--- license: other tags: - axolotl - finetune - qlora base_model: openchat/openchat-3.5-0106 datasets: - hendrycks/competition_math - allenai/ai2_arc - camel-ai/physics - camel-ai/chemistry - camel-ai/biology - camel-ai/math - STEM-AI-mtl/Electrical-engineering - openbookqa - piqa - metaeval/reclor - mandyyyyii/scibench - derek-thomas/ScienceQA - sciq - TIGER-Lab/ScienceEval --- ![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/6468ce47e134d050a58aa89c/aimTTdmut59aZxOWQlkcC.jpeg) # ๐Ÿ”ฌ๐Ÿ‘ฉโ€๐Ÿ”ฌ Newton-7B This model is a fine-tuned version of [openchat/openchat-3.5-0106](https://huggingface.co/openchat/openchat-3.5-0106) on datasets related to science. This model is fine-tuned using [QLoRa](https://arxiv.org/abs/2305.14314) and [axolotl](https://github.com/OpenAccess-AI-Collective/axolotl). This model's training was sponsored by [sablo.ai](https://sablo.ai).
See axolotl config axolotl version: `0.3.0` ```yaml base_model: openchat/openchat-3.5-0106 model_type: MistralForCausalLM tokenizer_type: LlamaTokenizer is_mistral_derived_model: true load_in_8bit: false load_in_4bit: true strict: false datasets: - path: merged_all.json type: field_instruction: instruction field_output: output format: "GPT4 Correct User: {instruction}<|end_of_turn|>GPT4 Correct Assistant:" no_input_format: "GPT4 Correct User: {instruction}<|end_of_turn|>GPT4 Correct Assistant:" dataset_prepared_path: last_run_prepared val_set_size: 0.01 # not sure output_dir: ./newton adapter: qlora lora_model_dir: sequence_len: 8192 sample_packing: true pad_to_sequence_len: true lora_r: 128 lora_alpha: 64 lora_dropout: 0.05 lora_target_linear: true lora_fan_in_fan_out: lora_target_modules: - gate_proj - down_proj - up_proj - q_proj - v_proj - k_proj - o_proj lora_modules_to_save: - embed_tokens - lm_head wandb_project: huggingface wandb_entity: wandb_watch: wandb_name: wandb_log_model: hub_model_id: Weyaxi/newton-lora save_safetensors: true # change # gradient_accumulation_steps: 12 micro_batch_size: 6 num_epochs: 2 optimizer: adamw_bnb_8bit lr_scheduler: cosine learning_rate: 0.0002 # change # train_on_inputs: false group_by_length: false bf16: true fp16: false tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true warmup_steps: 10 # not sure saves_per_epoch: 2 evals_per_epoch: 4 eval_table_size: eval_table_max_new_tokens: 128 debug: deepspeed: weight_decay: 0.1 # not sure fsdp: fsdp_config: special_tokens: bos_token: "" eos_token: "" unk_token: "" tokens: - "<|end_of_turn|>" - "<|pad_0|>" ```

# ๐Ÿ“Š Datasets You can find the dataset I used and the work I am doing with this datasets here: https://huggingface.co/datasets/Weyaxi/sci-datasets Following datasets were used in this model: - ๐Ÿ“ [MATH](https://huggingface.co/datasets/hendrycks/competition_math) - ๐Ÿง  [ARC](https://huggingface.co/datasets/allenai/ai2_arc) (Note: Only **train** part) - ๐Ÿงฒ [camel-ai/physics](https://huggingface.co/datasets/camel-ai/physics) - โš—๏ธ [camel-ai/chemistry](https://huggingface.co/datasets/camel-ai/chemistry) - ๐Ÿฆ  [camel-ai/biology](https://huggingface.co/datasets/camel-ai/biology) - ๐Ÿ“Š [camel-ai/math](https://huggingface.co/datasets/camel-ai/math) - โšก [STEM-AI-mtl/Electrical-engineering](https://huggingface.co/datasets/STEM-AI-mtl/Electrical-engineering) - ๐Ÿ“š [openbookqa](https://huggingface.co/datasets/openbookqa) - ๐Ÿง  [piqa](https://huggingface.co/datasets/piqa) - ๐ŸŽจ [reclor](https://huggingface.co/datasets/metaeval/reclor) - ๐Ÿ”ฌ [scibench](https://github.com/mandyyyyii/scibench) - ๐Ÿงช [ScienceQA](https://huggingface.co/datasets/derek-thomas/ScienceQA) - ๐Ÿงฌ [sciq](https://huggingface.co/datasets/sciq) - ๐Ÿ“ [ScienceEval](https://huggingface.co/datasets/TIGER-Lab/ScienceEval) ## ๐Ÿ› ๏ธ Multiple Choice Question & Answer Datasets Conversion Progress I used [mistralai/Mixtral-8x7B-Instruct-v0.1](https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1) to generate a reasonable and logical answer by providing it with the question and the answer key. I used the [Together AI](https://www.together.ai) API for this task. The following datasets are converted using this method: - ๐Ÿง  [ARC](https://huggingface.co/datasets/allenai/ai2_arc) (Note: Only **train** part) - ๐Ÿ“š [openbookqa](https://huggingface.co/datasets/openbookqa) - ๐ŸŽจ [reclor](https://huggingface.co/datasets/metaeval/reclor) - ๐Ÿงฌ [sciq](https://huggingface.co/datasets/sciq) # ๐Ÿ’ฌ Prompt Template You can use this prompt template while using the model: ### GPT4 Correct [(Openchat)](https://huggingface.co/openchat/openchat-3.5-0106#conversation-templates) ``` GPT4 Correct User: {user}<|end_of_turn|>GPT4 Correct Assistant: {asistant}<|end_of_turn|>GPT4 Correct User: {user}<|end_of_turn|>GPT4 Correct Assistant: ``` You can also utilize the chat template method from the tokenizer config like here: ```python messages = [ {"role": "user", "content": "Hello"}, {"role": "assistant", "content": "Hi"}, {"role": "user", "content": "How are you today?"} ] tokens = tokenizer.apply_chat_template(messages, add_generation_prompt=True) ``` # ๐Ÿค Acknowledgments Thanks to [openchat](https://huggingface.co/openchat) team for fine-tuning an excellent model that I used as a base model. Thanks to [@jondurbin](https://huggingface.co/jondurbin) for reformatting codes for some datasets: [bagel/data_sources](https://github.com/jondurbin/bagel/tree/main/bagel/data_sources) Thanks to [Together AI](https://www.together.ai) for providing everyone with free credits, which I used to generate a dataset in multiple choice to explanations format. Thanks to [Tim Dettmers](https://huggingface.co/timdettmers) for his excellent [QLoRA](https://arxiv.org/abs/2305.14314) work. Thanks to all the dataset authors mentioned in the datasets section. Thanks to [axolotl](https://github.com/OpenAccess-AI-Collective/axolotl) for making the repository I used to make this model. Overall, thanks to all of the open soure AI community! ๐Ÿš€ [Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl) If you would like to support me: [โ˜• Buy Me a Coffee](https://www.buymeacoffee.com/weyaxi)