YuanLiuuuuuu's picture
Add files using upload-large-folder tool
e28b279 verified
raw
history blame
8.26 kB
import os
from typing import List, Tuple
from PIL import Image
from .dynamic_high_resolution import factorize_number
def construct_mapping_dict(max_splits: int = 12) -> dict:
"""Construct a mapping dictionary for the given max_splits.
Args:
max_splits (int, optional): The maximum number of splits.
Defaults to 12.
Returns:
dict: A mapping dictionary for the given max_splits.
"""
mapping_dict = {}
for i in range(1, max_splits + 1):
factor_list = factorize_number(i)
for factor in factor_list:
ratio = factor[0] / factor[1]
if ratio not in mapping_dict:
mapping_dict[ratio] = [factor]
else:
mapping_dict[ratio].append(factor)
return mapping_dict
def save_image_list(image_list: List[Image.Image], save_folder: str) -> None:
"""Save a list of images to a folder.
Args:
image_list (List[Image.Image]): A list of images.
save_folder (str): The folder to save the images to.
"""
os.makedirs(save_folder, exist_ok=True)
for i, image in enumerate(image_list):
image.save(os.path.join(save_folder, f'{i}.png'))
def resize_to_best_size(image: Image.Image, best_slices: tuple,
width_slices: int, height_slices: int,
sub_image_size: int) -> Image.Image:
"""Resize an image to the best size for the given number of slices.
Args:
image (Image.Image): The image to resize.
best_slices (tuple): The best number of slices for the image.
width_slices (int): The number of horizontal slices.
height_slices (int): The number of vertical slices.
sub_image_size (int): The size of the sub-images.
Returns:
Image.Image: The resized image.
"""
width, height = image.size
best_width_slices, best_height_slices = best_slices
if width_slices < height_slices:
new_image_width = best_width_slices * sub_image_size
new_image_height = int(height / width * new_image_width)
else:
new_image_height = best_height_slices * sub_image_size
new_image_width = int(width / height * new_image_height)
new_image = image.resize((new_image_width, new_image_height), resample=2)
return new_image
def compute_strides(height: int, width: int, sub_image_size: int,
slices: Tuple[int, int]) -> Tuple[int, int]:
"""Compute the strides for the given image size and slices.
Args:
height (int): The height of the image.
width (int): The width of the image.
sub_image_size (int): The size of the sub-images.
slices (Tuple[int, int]): The number of horizontal and vertical slices.
Returns:
Tuple[int, int]: The strides for the given image size and slices.
"""
slice_width, slice_height = slices
if slice_width > 1:
stride_x = (width - sub_image_size) // (slice_width - 1)
else:
stride_x = 0
if slice_height > 1:
stride_y = (height - sub_image_size) // (slice_height - 1)
else:
stride_y = 0
return stride_x, stride_y
def sliding_window_crop(image: Image.Image, window_size: int,
slices: Tuple[int, int]) -> List[Image.Image]:
"""Crop an image into sub-images using a sliding window.
Args:
image (Image.Image): The image to crop.
window_size (int): The size of the sub-images.
slices (Tuple[int, int]): The number of horizontal and vertical slices.
Returns:
List[Image]: A list of cropped images.
"""
width, height = image.size
stride_x, stride_y = compute_strides(height, width, window_size, slices)
sub_images = []
if stride_x == 0:
stride_x = window_size
if stride_y == 0:
stride_y = window_size
for y in range(0, height - window_size + 1, stride_y):
for x in range(0, width - window_size + 1, stride_x):
sub_image = image.crop((x, y, x + window_size, y + window_size))
sub_images.append(sub_image)
return sub_images
def find_best_slices(width_slices: int,
height_slices: int,
aspect_ratio: float,
max_splits: int = 12) -> list:
"""Find the best slices for the given image size and aspect ratio.
Args:
width_slices (int): The number of horizontal slices.
height_slices (int): The number of vertical slices.
aspect_ratio (float): The aspect ratio of the image.
max_splits (int, optional): The maximum number of splits.
Defaults to 12.
Returns:
list: the best slices for the given image.
"""
mapping_dict = construct_mapping_dict(max_splits)
if aspect_ratio < 1:
mapping_dict = {
k: v
for k, v in mapping_dict.items() if k <= aspect_ratio
}
elif aspect_ratio > 1:
mapping_dict = {
k: v
for k, v in mapping_dict.items() if k >= aspect_ratio
}
# find the value which key is the closest to the ratio
best_ratio = min(mapping_dict.keys(), key=lambda x: abs(x - aspect_ratio))
# best_image_sizes is a list of image sizes
best_image_sizes = mapping_dict[best_ratio]
# find the image_size whose area is closest to the current image size
best_slices = min(
best_image_sizes,
key=lambda x: abs(x[0] * x[1] - width_slices * height_slices))
return best_slices
def split_image_with_catty(pil_image: Image.Image,
image_size: int = 336,
max_crop_slices: int = 8,
save_folder: str = None,
add_thumbnail: bool = True,
do_resize: bool = False,
**kwargs) -> List[Image.Image]:
"""Split an image into sub-images using Catty.
Args:
pil_image (Image.Image): The image to split.
image_size (int, optional): The size of the image.
Defaults to 336.
max_crop_slices (int, optional): The maximum number of slices.
Defaults to 8.
save_folder (str, optional): The folder to save the sub-images.
Defaults to None.
add_thumbnail (bool, optional): Whether to add a thumbnail.
Defaults to False.
do_resize (bool, optional): Whether to resize the image to fit the
maximum number of slices. Defaults to False.
Returns:
List[Image.Image]: A list of cropped images.
"""
width, height = pil_image.size
ratio = width / height
if ratio > max_crop_slices or ratio < 1 / max_crop_slices:
if do_resize:
print(
f'Resizing image to fit maximum number of slices ({max_crop_slices})' # noqa
) # noqa
if width > height:
new_width = max_crop_slices * height
new_height = height
else:
new_width = width
new_height = max_crop_slices * width
pil_image = pil_image.resize((new_width, new_height), resample=2)
width, height = pil_image.size
ratio = width / height
else:
print(
f'Image aspect ratio ({ratio:.2f}) is out of range: ({1/max_crop_slices:.2f}, {max_crop_slices:.2f})' # noqa
)
return None, None
width_slices = width / image_size
height_slices = height / image_size
best_slices = find_best_slices(width_slices, height_slices, ratio,
max_crop_slices)
pil_image = resize_to_best_size(pil_image, best_slices, width_slices,
height_slices, image_size)
width, height = pil_image.size
sub_images = sliding_window_crop(pil_image, image_size, best_slices)
if add_thumbnail:
thumbnail_image = pil_image.resize((image_size, image_size),
resample=2)
sub_images.append(thumbnail_image)
# save split images to folder for debugging
if save_folder is not None:
save_image_list(sub_images, save_folder)
return sub_images