File size: 9,748 Bytes
e28b279
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
from typing import List, Optional, Tuple

import torch
from PIL import Image
from torch import nn
from transformers import (
    CLIPVisionModel,
    GenerationMixin,
    PreTrainedModel,
    PreTrainedTokenizer,
)

from .catty import split_image_with_catty
from .configuration_points_chat import POINTSChatConfig
from .dynamic_high_resolution import split_image
from .modeling_llama import CustomLlamaForCausalLM


class POINTSChatModel(PreTrainedModel, GenerationMixin):
    config_class = POINTSChatConfig
    _no_split_modules = ["CLIPVisionModel", "LLamaDecoderLayer"]
    """Chat model for POINTS.
    
    Official implementation of the paper "POINTS: Improving Your Vision-language Model with Affordable Strategies"  # noqa: E501
    paper: https://huggingface.co/papers/2409.04828

    Args:
        config (PretrainedConfig): The model config.
    """

    def __init__(self, config: POINTSChatConfig) -> None:
        super().__init__(config)
        self.general_vit = CLIPVisionModel(config.vision_config)
        self.ocr_vit = CLIPVisionModel(config.vision_config)
        self.llm = CustomLlamaForCausalLM(config.llm_config)
        self.vision_projector = nn.Sequential(
            nn.Linear(config.vision_config.hidden_size *
                      4, config.llm_config.hidden_size),
            nn.GELU(),
            nn.Linear(config.llm_config.hidden_size,
                      config.llm_config.hidden_size)

        )

    def apply_chat_template(self, prompt: str, image_num: int) -> str:
        """Apply the Yi-1.5-Chat template to the prompt.

        Args:
            prompt (str): The prompt to apply the template to.
            image_num (int): The number of the image in the prompt.
        Returns:
            str: The prompt with the template applied.
        """
        image_tokens = ('<|endoftext|>' * 144) * image_num
        prompt = f'<|im_start|>user\n{image_tokens}{prompt}<|im_end|>\n<|im_start|>assistant\n'  # noqa: E501
        return prompt

    def pixel_shuffle(self, feature_map: torch.Tensor,
                      scale_factor: float = 0.5) -> torch.Tensor:
        """Implementation of pixel shuffle.

        Merge several patches into a single patch by concatenating
        them across the channel dimension. Therefore, we can reduce 
        the image sequence length. In POINTS, we merge 2x2 adjacent
        patches into a single patch.

        Args:
            feature_map (torch.Tensor): The feature map to be pixel 
                shuffled.
            scale_factor (float, optional): The scale factor for the    
        """

        # taken from https://huggingface.co/OpenGVLab/InternVL-Chat-V1-5/blob/main/modeling_internvl_chat.py#L187 # noqa
        n, w, h, c = feature_map.size()
        # N, W, H, C --> N, W, H * scale, C // scale
        feature_map = feature_map.view(
            n, w, int(h * scale_factor), int(c / scale_factor))
        # N, W, H * scale, C // scale --> N, H * scale, W, C // scale
        feature_map = feature_map.permute(0, 2, 1, 3).contiguous()
        # N, H * scale, W, C // scale --> N, H * scale, W * scale, C // (scale ** 2)
        feature_map = feature_map.view(
            n,
            int(h * scale_factor),
            int(w * scale_factor),
            int(c / (scale_factor * scale_factor)),
        )
        feature_map = feature_map.permute(0, 2, 1, 3).contiguous()
        return feature_map

    def extract_image_features(self, images: torch.Tensor,
                               vision_encoder: str = 'general_vit') -> torch.Tensor:  # noqa: E501
        """Extract the image features from the vision encoder.

        Args:
            images (torch.Tensor): The images to extract the features from.
            vision_encoder (str, optional): The vision encoder to use.
                Defaults to 'general_vit'.

        Returns:
            torch.Tensor: The extracted image features.
        """
        if vision_encoder == 'general_vit':
            image_features = self.general_vit(
                images, output_hidden_states=True
            )
        else:
            image_features = self.ocr_vit(
                images, output_hidden_states=True
            )
        image_features = image_features.hidden_states[-2]
        image_features = image_features[:, 1:]
        image_features = image_features.reshape(-1, 24, 24, 1024)
        image_features = self.pixel_shuffle(image_features, 0.5)
        image_features = image_features.view(-1, 144, 4096)
        image_features = self.vision_projector(image_features)
        return image_features

    def get_pos_mapping(self, pos: List[list]) -> Tuple[dict, int]:
        """Get the position mapping for the images.

