|
|
|
|
|
|
|
|
|
from transformers.configuration_utils import PretrainedConfig |
|
from transformers.utils import logging |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
class CustomLlamaConfig(PretrainedConfig): |
|
""" |
|
Args: |
|
vocab_size (`int`, *optional*, defaults to 50432): |
|
Vocabulary size of the WeLMV3 model. Defines the number of |
|
different tokens that can be represented by the |
|
`inputs_ids` passed when calling [`WeLMV3Model`]. |
|
hidden_size (`int`, *optional*, defaults to 6144): |
|
Dimension of the encoder layers and the pooler layer. |
|
num_hidden_layers (`int`, *optional*, defaults to 44): |
|
Number of hidden layers in the Transformer encoder. |
|
num_attention_heads (`int`, *optional*, defaults to 64): |
|
Number of attention heads for each attention layer in the |
|
Transformer encoder. |
|
num_kv_heads (`int`, *optional*, defaults to 4): |
|
Number of GQA groups. |
|
intermediate_size (`int`, *optional*, defaults to 24576): |
|
Dimension of the "intermediate" (i.e., feed-forward) layer in the |
|
Transformer encoder. |
|
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): |
|
The non-linear activation function (function or string) in the |
|
encoder and pooler. If string, `"gelu"`, |
|
`"relu"`, `"selu"` and `"gelu_new"` are supported. |
|
rotary_pct (`float`, *optional*, defaults to 0.25): |
|
percentage of hidden dimensions to allocate to rotary embeddings |
|
rotary_emb_base (`int`, *optional*, defaults to 10000) |
|
base for computing rotary embeddings frequency |
|
max_position_embeddings (`int`, *optional*, defaults to 2048): |
|
The maximum sequence length that this model might ever be used |
|
with. Typically set this to something large just in case |
|
(e.g., 512 or 1024 or 2048). |
|
initializer_range (`float`, *optional*, defaults to 1e-5): |
|
The standard deviation of the truncated_normal_initializer for |
|
initializing all weight matrices. |
|
layer_norm_eps (`float`, *optional*, defaults to 1e-12): |
|
The epsilon used by the layer normalization layers. |
|
use_cache (`bool`, *optional*, defaults to `True`): |
|
Whether or not the model should return the last key/values |
|
attentions (not used by all models). Only relevant if |
|
`config.is_decoder=True`. |
|
""" |
|
model_type = "custom_llama" |
|
|
|
def __init__( |
|
self, |
|
vocab_size=102400, |
|
hidden_size=2560, |
|
num_layers=32, |
|
num_attention_heads=20, |
|
num_kv_heads=4, |
|
ffn_hidden_size=2560 * 4, |
|
hidden_act="swiglu", |
|
rotary_pct=1.0, |
|
rotary_emb_base=10000, |
|
rotary_compress=1.0, |
|
max_position_embeddings=4096, |
|
initializer_range=0.02, |
|
layernorm_epsilon=1e-5, |
|
use_cache=True, |
|
bos_token_id=0, |
|
eos_token_id=2, |
|
rms_norm=None, |
|
norm_type='layer_norm', |
|
qkv_proj_bias=True, |
|
out_proj_bias=True, |
|
mlp_fc1_bias=True, |
|
mlp_fc2_bias=True, |
|
**kwargs, |
|
): |
|
super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs) |
|
self.vocab_size = vocab_size |
|
self.max_position_embeddings = max_position_embeddings |
|
self.hidden_size = hidden_size |
|
self.num_layers = num_layers |
|
self.num_attention_heads = num_attention_heads |
|
self.num_kv_heads = num_kv_heads |
|
self.ffn_hidden_size = ffn_hidden_size |
|
self.hidden_act = hidden_act |
|
self.rotary_pct = rotary_pct |
|
self.rotary_emb_base = rotary_emb_base |
|
self.rotary_compress = rotary_compress |
|
self.initializer_range = initializer_range |
|
self.layernorm_epsilon = layernorm_epsilon |
|
self.use_cache = use_cache |
|
if rms_norm is not None: |
|
self.norm_type = 'rms_norm' if rms_norm else 'layer_norm' |
|
else: |
|
self.norm_type = norm_type |
|
self.qkv_proj_bias = qkv_proj_bias |
|
self.out_proj_bias = out_proj_bias |
|
self.mlp_fc1_bias = mlp_fc1_bias |
|
self.mlp_fc2_bias = mlp_fc2_bias |
|
self.num_hidden_layers = num_layers |
|
|