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00002.bin",
|
| 367 |
+
"gpt_neox.layers.3.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00002.bin",
|
| 368 |
+
"gpt_neox.layers.3.post_attention_layernorm.bias": "pytorch_model-00001-of-00002.bin",
|
| 369 |
+
"gpt_neox.layers.3.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
| 370 |
+
"gpt_neox.layers.30.attention.bias": "pytorch_model-00001-of-00002.bin",
|
| 371 |
+
"gpt_neox.layers.30.attention.dense.bias": "pytorch_model-00002-of-00002.bin",
|
| 372 |
+
"gpt_neox.layers.30.attention.dense.weight": "pytorch_model-00002-of-00002.bin",
|
| 373 |
+
"gpt_neox.layers.30.attention.masked_bias": "pytorch_model-00001-of-00002.bin",
|
| 374 |
+
"gpt_neox.layers.30.attention.query_key_value.bias": "pytorch_model-00002-of-00002.bin",
|
| 375 |
+
"gpt_neox.layers.30.attention.query_key_value.weight": "pytorch_model-00002-of-00002.bin",
|
| 376 |
+
"gpt_neox.layers.30.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
|
| 377 |
+
"gpt_neox.layers.30.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
|
| 378 |
+
"gpt_neox.layers.30.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
| 379 |
+
"gpt_neox.layers.30.mlp.dense_4h_to_h.bias": "pytorch_model-00002-of-00002.bin",
|
| 380 |
+
"gpt_neox.layers.30.mlp.dense_4h_to_h.weight": "pytorch_model-00002-of-00002.bin",
|
| 381 |
+
"gpt_neox.layers.30.mlp.dense_h_to_4h.bias": "pytorch_model-00002-of-00002.bin",
|
| 382 |
+
"gpt_neox.layers.30.mlp.dense_h_to_4h.weight": "pytorch_model-00002-of-00002.bin",
|
| 383 |
+
"gpt_neox.layers.30.post_attention_layernorm.bias": "pytorch_model-00001-of-00002.bin",
|
| 384 |
+
"gpt_neox.layers.30.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
| 385 |
+
"gpt_neox.layers.31.attention.bias": "pytorch_model-00002-of-00002.bin",
|
| 386 |
+
"gpt_neox.layers.31.attention.dense.bias": "pytorch_model-00002-of-00002.bin",
|
| 387 |
+
"gpt_neox.layers.31.attention.dense.weight": "pytorch_model-00002-of-00002.bin",
|
| 388 |
+
"gpt_neox.layers.31.attention.masked_bias": "pytorch_model-00002-of-00002.bin",
|
| 389 |
+
"gpt_neox.layers.31.attention.query_key_value.bias": "pytorch_model-00002-of-00002.bin",
|
| 390 |
+
"gpt_neox.layers.31.attention.query_key_value.weight": "pytorch_model-00002-of-00002.bin",
|
| 391 |
+
"gpt_neox.layers.31.attention.rotary_emb.inv_freq": "pytorch_model-00002-of-00002.bin",
|
| 392 |
+
"gpt_neox.layers.31.input_layernorm.bias": "pytorch_model-00002-of-00002.bin",
|
| 393 |
+
"gpt_neox.layers.31.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
| 394 |
+
"gpt_neox.layers.31.mlp.dense_4h_to_h.bias": "pytorch_model-00002-of-00002.bin",
|
| 395 |
+
"gpt_neox.layers.31.mlp.dense_4h_to_h.weight": "pytorch_model-00002-of-00002.bin",
|
| 396 |
+
"gpt_neox.layers.31.mlp.dense_h_to_4h.bias": "pytorch_model-00002-of-00002.bin",
|
| 397 |
+
"gpt_neox.layers.31.mlp.dense_h_to_4h.weight": "pytorch_model-00002-of-00002.bin",
|
| 398 |
+
"gpt_neox.layers.31.post_attention_layernorm.bias": "pytorch_model-00002-of-00002.bin",
|
| 399 |
+
"gpt_neox.layers.31.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
| 400 |
+
"gpt_neox.layers.4.attention.bias": "pytorch_model-00001-of-00002.bin",
|
| 401 |
+
"gpt_neox.layers.4.attention.dense.bias": "pytorch_model-00001-of-00002.bin",
|
| 402 |
+
"gpt_neox.layers.4.attention.dense.weight": "pytorch_model-00001-of-00002.bin",
|
| 403 |
+
"gpt_neox.layers.4.attention.masked_bias": "pytorch_model-00001-of-00002.bin",
|
| 404 |
+
"gpt_neox.layers.4.attention.query_key_value.bias": "pytorch_model-00001-of-00002.bin",
|
| 405 |
+
"gpt_neox.layers.4.attention.query_key_value.weight": "pytorch_model-00001-of-00002.bin",
|
| 406 |
+
"gpt_neox.layers.4.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
|
| 407 |
+
"gpt_neox.layers.4.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
|
| 408 |
+
"gpt_neox.layers.4.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
| 409 |
+
