File size: 221,172 Bytes
ea8ce34 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 |
2: W0902 18:42:01.546000 3691206 torch/distributed/run.py:792]
2: W0902 18:42:01.546000 3691206 torch/distributed/run.py:792] *****************************************
2: W0902 18:42:01.546000 3691206 torch/distributed/run.py:792] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
2: W0902 18:42:01.546000 3691206 torch/distributed/run.py:792] *****************************************
0: W0902 18:42:05.937000 1478709 torch/distributed/run.py:792]
0: W0902 18:42:05.937000 1478709 torch/distributed/run.py:792] *****************************************
0: W0902 18:42:05.937000 1478709 torch/distributed/run.py:792] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
0: W0902 18:42:05.937000 1478709 torch/distributed/run.py:792] *****************************************
3: W0902 18:42:05.939000 368050 torch/distributed/run.py:792]
3: W0902 18:42:05.939000 368050 torch/distributed/run.py:792] *****************************************
3: W0902 18:42:05.939000 368050 torch/distributed/run.py:792] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
3: W0902 18:42:05.939000 368050 torch/distributed/run.py:792] *****************************************
1: W0902 18:42:05.948000 669827 torch/distributed/run.py:792]
1: W0902 18:42:05.948000 669827 torch/distributed/run.py:792] *****************************************
1: W0902 18:42:05.948000 669827 torch/distributed/run.py:792] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
1: W0902 18:42:05.948000 669827 torch/distributed/run.py:792] *****************************************
2: [2025-09-02 18:42:25,579] [INFO] [axolotl.utils.schemas.validation.check_eval_packing:119] [PID:3691281] [RANK:0] explicitly setting `eval_sample_packing` to match `sample_packing`[39m
2: [2025-09-02 18:42:25,580] [INFO] [axolotl.utils.schemas.validation.hint_sample_packing_padding:218] [PID:3691281] [RANK:0] Setting `pad_to_sequence_len: true` to prevent memory leaks when sample_packing[39m
2: [2025-09-02 18:42:29,081] [INFO] [axolotl.utils.data.sft._load_raw_datasets:314] [PID:3691281] [RANK:0] Loading raw datasets...[39m
2: [2025-09-02 18:42:29,322] [INFO] [axolotl.utils.data.wrappers.get_dataset_wrapper:88] [PID:3691281] [RANK:0] Loading dataset: /lustre/fswork/projects/rech/qwv/udv55np/dataset/math/hf/no_thinking_text/generator/default-d32b2cae8ea7e541/0.0.0 with base_type: chat_template and prompt_style: None[39m
0: [2025-09-02 18:42:33,914] [INFO] [axolotl.utils.schemas.validation.check_eval_packing:119] [PID:1478787] [RANK:0] explicitly setting `eval_sample_packing` to match `sample_packing`[39m
0: [2025-09-02 18:42:33,914] [INFO] [axolotl.utils.schemas.validation.hint_sample_packing_padding:218] [PID:1478787] [RANK:0] Setting `pad_to_sequence_len: true` to prevent memory leaks when sample_packing[39m
1: [2025-09-02 18:42:33,920] [INFO] [axolotl.utils.schemas.validation.check_eval_packing:119] [PID:669903] [RANK:0] explicitly setting `eval_sample_packing` to match `sample_packing`[39m
1: [2025-09-02 18:42:33,920] [INFO] [axolotl.utils.schemas.validation.hint_sample_packing_padding:218] [PID:669903] [RANK:0] Setting `pad_to_sequence_len: true` to prevent memory leaks when sample_packing[39m
3: [2025-09-02 18:42:33,923] [INFO] [axolotl.utils.schemas.validation.check_eval_packing:119] [PID:368126] [RANK:0] explicitly setting `eval_sample_packing` to match `sample_packing`[39m