        Args:
            pos (List[list]): The position of the images in the prompt.

        Returns:
            Tuple[dict, int]: The position mapping and the 
            total number of images.
        """
        mapping = {}
        total_images = 0
        for i, (start, end) in enumerate(pos):
            num_image = int((end - start) / 144)
            mapping[i] = num_image
            total_images += num_image
        return mapping, total_images

    @torch.no_grad()
    def chat(self, pixel_values: Image, prompt: str,
             tokenizer: PreTrainedTokenizer,
             image_processor, catty: bool = True,
             generation_config: dict = None,
             max_splits: int = 8) -> str:
        """Generate a response to the input prompt.

        Args:
            pixel_values (Image): The input image.
            prompt (str): The input prompt.
            tokenizer (PreTrainedTokenizer): The tokenizer to use.
            image_processor: The image processor to use.
            catty (bool, optional): Whether to use catty. Defaults to True.
            generation_config (dict, optional): The generation config. 
                Defaults to None.
            max_splits (int, optional): The maximum number of splits. 
                Defaults to 8.
        Returns:
            str: The generated response.
        """
        if catty:
            cropped_images = split_image_with_catty(pixel_values,
                                                    do_resize=True,
                                                    max_crop_slices=max_splits)
        else:
            cropped_images = split_image(pixel_values, max_splits=max_splits)
        prompt = self.apply_chat_template(prompt, len(cropped_images))
        cropped_images = image_processor.preprocess(
            cropped_images, return_tensors='pt')['pixel_values']
        cropped_images = cropped_images.to(self.device)
        # extract features with general_vit
        general_vit_features = self.extract_image_features(
            cropped_images, vision_encoder='general_vit')
        # extract features with ocr_vit
        ocr_vit_features = self.extract_image_features(
            cropped_images, vision_encoder='ocr_vit')
        image_features = 0.5 * general_vit_features + 0.5 * ocr_vit_features
        model_inputs = tokenizer(prompt, return_tensors='pt')
        input_ids = model_inputs['input_ids'].to(self.device)
        attention_mask = model_inputs['attention_mask'].to(self.device)
        # stop token
        eos_token_id = tokenizer.convert_tokens_to_ids("<|im_end|>")
        # image token
        image_token_id = tokenizer.convert_tokens_to_ids("<|endoftext|>")
        generation_config.update(
            {
                'eos_token_id': eos_token_id,
            }
        )
        outputs = self.generate(
            input_ids=input_ids,
            attention_mask=attention_mask,
            image_features=[image_features],
            image_token_id=image_token_id,
            **generation_config
        )
        response = tokenizer.batch_decode(outputs, skip_special_tokens=True)[0]
        return response

    def generate(self,
                 input_ids: torch.LongTensor,
                 attention_mask: torch.LongTensor,
                 image_features: List[torch.Tensor],
                 image_token_id: int,
                 generation_config: Optional[dict] = None,
                 output_hidden_states: Optional[bool] = None,
                 return_dict: Optional[bool] = None,
                 **generate_kwargs) -> torch.LongTensor:
        input_embeddings = self.llm.lm.embed_in(input_ids)
        batch_size = input_ids.shape[0]
        assert len(image_features) == batch_size
        for i in range(batch_size):
            special_pos = input_ids[i] == image_token_id
            pos = (special_pos[:-1] != special_pos[1:]).nonzero() + 1
            if pos.shape[0] % 2 != 0:
                # when the sequence is <image><caption>
                # we need to add a dummy token
                pos = torch.cat([torch.tensor([[0]]).to(pos.device), pos])
            pos = pos.reshape(-1, 2).tolist()
            pos_mapping, total_images = self.get_pos_mapping(pos)
            assert total_images == len(image_features[i])
            img_offset = 0
            for j, (start, end) in enumerate(pos):
                num_images = pos_mapping[j]
                input_embeddings[i, start:end] = torch.cat(
                    [image_features[i][img_offset+k]
                        for k in range(num_images)],
                    dim=0
                )
                img_offset += num_images
        outputs = self.llm.generate(
            inputs_embeds=input_embeddings,
            attention_mask=attention_mask,
            generation_config=generation_config,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
            use_cache=True,
            **generate_kwargs
        )
        return outputs