"gpt_neox.layers.4.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00002.bin",
|
| 410 |
+
"gpt_neox.layers.4.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00002.bin",
|
| 411 |
+
"gpt_neox.layers.4.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00002.bin",
|
| 412 |
+
"gpt_neox.layers.4.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00002.bin",
|
| 413 |
+
"gpt_neox.layers.4.post_attention_layernorm.bias": "pytorch_model-00001-of-00002.bin",
|
| 414 |
+
"gpt_neox.layers.4.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
| 415 |
+
"gpt_neox.layers.5.attention.bias": "pytorch_model-00001-of-00002.bin",
|
| 416 |
+
"gpt_neox.layers.5.attention.dense.bias": "pytorch_model-00001-of-00002.bin",
|
| 417 |
+
"gpt_neox.layers.5.attention.dense.weight": "pytorch_model-00001-of-00002.bin",
|
| 418 |
+
"gpt_neox.layers.5.attention.masked_bias": "pytorch_model-00001-of-00002.bin",
|
| 419 |
+
"gpt_neox.layers.5.attention.query_key_value.bias": "pytorch_model-00001-of-00002.bin",
|
| 420 |
+
"gpt_neox.layers.5.attention.query_key_value.weight": "pytorch_model-00001-of-00002.bin",
|
| 421 |
+
"gpt_neox.layers.5.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
|
| 422 |
+
"gpt_neox.layers.5.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
|
| 423 |
+
"gpt_neox.layers.5.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
| 424 |
+
"gpt_neox.layers.5.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00002.bin",
|
| 425 |
+
"gpt_neox.layers.5.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00002.bin",
|
| 426 |
+
"gpt_neox.layers.5.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00002.bin",
|
| 427 |
+
"gpt_neox.layers.5.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00002.bin",
|
| 428 |
+
"gpt_neox.layers.5.post_attention_layernorm.bias": "pytorch_model-00001-of-00002.bin",
|
| 429 |
+
"gpt_neox.layers.5.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
| 430 |
+
"gpt_neox.layers.6.attention.bias": "pytorch_model-00001-of-00002.bin",
|
| 431 |
+
"gpt_neox.layers.6.attention.dense.bias": "pytorch_model-00001-of-00002.bin",
|
| 432 |
+
"gpt_neox.layers.6.attention.dense.weight": "pytorch_model-00001-of-00002.bin",
|
| 433 |
+
"gpt_neox.layers.6.attention.masked_bias": "pytorch_model-00001-of-00002.bin",
|
| 434 |
+
"gpt_neox.layers.6.attention.query_key_value.bias": "pytorch_model-00001-of-00002.bin",
|
| 435 |
+
"gpt_neox.layers.6.attention.query_key_value.weight": "pytorch_model-00001-of-00002.bin",
|
| 436 |
+
"gpt_neox.layers.6.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
|
| 437 |
+
"gpt_neox.layers.6.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
|
| 438 |
+
"gpt_neox.layers.6.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
| 439 |
+
"gpt_neox.layers.6.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00002.bin",
|
| 440 |
+
"gpt_neox.layers.6.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00002.bin",
|
| 441 |
+
"gpt_neox.layers.6.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00002.bin",
|
| 442 |
+
"gpt_neox.layers.6.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00002.bin",
|
| 443 |
+
"gpt_neox.layers.6.post_attention_layernorm.bias": "pytorch_model-00001-of-00002.bin",
|
| 444 |
+
"gpt_neox.layers.6.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
| 445 |
+
"gpt_neox.layers.7.attention.bias": "pytorch_model-00001-of-00002.bin",
|
| 446 |
+
"gpt_neox.layers.7.attention.dense.bias": "pytorch_model-00001-of-00002.bin",
|
| 447 |
+
"gpt_neox.layers.7.attention.dense.weight": "pytorch_model-00001-of-00002.bin",
|
| 448 |
+
"gpt_neox.layers.7.attention.masked_bias": "pytorch_model-00001-of-00002.bin",
|
| 449 |
+
"gpt_neox.layers.7.attention.query_key_value.bias": "pytorch_model-00001-of-00002.bin",
|
| 450 |
+
"gpt_neox.layers.7.attention.query_key_value.weight": "pytorch_model-00001-of-00002.bin",
|
| 451 |
+
"gpt_neox.layers.7.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
|
| 452 |
+
"gpt_neox.layers.7.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