3: [2025-09-02 18:42:33,924] [INFO] [axolotl.utils.schemas.validation.hint_sample_packing_padding:218] [PID:368126] [RANK:0] Setting `pad_to_sequence_len: true` to prevent memory leaks when sample_packing[39m
0: [2025-09-02 18:42:37,930] [INFO] [axolotl.cli.config.load_cfg:245] [PID:1478787] [RANK:0] config:
0: {
0: "activation_offloading": false,
0: "auto_resume_from_checkpoints": true,
0: "axolotl_config_path": "/lustre/fswork/projects/rech/dgo/udv55np/train/tmp/1756826505740523622.yaml",
0: "base_model": "/lustre/fswork/projects/rech/qwv/udv55np/Qwen/Qwen2.5-3B_ift",
0: "base_model_config": "/lustre/fswork/projects/rech/qwv/udv55np/Qwen/Qwen2.5-3B_ift",
0: "batch_size": 16,
0: "bf16": true,
0: "capabilities": {
0: "bf16": true,
0: "compute_capability": "sm_90",
0: "fp8": false,
0: "n_gpu": 16,
0: "n_node": 1
0: },
0: "chat_template": "qwen_25",
0: "context_parallel_size": 1,
0: "dataloader_num_workers": 16,
0: "dataloader_pin_memory": true,
0: "dataloader_prefetch_factor": 256,
0: "dataset_prepared_path": "/lustre/fsn1/projects/rech/dgo/udv55np/dataset_math/Qwen3-235B-A22B/0",
0: "dataset_processes": 192,
0: "datasets": [
0: {
0: "chat_template": "tokenizer_default",
0: "field_messages": "conversations",
0: "message_property_mappings": {
0: "content": "content",
0: "role": "role"
0: },
0: "path": "/lustre/fswork/projects/rech/qwv/udv55np/dataset/math/hf/no_thinking_text/generator/default-d32b2cae8ea7e541/0.0.0",
0: "trust_remote_code": false,
0: "type": "chat_template"
0: }
0: ],
0: "ddp": true,
0: "deepspeed": {
0: "bf16": {
0: "enabled": true
0: },
0: "gradient_accumulation_steps": "auto",
0: "gradient_clipping": "auto",
0: "train_batch_size": "auto",
0: "train_micro_batch_size_per_gpu": "auto",
0: "wall_clock_breakdown": false,
0: "zero_optimization": {
0: "contiguous_gradients": true,
0: "overlap_comm": true,
0: "reduce_bucket_size": "auto",
0: "stage": 3,
0: "stage3_gather_16bit_weights_on_model_save": true,
0: "stage3_param_persistence_threshold": "auto",
0: "stage3_prefetch_bucket_size": "auto",
0: "sub_group_size": 0
0: }
0: },
0: "device": "cuda:0",
0: "device_map": {
0: "": 0
0: },
0: "dion_rank_fraction": 1.0,
0: "dion_rank_multiple_of": 1,
0: "env_capabilities": {
0: "torch_version": "2.6.0"
0: },
0: "eval_batch_size": 1,
0: "eval_causal_lm_metrics": [
0: "sacrebleu",
0: "comet",
0: "ter",
0: "chrf"
0: ],
0: "eval_max_new_tokens": 128,
0: "eval_sample_packing": true,
0: "eval_table_size": 0,
0: "evals_per_epoch": 0,
0: "flash_attention": true,
0: "fp16": false,
0: "gradient_accumulation_steps": 1,
0: "gradient_checkpointing": true,
0: "gradient_checkpointing_kwargs": {
0: "use_reentrant": true
0: },
0: "learning_rate": 5e-06,
0: "lisa_layers_attribute": "model.layers",
0: "load_best_model_at_end": false,
0: "load_in_4bit": false,
0: "load_in_8bit": false,
0: "local_rank": 0,
0: "logging_steps": 10,
0: "lora_dropout": 0.0,
0: "loraplus_lr_embedding": 1e-06,
0: "lr_scheduler": "warmup_stable_decay",
0: "lr_scheduler_kwargs": {
0: "min_lr_ratio": 0.1,
0: "num_decay_steps": 300
0: },
0: "max_prompt_len": 512,
0: "mean_resizing_embeddings": false,
0: "micro_batch_size": 1,
0: "model_config_type": "qwen2",
0: "num_epochs": 1.0,
0: "optimizer": "adamw_torch_fused",
0: "output_dir": "/lustre/fswork/projects/rech/dgo/udv55np/math/Qwen3-235B-A22B/Qwen2.5-3B_ift/0",
0: "pad_to_sequence_len": true,
0: "pretrain_multipack_attn": true,
0: "pretrain_multipack_buffer_size": 10000,
0: "profiler_steps_start": 0,
