File size: 9,748 Bytes
e28b279 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 |
from typing import List, Optional, Tuple
import torch
from PIL import Image
from torch import nn
from transformers import (
CLIPVisionModel,
GenerationMixin,
PreTrainedModel,
PreTrainedTokenizer,
)
from .catty import split_image_with_catty
from .configuration_points_chat import POINTSChatConfig
from .dynamic_high_resolution import split_image
from .modeling_llama import CustomLlamaForCausalLM
class POINTSChatModel(PreTrainedModel, GenerationMixin):
config_class = POINTSChatConfig
_no_split_modules = ["CLIPVisionModel", "LLamaDecoderLayer"]
"""Chat model for POINTS.
Official implementation of the paper "POINTS: Improving Your Vision-language Model with Affordable Strategies" # noqa: E501
paper: https://huggingface.co/papers/2409.04828
Args:
config (PretrainedConfig): The model config.
"""
def __init__(self, config: POINTSChatConfig) -> None:
super().__init__(config)
self.general_vit = CLIPVisionModel(config.vision_config)
self.ocr_vit = CLIPVisionModel(config.vision_config)
self.llm = CustomLlamaForCausalLM(config.llm_config)
self.vision_projector = nn.Sequential(
nn.Linear(config.vision_config.hidden_size *
4, config.llm_config.hidden_size),
nn.GELU(),
nn.Linear(config.llm_config.hidden_size,
config.llm_config.hidden_size)
)
def apply_chat_template(self, prompt: str, image_num: int) -> str:
"""Apply the Yi-1.5-Chat template to the prompt.
Args:
prompt (str): The prompt to apply the template to.
image_num (int): The number of the image in the prompt.
Returns:
str: The prompt with the template applied.
"""
image_tokens = ('<|endoftext|>' * 144) * image_num
prompt = f'<|im_start|>user\n{image_tokens}{prompt}<|im_end|>\n<|im_start|>assistant\n' # noqa: E501
return prompt
def pixel_shuffle(self, feature_map: torch.Tensor,
scale_factor: float = 0.5) -> torch.Tensor:
"""Implementation of pixel shuffle.
Merge several patches into a single patch by concatenating
them across the channel dimension. Therefore, we can reduce
the image sequence length. In POINTS, we merge 2x2 adjacent
patches into a single patch.
Args:
feature_map (torch.Tensor): The feature map to be pixel
shuffled.
scale_factor (float, optional): The scale factor for the
"""
# taken from https://huggingface.co/OpenGVLab/InternVL-Chat-V1-5/blob/main/modeling_internvl_chat.py#L187 # noqa
n, w, h, c = feature_map.size()
# N, W, H, C --> N, W, H * scale, C // scale
feature_map = feature_map.view(
n, w, int(h * scale_factor), int(c / scale_factor))
# N, W, H * scale, C // scale --> N, H * scale, W, C // scale
feature_map = feature_map.permute(0, 2, 1, 3).contiguous()
# N, H * scale, W, C // scale --> N, H * scale, W * scale, C // (scale ** 2)
feature_map = feature_map.view(
n,
int(h * scale_factor),
int(w * scale_factor),
int(c / (scale_factor * scale_factor)),
)
feature_map = feature_map.permute(0, 2, 1, 3).contiguous()
return feature_map
def extract_image_features(self, images: torch.Tensor,
vision_encoder: str = 'general_vit') -> torch.Tensor: # noqa: E501
"""Extract the image features from the vision encoder.
Args:
images (torch.Tensor): The images to extract the features from.
vision_encoder (str, optional): The vision encoder to use.
Defaults to 'general_vit'.
Returns:
torch.Tensor: The extracted image features.
"""
if vision_encoder == 'general_vit':
image_features = self.general_vit(
images, output_hidden_states=True
)
else:
image_features = self.ocr_vit(
images, output_hidden_states=True
)
image_features = image_features.hidden_states[-2]
image_features = image_features[:, 1:]
image_features = image_features.reshape(-1, 24, 24, 1024)
image_features = self.pixel_shuffle(image_features, 0.5)
image_features = image_features.view(-1, 144, 4096)
image_features = self.vision_projector(image_features)
return image_features
def get_pos_mapping(self, pos: List[list]) -> Tuple[dict, int]:
"""Get the position mapping for the images.