|
| 453 |
+
"gpt_neox.layers.7.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
| 454 |
+
"gpt_neox.layers.7.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00002.bin",
|
| 455 |
+
"gpt_neox.layers.7.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00002.bin",
|
| 456 |
+
"gpt_neox.layers.7.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00002.bin",
|
| 457 |
+
"gpt_neox.layers.7.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00002.bin",
|
| 458 |
+
"gpt_neox.layers.7.post_attention_layernorm.bias": "pytorch_model-00001-of-00002.bin",
|
| 459 |
+
"gpt_neox.layers.7.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
| 460 |
+
"gpt_neox.layers.8.attention.bias": "pytorch_model-00001-of-00002.bin",
|
| 461 |
+
"gpt_neox.layers.8.attention.dense.bias": "pytorch_model-00001-of-00002.bin",
|
| 462 |
+
"gpt_neox.layers.8.attention.dense.weight": "pytorch_model-00001-of-00002.bin",
|
| 463 |
+
"gpt_neox.layers.8.attention.masked_bias": "pytorch_model-00001-of-00002.bin",
|
| 464 |
+
"gpt_neox.layers.8.attention.query_key_value.bias": "pytorch_model-00001-of-00002.bin",
|
| 465 |
+
"gpt_neox.layers.8.attention.query_key_value.weight": "pytorch_model-00001-of-00002.bin",
|
| 466 |
+
"gpt_neox.layers.8.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
|
| 467 |
+
"gpt_neox.layers.8.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
|
| 468 |
+
"gpt_neox.layers.8.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
| 469 |
+
"gpt_neox.layers.8.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00002.bin",
|
| 470 |
+
"gpt_neox.layers.8.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00002.bin",
|
| 471 |
+
"gpt_neox.layers.8.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00002.bin",
|
| 472 |
+
"gpt_neox.layers.8.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00002.bin",
|
| 473 |
+
"gpt_neox.layers.8.post_attention_layernorm.bias": "pytorch_model-00001-of-00002.bin",
|
| 474 |
+
"gpt_neox.layers.8.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
| 475 |
+
"gpt_neox.layers.9.attention.bias": "pytorch_model-00001-of-00002.bin",
|
| 476 |
+
"gpt_neox.layers.9.attention.dense.bias": "pytorch_model-00001-of-00002.bin",
|
| 477 |
+
"gpt_neox.layers.9.attention.dense.weight": "pytorch_model-00001-of-00002.bin",
|
| 478 |
+
"gpt_neox.layers.9.attention.masked_bias": "pytorch_model-00001-of-00002.bin",
|
| 479 |
+
"gpt_neox.layers.9.attention.query_key_value.bias": "pytorch_model-00001-of-00002.bin",
|
| 480 |
+
"gpt_neox.layers.9.attention.query_key_value.weight": "pytorch_model-00001-of-00002.bin",
|
| 481 |
+
"gpt_neox.layers.9.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
|
| 482 |
+
"gpt_neox.layers.9.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
|
| 483 |
+
"gpt_neox.layers.9.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
| 484 |
+
"gpt_neox.layers.9.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00002.bin",
|
| 485 |
+
"gpt_neox.layers.9.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00002.bin",
|
| 486 |
+
"gpt_neox.layers.9.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00002.bin",
|
| 487 |
+
"gpt_neox.layers.9.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00002.bin",
|
| 488 |
+
"gpt_neox.layers.9.post_attention_layernorm.bias": "pytorch_model-00001-of-00002.bin",
|
| 489 |
+
"gpt_neox.layers.9.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin"
|
| 490 |
+
}
|
| 491 |
+
}
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token": "<|endoftext|>",
|
| 3 |
+
"eos_token": "<|endoftext|>",
|
| 4 |
+
"unk_token": "<|endoftext|>"
|
| 5 |
+
}
|
tokenizer.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"add_prefix_space": false,
|
| 3 |
+
"bos_token": "<|endoftext|>",
|
| 4 |
+
"clean_up_tokenization_spaces": true,
|
| 5 |
+
"eos_token": "<|endoftext|>",
|
| 6 |
+
"model_max_length": 2048,
|
| 7 |
+
"tokenizer_class": "GPTNeoXTokenizer",
|
| 8 |
+
"unk_token": "<|endoftext|>"
|
| 9 |
+
}
|