0: "qlora_sharded_model_loading": false,
0: "ray_num_workers": 1,
0: "resources_per_worker": {
0: "GPU": 1
0: },
0: "sample_packing": true,
0: "sample_packing_bin_size": 200,
0: "sample_packing_group_size": 100000,
0: "save_only_model": false,
0: "save_safetensors": true,
0: "save_steps": 0.2,
0: "save_total_limit": 20,
0: "sequence_len": 16384,
0: "shuffle_before_merging_datasets": false,
0: "shuffle_merged_datasets": true,
0: "skip_prepare_dataset": false,
0: "special_tokens": {
0: "bos_token": "<|im_start|>",
0: "eos_token": "<|im_end|>",
0: "pad_token": "<|endoftext|>"
0: },
0: "strict": false,
0: "tensor_parallel_size": 1,
0: "tf32": false,
0: "tiled_mlp_use_original_mlp": true,
0: "tokenizer_config": "/lustre/fswork/projects/rech/qwv/udv55np/Qwen/Qwen2.5-3B_ift",
0: "torch_dtype": "torch.bfloat16",
0: "train_on_inputs": false,
0: "trl": {
0: "log_completions": false,
0: "mask_truncated_completions": false,
0: "ref_model_mixup_alpha": 0.9,
0: "ref_model_sync_steps": 64,
0: "scale_rewards": true,
0: "sync_ref_model": false,
0: "use_vllm": false,
0: "vllm_server_host": "0.0.0.0",
0: "vllm_server_port": 8000
0: },
0: "use_ray": false,
0: "use_tensorboard": true,
0: "val_set_size": 0.0,
0: "vllm": {
0: "device": "auto",
0: "dtype": "auto",
0: "gpu_memory_utilization": 0.9,
0: "host": "0.0.0.0",
0: "port": 8000
0: },
0: "warmup_steps": 150,
0: "weight_decay": 0.0,
0: "world_size": 16
0: }[39m
0: [2025-09-02 18:42:37,931] [INFO] [axolotl.cli.checks.check_user_token:35] [PID:1478787] [RANK:0] Skipping HuggingFace token verification because HF_HUB_OFFLINE is set to True. Only local files will be used.[39m
2:
Tokenizing Prompts (num_proc=192): 0%| | 0/321773 [00:00<?, ? examples/s]
Tokenizing Prompts (num_proc=192): 0%| | 1000/321773 [00:07<41:18, 129.42 examples/s]
Tokenizing Prompts (num_proc=192): 1%| | 2000/321773 [00:08<18:13, 292.55 examples/s]
Tokenizing Prompts (num_proc=192): 1%| | 3000/321773 [00:08<10:21, 513.15 examples/s]
Tokenizing Prompts (num_proc=192): 2%|β | 6000/321773 [00:08<03:41, 1423.90 examples/s]
Tokenizing Prompts (num_proc=192): 2%|β | 7000/321773 [00:08<03:18, 1581.98 examples/s]
Tokenizing Prompts (num_proc=192): 2%|β | 8000/321773 [00:09<02:36, 2010.75 examples/s]
Tokenizing Prompts (num_proc=192): 3%|β | 9000/321773 [00:09<02:11, 2372.83 examples/s]
Tokenizing Prompts (num_proc=192): 3%|β | 11000/321773 [00:09<01:28, 3504.96 examples/s]
Tokenizing Prompts (num_proc=192): 4%|β | 12000/321773 [00:09<01:31, 3397.37 examples/s]
Tokenizing Prompts (num_proc=192): 4%|β
2: | 14000/321773 [00:09<01:00, 5073.56 examples/s]
Tokenizing Prompts (num_proc=192): 6%|β | 18000/321773 [00:10<00:32, 9427.11 examples/s]
Tokenizing Prompts (num_proc=192): 7%|β | 21000/321773 [00:10<00:24, 12483.15 examples/s]
Tokenizing Prompts (num_proc=192): 7%|β | 24000/321773 [00:10<00:30, 9707.81 examples/s]
Tokenizing Prompts (num_proc=192): 8%|β | 26000/321773 [00:10<00:35, 8384.78 examples/s]
Tokenizing Prompts (num_proc=192): 9%|β | 28000/321773 [00:11<00:38, 7575.54 examples/s]
Tokenizing Prompts (num_proc=192): 9%|β | 30000/321773 [00:11<00:37, 7742.50 examples/s]
Tokenizing Prompts (num_proc=192): 10%|β | 32000/321773 [00:11<00:31, 9336.47 examples/s]
Tokenizing Prompts (num_proc=192): 11%|β | 34000/321773 [00:11<00:26, 10677.32 examples/s]
Tokenizing Prompts (num_proc=192): 11%|β | 36000/321773 [00:11<00:28, 10117.68 examples/s]
Tokenizing Prompts (num_proc=192): 12%|ββ |
2: 38000/321773 [00:12<00:25, 11287.24 examples/s]
