Truck2 / 2.py
Wendy-Fly's picture
Upload 2.py with huggingface_hub
984ebb7 verified
from transformers import Qwen2_5_VLForConditionalGeneration, AutoProcessor
from qwen_vl_utils import process_vision_info
import os
import torch
from transformers import Qwen2_5_VLForConditionalGeneration, AutoProcessor
from qwen_vl_utils import process_vision_info
import json
from tqdm import tqdm
import os
import argparse
# default: Load the model on the available device(s)
# model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
# "Qwen/Qwen2.5-VL-7B-Instruct", torch_dtype="auto", device_map="auto"
# )
# We recommend enabling flash_attention_2 for better acceleration and memory saving, especially in multi-image and video scenarios.
model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
"/home/zbz5349/WorkSpace/aigeeks/Qwen2.5-VL/ckpt_7B",
torch_dtype=torch.bfloat16,
attn_implementation="flash_attention_2",
device_map="auto",
)
# default processor
processor = AutoProcessor.from_pretrained("/home/zbz5349/WorkSpace/aigeeks/Qwen2.5-VL/ckpt_7B")
# The default range for the number of visual tokens per image in the model is 4-16384.
# You can set min_pixels and max_pixels according to your needs, such as a token range of 256-1280, to balance performance and cost.
# min_pixels = 256*28*28
# max_pixels = 1280*28*28
# processor = AutoProcessor.from_pretrained("Qwen/Qwen2.5-VL-7B-Instruct", min_pixels=min_pixels, max_pixels=max_pixels)
messages = [
{
"role": "user",
"content": [
{
"type": "image",
"image": "/home/zbz5349/WorkSpace/aigeeks/Qwen2.5-VL/magicbrush_dataset/data/177802-input.png",
},
{"type": "text", "text": "l want to I want to remove the lamp。Please give me the modified position in the form of a bounding box. Answer me with the coordinates of the top left corner and the bottom right corner. can you tell me input image size?"},
],
}
]
# Preparation for inference
text = processor.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
image_inputs, video_inputs = process_vision_info(messages)
inputs = processor(
text=[text],
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors="pt",
)
inputs = inputs.to(model.device)
# Inference: Generation of the output
generated_ids = model.generate(**inputs, max_new_tokens=256)
generated_ids_trimmed = [
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
output_text = processor.batch_decode(
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
print(output_text)