Args:
pos (List[list]): The position of the images in the prompt.
Returns:
Tuple[dict, int]: The position mapping and the
total number of images.
"""
mapping = {}
total_images = 0
for i, (start, end) in enumerate(pos):
num_image = int((end - start) / 144)
mapping[i] = num_image
total_images += num_image
return mapping, total_images
@torch.no_grad()
def chat(self, pixel_values: Image, prompt: str,
tokenizer: PreTrainedTokenizer,
image_processor, catty: bool = True,
generation_config: dict = None,
max_splits: int = 8) -> str:
"""Generate a response to the input prompt.
Args:
pixel_values (Image): The input image.
prompt (str): The input prompt.
tokenizer (PreTrainedTokenizer): The tokenizer to use.
image_processor: The image processor to use.
catty (bool, optional): Whether to use catty. Defaults to True.
generation_config (dict, optional): The generation config.
Defaults to None.
max_splits (int, optional): The maximum number of splits.
Defaults to 8.
Returns:
str: The generated response.
"""
if catty:
cropped_images = split_image_with_catty(pixel_values,
do_resize=True,
max_crop_slices=max_splits)
else:
cropped_images = split_image(pixel_values, max_splits=max_splits)
prompt = self.apply_chat_template(prompt, len(cropped_images))
cropped_images = image_processor.preprocess(
cropped_images, return_tensors='pt')['pixel_values']
cropped_images = cropped_images.to(self.device)
# extract features with general_vit
general_vit_features = self.extract_image_features(
cropped_images, vision_encoder='general_vit')
# extract features with ocr_vit
ocr_vit_features = self.extract_image_features(
cropped_images, vision_encoder='ocr_vit')
image_features = 0.5 * general_vit_features + 0.5 * ocr_vit_features
model_inputs = tokenizer(prompt, return_tensors='pt')
input_ids = model_inputs['input_ids'].to(self.device)
attention_mask = model_inputs['attention_mask'].to(self.device)
# stop token
eos_token_id = tokenizer.convert_tokens_to_ids("<|im_end|>")
# image token
image_token_id = tokenizer.convert_tokens_to_ids("<|endoftext|>")
generation_config.update(
{
'eos_token_id': eos_token_id,
}
)
outputs = self.generate(
input_ids=input_ids,
attention_mask=attention_mask,
image_features=[image_features],
image_token_id=image_token_id,
**generation_config
)
response = tokenizer.batch_decode(outputs, skip_special_tokens=True)[0]
return response
def generate(self,
input_ids: torch.LongTensor,
attention_mask: torch.LongTensor,
image_features: List[torch.Tensor],
image_token_id: int,
generation_config: Optional[dict] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
**generate_kwargs) -> torch.LongTensor:
input_embeddings = self.llm.lm.embed_in(input_ids)
batch_size = input_ids.shape[0]
assert len(image_features) == batch_size
for i in range(batch_size):
special_pos = input_ids[i] == image_token_id
pos = (special_pos[:-1] != special_pos[1:]).nonzero() + 1
if pos.shape[0] % 2 != 0:
# when the sequence is <image><caption>
# we need to add a dummy token
pos = torch.cat([torch.tensor([[0]]).to(pos.device), pos])
pos = pos.reshape(-1, 2).tolist()
pos_mapping, total_images = self.get_pos_mapping(pos)
assert total_images == len(image_features[i])
img_offset = 0
for j, (start, end) in enumerate(pos):
num_images = pos_mapping[j]
input_embeddings[i, start:end] = torch.cat(
[image_features[i][img_offset+k]
for k in range(num_images)],
dim=0
)
img_offset += num_images
outputs = self.llm.generate(
inputs_embeds=input_embeddings,
attention_mask=attention_mask,
generation_config=generation_config,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
use_cache=True,
**generate_kwargs
)
return outputs
|