Tokenizing Prompts (num_proc=192): 12%|ββ | 39676/321773 [00:12<00:25, 11117.33 examples/s]
Tokenizing Prompts (num_proc=192): 14%|ββ | 43676/321773 [00:12<00:28, 9591.61 examples/s]
Tokenizing Prompts (num_proc=192): 14%|ββ | 45352/321773 [00:12<00:33, 8151.69 examples/s]
Tokenizing Prompts (num_proc=192): 14%|ββ | 46352/321773 [00:13<00:35, 7686.92 examples/s]
Tokenizing Prompts (num_proc=192): 15%|ββ | 47352/321773 [00:13<00:36, 7417.33 examples/s]
Tokenizing Prompts (num_proc=192): 15%|ββ | 48352/321773 [00:13<00:47, 5696.50 examples/s]
Tokenizing Prompts (num_proc=192): 16%|ββ | 52352/321773 [00:13<00:33, 7979.90 examples/s]
Tokenizing Prompts (num_proc=192): 17%|ββ | 55352/321773 [00:14<00:26, 10137.84 examples/s]
Tokenizing Prompts (num_proc=192): 18%|ββ | 57028/321773 [00:14<00:25, 10193.21 examples/s]
Tokenizing Prompts (num_proc=192): 18%|βοΏ½
2: οΏ½οΏ½ | 58704/321773 [00:14<00:25, 10176.02 examples/s]
Tokenizing Prompts (num_proc=192): 19%|ββ | 60056/321773 [00:14<00:24, 10519.60 examples/s]
Tokenizing Prompts (num_proc=192): 19%|ββ | 61732/321773 [00:14<00:32, 7891.54 examples/s]
Tokenizing Prompts (num_proc=192): 20%|ββ | 63732/321773 [00:15<00:32, 7889.18 examples/s]
Tokenizing Prompts (num_proc=192): 21%|ββ | 67760/321773 [00:15<00:24, 10331.09 examples/s]
Tokenizing Prompts (num_proc=192): 23%|βββ | 72788/321773 [00:15<00:18, 13539.21 examples/s]
Tokenizing Prompts (num_proc=192): 24%|βββ | 76492/321773 [00:15<00:17, 13854.25 examples/s]
Tokenizing Prompts (num_proc=192): 25%|βββ | 79844/321773 [00:16<00:17, 13805.67 examples/s]
Tokenizing Prompts (num_proc=192): 26%|βββ | 84520/321773 [00:16<00:15, 15440.07 examples/s]
Tokenizing Prompts (num_proc=192): 28%|βββ | 88872/321773 [00:16<00:14, 16398.34 examples/s]
Tokenizing Prompts
2: (num_proc=192): 28%|βββ | 91548/321773 [00:16<00:15, 14601.55 examples/s]
Tokenizing Prompts (num_proc=192): 30%|βββ | 95548/321773 [00:17<00:14, 15426.17 examples/s]
Tokenizing Prompts (num_proc=192): 30%|βββ | 97900/321773 [00:17<00:16, 13621.50 examples/s]
Tokenizing Prompts (num_proc=192): 31%|ββββ | 100928/321773 [00:17<00:16, 13303.97 examples/s]
Tokenizing Prompts (num_proc=192): 33%|ββββ | 105280/321773 [00:17<00:13, 16357.53 examples/s]
Tokenizing Prompts (num_proc=192): 34%|ββββ | 107956/321773 [00:18<00:16, 13043.48 examples/s]
Tokenizing Prompts (num_proc=192): 34%|ββββ | 110308/321773 [00:18<00:15, 13257.97 examples/s]
Tokenizing Prompts (num_proc=192): 35%|ββββ | 112308/321773 [00:18<00:17, 11803.94 examples/s]
Tokenizing Prompts (num_proc=192): 35%|ββββ | 113660/321773 [00:18<00:20, 9973.30 examples/s]
Tokenizing Prompts (num_proc=192): 36%|ββββ | 115012/3217
2: 73 [00:18<00:23, 8677.05 examples/s]
Tokenizing Prompts (num_proc=192): 36%|ββββ | 116364/321773 [00:19<00:26, 7668.05 examples/s]
Tokenizing Prompts (num_proc=192): 37%|ββββ | 119392/321773 [00:19<00:21, 9367.10 examples/s]
Tokenizing Prompts (num_proc=192): 38%|ββββ | 121068/321773 [00:19<00:23, 8643.09 examples/s]
Tokenizing Prompts (num_proc=192): 39%|ββββ | 125420/321773 [00:19<00:16, 11631.24 examples/s]
Tokenizing Prompts (num_proc=192): 39%|ββββ | 127096/321773 [00:20<00:17, 11027.16 examples/s]
Tokenizing Prompts (num_proc=192): 40%|ββββ | 129096/321773 [00:20<00:18, 10344.84 examples/s]
Tokenizing Prompts (num_proc=192): 41%|ββββ | 131772/321773 [00:20<00:18, 10393.89 examples/s]
Tokenizing Prompts (num_proc=192): 42%|βββββ | 134800/321773 [00:20<00:16, 11581.85 examples/s]
Tokenizing Prompts (num_proc=192): 42%|βββββ | 136476/321773 [00:21<00:18, 10007.02 examples/s]
Token
2: izing Prompts (num_proc=192): 43%|βββββ | 138152/321773 [00:21<00:24, 7598.79 examples/s]
Tokenizing Prompts (num_proc=192): 44%|βββββ | 142856/321773 [00:21<00:16, 11089.98 examples/s]
Tokenizing Prompts (num_proc=192): 46%|βββββ | 146884/321773 [00:21<00:13, 12887.92 examples/s]
Tokenizing Prompts (num_proc=192): 46%|βββββ | 148912/321773 [00:22<00:14, 11694.80 examples/s]
Tokenizing Prompts (num_proc=192): 47%|βββββ | 152264/321773 [00:22<00:12, 13091.03 examples/s]
Tokenizing Prompts (num_proc=192): 48%|βββββ | 154616/321773 [00:22<00:12, 13770.02 examples/s]
Tokenizing Prompts (num_proc=192): 50%|βββββ | 159644/321773 [00:22<00:08, 18029.58 examples/s]
Tokenizing Prompts (num_proc=192): 51%|βββββ | 163672/321773 [00:22<00:07, 20143.92 examples/s]
Tokenizing Prompts (num_proc=192): 52%|ββββββ | 166348/321773 [00:22<00:07, 19454.88 examples/s]
Tokenizing Prompts (num_proc
2: =192): 53%|ββββββ | 169348/321773 [00:23<00:07, 19451.39 examples/s]
Tokenizing Prompts (num_proc=192): 54%|ββββββ | 172700/321773 [00:23<00:07, 19990.67 examples/s]
Tokenizing Prompts (num_proc=192): 54%|ββββββ | 175052/321773 [00:23<00:10, 14583.76 examples/s]
Tokenizing Prompts (num_proc=192): 56%|ββββββ | 180404/321773 [00:23<00:07, 19633.99 examples/s]
Tokenizing Prompts (num_proc=192): 57%|ββββββ | 182756/321773 [00:23<00:07, 18247.45 examples/s]
Tokenizing Prompts (num_proc=192): 58%|ββββββ | 185108/321773 [00:24<00:08, 16406.57 examples/s]
Tokenizing Prompts (num_proc=192): 58%|ββββββ | 187108/321773 [00:24<00:08, 15492.72 examples/s]
Tokenizing Prompts (num_proc=192): 59%|ββββββ | 189460/321773 [00:24<00:08, 15825.05 examples/s]
Tokenizing Prompts (num_proc=192): 59%|ββββββ | 191136/321773 [00:24<00:11, 11283.33 examples/s]
Tokenizing Prompts (num_proc=192):
2: 60%|ββββββ | 192488/321773 [00:24<00:12, 10654.24 examples/s]
Tokenizing Prompts (num_proc=192): 60%|ββββββ | 194164/321773 [00:24<00:11, 10992.74 examples/s]
Tokenizing Prompts (num_proc=192): 61%|ββββββ | 196164/321773 [00:25<00:11, 11377.43 examples/s]
Tokenizing Prompts (num_proc=192): 61%|βββββββ | 197516/321773 [00:25<00:14, 8419.88 examples/s]
Tokenizing Prompts (num_proc=192): 62%|βββββββ | 200192/321773 [00:25<00:11, 10506.33 examples/s]
Tokenizing Prompts (num_proc=192): 63%|βββββββ | 201544/321773 [00:25<00:11, 10019.21 examples/s]
Tokenizing Prompts (num_proc=192): 63%|βββββββ | 203544/321773 [00:25<00:10, 10969.36 examples/s]
Tokenizing Prompts (num_proc=192): 64%|βββββββ | 205544/321773 [00:26<00:09, 11724.56 examples/s]
Tokenizing Prompts (num_proc=192): 64%|βββββββ | 206896/321773 [00:26<00:13, 8444.78 examples/s]
Tokenizing Prompts (num_proc=1
2: 92): 65%|βββββββ | 209248/321773 [00:26<00:11, 10195.93 examples/s]
Tokenizing Prompts (num_proc=192): 65%|βββββββ | 210600/321773 [00:26<00:11, 9721.58 examples/s]
Tokenizing Prompts (num_proc=192): 66%|βββββββ | 212952/321773 [00:26<00:08, 12250.35 examples/s]
Tokenizing Prompts (num_proc=192): 67%|βββββββ | 214628/321773 [00:26<00:09, 11123.21 examples/s]
Tokenizing Prompts (num_proc=192): 67%|βββββββ | 216304/321773 [00:27<00:08, 12255.42 examples/s]
Tokenizing Prompts (num_proc=192): 68%|βββββββ | 217980/321773 [00:27<00:08, 12081.44 examples/s]
Tokenizing Prompts (num_proc=192): 68%|βββββββ | 219656/321773 [00:27<00:08, 12479.56 examples/s]
Tokenizing Prompts (num_proc=192): 69%|βββββββ | 222332/321773 [00:27<00:08, 11690.36 examples/s]
Tokenizing Prompts (num_proc=192): 70%|βββββββ | 223684/321773 [00:27<00:08, 11144.39 examples/s]
Tokenizing Prompts
2: (num_proc=192): 70%|βββββββ | 226036/321773 [00:27<00:08, 11097.73 examples/s]
Tokenizing Prompts (num_proc=192): 71%|βββββββ | 227388/321773 [00:28<00:10, 9298.28 examples/s]
Tokenizing Prompts (num_proc=192): 71%|βββββββ | 228740/321773 [00:28<00:09, 9665.74 examples/s]
Tokenizing Prompts (num_proc=192): 72%|ββββββββ | 233092/321773 [00:28<00:06, 14319.83 examples/s]
Tokenizing Prompts (num_proc=192): 73%|ββββββββ | 234768/321773 [00:28<00:08, 10359.51 examples/s]
Tokenizing Prompts (num_proc=192): 74%|ββββββββ | 239120/321773 [00:28<00:05, 15792.56 examples/s]
Tokenizing Prompts (num_proc=192): 75%|ββββββββ | 241472/321773 [00:29<00:06, 13247.23 examples/s]
Tokenizing Prompts (num_proc=192): 76%|ββββββββ | 243824/321773 [00:29<00:06, 12162.40 examples/s]
Tokenizing Prompts (num_proc=192): 77%|ββββββββ | 246176/321773 [00:29<00:07, 10770.75 examples/
2: s]
Tokenizing Prompts (num_proc=192): 78%|ββββββββ | 249880/321773 [00:29<00:05, 12175.96 examples/s]
Tokenizing Prompts (num_proc=192): 78%|ββββββββ | 251908/321773 [00:30<00:05, 12287.71 examples/s]
Tokenizing Prompts (num_proc=192): 79%|ββββββββ | 254260/321773 [00:30<00:04, 14138.33 examples/s]
Tokenizing Prompts (num_proc=192): 80%|ββββββββ | 255936/321773 [00:30<00:06, 9574.12 examples/s]
Tokenizing Prompts (num_proc=192): 81%|ββββββββ | 260612/321773 [00:30<00:04, 14495.41 examples/s]
Tokenizing Prompts (num_proc=192): 82%|βββββββββ | 263288/321773 [00:30<00:04, 13285.76 examples/s]
Tokenizing Prompts (num_proc=192): 83%|βββββββββ | 265964/321773 [00:31<00:06, 8573.43 examples/s]
Tokenizing Prompts (num_proc=192): 83%|βββββββββ | 267640/321773 [00:31<00:05, 9476.53 examples/s]
Tokenizing Prompts (num_proc=192): 84%|βββββββββ | 270992/321
2: 773 [00:31<00:04, 10546.11 examples/s]
Tokenizing Prompts (num_proc=192): 85%|βββββββββ | 272668/321773 [00:31<00:04, 10909.82 examples/s]
Tokenizing Prompts (num_proc=192): 85%|βββββββββ | 274020/321773 [00:32<00:04, 10618.59 examples/s]
Tokenizing Prompts (num_proc=192): 86%|βββββββββ | 276020/321773 [00:32<00:04, 9375.64 examples/s]
Tokenizing Prompts (num_proc=192): 87%|βββββββββ | 279048/321773 [00:32<00:03, 12539.94 examples/s]
Tokenizing Prompts (num_proc=192): 88%|βββββββββ | 283400/321773 [00:32<00:02, 13538.36 examples/s]
Tokenizing Prompts (num_proc=192): 89%|βββββββββ | 285400/321773 [00:32<00:02, 14031.28 examples/s]
Tokenizing Prompts (num_proc=192): 89%|βββββββββ | 287076/321773 [00:32<00:02, 14469.57 examples/s]
Tokenizing Prompts (num_proc=192): 90%|βββββββββ | 288752/321773 [00:33<00:02, 14466.47 examples/s]
Tokenizing Prompts (num_proc=192)
2: : 90%|βββββββββ | 290752/321773 [00:33<00:02, 11522.66 examples/s]
Tokenizing Prompts (num_proc=192): 91%|ββββββββββ| 294104/321773 [00:33<00:02, 13660.86 examples/s]
Tokenizing Prompts (num_proc=192): 92%|ββββββββββ| 296456/321773 [00:33<00:01, 12702.93 examples/s]
Tokenizing Prompts (num_proc=192): 93%|ββββββββββ| 298132/321773 [00:33<00:02, 11020.78 examples/s]
Tokenizing Prompts (num_proc=192): 93%|ββββββββββ| 299484/321773 [00:34<00:02, 8140.65 examples/s]
Tokenizing Prompts (num_proc=192): 93%|ββββββββββ| 300836/321773 [00:34<00:02, 7014.16 examples/s]
Tokenizing Prompts (num_proc=192): 94%|ββββββββββ| 302188/321773 [00:34<00:03, 5984.59 examples/s]
Tokenizing Prompts (num_proc=192): 94%|ββββββββββ| 303540/321773 [00:35<00:03, 6037.18 examples/s]
Tokenizing Prompts (num_proc=192): 95%|ββββββββββ| 305568/321773 [00:35<0
2: 0:02, 7859.83 examples/s]
Tokenizing Prompts (num_proc=192): 95%|ββββββββββ| 306920/321773 [00:35<00:02, 5864.06 examples/s]
Tokenizing Prompts (num_proc=192): 96%|ββββββββββ| 308272/321773 [00:36<00:03, 4130.62 examples/s]
Tokenizing Prompts (num_proc=192): 96%|ββββββββββ| 309623/321773 [00:36<00:02, 4901.63 examples/s]
Tokenizing Prompts (num_proc=192): 97%|ββββββββββ| 310973/321773 [00:36<00:02, 4353.07 examples/s]
Tokenizing Prompts (num_proc=192): 97%|ββββββββββ| 312323/321773 [00:36<00:01, 5236.88 examples/s]
Tokenizing Prompts (num_proc=192): 97%|ββββββββββ| 313673/321773 [00:37<00:01, 6001.53 examples/s]
Tokenizing Prompts (num_proc=192): 98%|ββββββββββ| 315023/321773 [00:37<00:01, 5721.52 examples/s]
Tokenizing Prompts (num_proc=192): 98%|ββββββββββ| 316373/321773 [00:37<00:01, 5384.63 examples/s]
Tokenizing Prompts (num_proc=192): 99
2: %|ββββββββββ| 317048/321773 [00:37<00:00, 5442.78 examples/s]
Tokenizing Prompts (num_proc=192): 99%|ββββββββββ| 317723/321773 [00:37<00:00, 5129.22 examples/s]
Tokenizing Prompts (num_proc=192): 99%|ββββββββββ| 318398/321773 [00:38<00:00, 4903.01 examples/s]
Tokenizing Prompts (num_proc=192): 100%|ββββββββββ| 321098/321773 [00:38<00:00, 8791.41 examples/s]
Tokenizing Prompts (num_proc=192): 100%|ββββββββββ| 321773/321773 [00:38<00:00, 8276.39 examples/s]
2:
Dropping Long Sequences (>16384) (num_proc=192): 0%| | 0/321773 [00:00<?, ? examples/s]
Dropping Long Sequences (>16384) (num_proc=192): 0%| | 1000/321773 [00:01<09:32, 560.47 examples/s]
Dropping Long Sequences (>16384) (num_proc=192): 3%|β | 11000/321773 [00:01<00:39, 7926.71 examples/s]
Dropping Long Sequences (>16384) (num_proc=192): 7%|β | 23000/321773 [00:01<00:16, 18603.60 examples/s]
Dropping Long Sequences (>16384) (num_proc=192): 10%|β | 32084/321773 [00:02<00:16, 18101.27 examples/s]
Dropping Long Sequences (>16384) (num_proc=192): 12%|ββ | 38140/321773 [00:02<00:14, 19642.37 examples/s]
Dropping Long Sequences (>16384) (num_proc=192): 14%|ββ | 43492/321773 [00:02<00:11, 23312.83 examples/s]
Dropping Long Sequences (>16384) (num_proc=192): 15%|ββ | 48844/321773 [00:02<00:10, 26170.39 examples/s]
Dropping Long Sequences (>16384) (num_proc=192): 17%|ββ | 53872/321773 [00:03<00:10, 26701.03 exampl
2: es/s]
Dropping Long Sequences (>16384) (num_proc=192): 50%|βββββ | 161644/321773 [00:03<00:00, 201063.95 examples/s]
Dropping Long Sequences (>16384) (num_proc=192): 61%|βββββββ | 197136/321773 [00:03<00:00, 206298.85 examples/s]
Dropping Long Sequences (>16384) (num_proc=192): 71%|βββββββ | 227952/321773 [00:03<00:00, 189555.60 examples/s]
Dropping Long Sequences (>16384) (num_proc=192): 79%|ββββββββ | 254500/321773 [00:03<00:00, 187952.77 examples/s]
Dropping Long Sequences (>16384) (num_proc=192): 87%|βββββββββ | 278372/321773 [00:03<00:00, 191215.20 examples/s]
Dropping Long Sequences (>16384) (num_proc=192): 94%|ββββββββββ| 301186/321773 [00:04<00:00, 178456.22 examples/s]
Dropping Long Sequences (>16384) (num_proc=192): 100%|ββββββββββ| 321773/321773 [00:04<00:00, 109467.24 examples/s]
Dropping Long Sequences (>16384) (num_proc=192): 100%|ββββββββββ| 321773/3
2: 21773 [00:04<00:00, 67525.21 examples/s]
2:
Drop Samples with Zero Trainable Tokens (num_proc=192): 0%| | 0/315947 [00:00<?, ? examples/s]
Drop Samples with Zero Trainable Tokens (num_proc=192): 0%| | 1000/315947 [00:01<09:07, 574.79 examples/s]
Drop Samples with Zero Trainable Tokens (num_proc=192): 3%|β | 8000/315947 [00:01<00:52, 5839.95 examples/s]
Drop Samples with Zero Trainable Tokens (num_proc=192): 5%|β | 16000/315947 [00:01<00:23, 12743.90 examples/s]
Drop Samples with Zero Trainable Tokens (num_proc=192): 8%|β | 24292/315947 [00:02<00:14, 20794.25 examples/s]
Drop Samples with Zero Trainable Tokens (num_proc=192): 10%|β | 30522/315947 [00:02<00:11, 24083.01 examples/s]
Drop Samples with Zero Trainable Tokens (num_proc=192): 11%|ββ | 35814/315947 [00:02<00:09, 28141.59 examples/s]
Drop Samples with Zero Trainable Tokens (num_proc=192): 13%|ββ | 41752/315947 [00:02<00:08, 31272.49 examples/s]
Drop Samples with Zero Trainable Tokens (num_proc=192): 15
2: %|ββ | 46690/315947 [00:02<00:07, 34698.34 examples/s]
Drop Samples with Zero Trainable Tokens (num_proc=192): 16%|ββ | 51628/315947 [00:02<00:07, 33735.17 examples/s]
Drop Samples with Zero Trainable Tokens (num_proc=192): 18%|ββ | 56858/315947 [00:02<00:07, 34159.27 examples/s]
Drop Samples with Zero Trainable Tokens (num_proc=192): 19%|ββ | 61150/315947 [00:03<00:07, 34975.46 examples/s]
Drop Samples with Zero Trainable Tokens (num_proc=192): 21%|ββ | 66088/315947 [00:03<00:06, 37509.91 examples/s]
Drop Samples with Zero Trainable Tokens (num_proc=192): 23%|βββ | 72026/315947 [00:03<00:06, 40401.96 examples/s]
Drop Samples with Zero Trainable Tokens (num_proc=192): 24%|βββ | 76610/315947 [00:03<00:05, 41346.15 examples/s]
Drop Samples with Zero Trainable Tokens (num_proc=192): 26%|βββ | 81548/315947 [00:03<00:05, 39889.07 examples/s]
Drop Samples with Zero Trainable Tokens (num_proc=192): 27%|βββ
2: | 86486/315947 [00:03<00:05, 39849.91 examples/s]
Drop Samples with Zero Trainable Tokens (num_proc=192): 29%|βββ | 90778/315947 [00:03<00:05, 39964.42 examples/s]
Drop Samples with Zero Trainable Tokens (num_proc=192): 30%|βββ | 96362/315947 [00:04<00:08, 24697.63 examples/s]
Drop Samples with Zero Trainable Tokens (num_proc=192): 44%|βββββ | 139512/315947 [00:04<00:01, 95467.36 examples/s]
Drop Samples with Zero Trainable Tokens (num_proc=192): 92%|ββββββββββ| 289887/315947 [00:04<00:00, 372991.79 examples/s]
Drop Samples with Zero Trainable Tokens (num_proc=192): 100%|ββββββββββ| 315947/315947 [00:05<00:00, 59605.93 examples/s]
2:
Add position_id column (Sample Packing) (num_proc=192): 0%| | 0/315947 [00:00<?, ? examples/s]
Add position_id column (Sample Packing) (num_proc=192): 0%| | 1000/315947 [00:02<11:28, 457.38 examples/s]
Add position_id column (Sample Packing) (num_proc=192): 6%|β | 18000/315947 [00:02<00:27, 10853.73 examples/s]
Add position_id column (Sample Packing) (num_proc=192): 10%|β | 31000/315947 [00:02<00:13, 20432.30 examples/s]
Add position_id column (Sample Packing) (num_proc=192): 14%|ββ | 44000/315947 [00:02<00:08, 31277.48 examples/s]
Add position_id column (Sample Packing) (num_proc=192): 18%|ββ | 55646/315947 [00:02<00:06, 40172.99 examples/s]
Add position_id column (Sample Packing) (num_proc=192): 21%|ββ | 66584/315947 [00:02<00:05, 43741.25 examples/s]
Add position_id column (Sample Packing) (num_proc=192): 24%|βββ | 75876/315947 [00:03<00:05, 43987.48 examples/s]
Add position_id column (Sample Packing) (num_proc=1
2: 92): 26%|βββ | 83460/315947 [00:03<00:06, 36406.83 examples/s]
Add position_id column (Sample Packing) (num_proc=192): 28%|βββ | 89274/315947 [00:03<00:06, 34098.44 examples/s]
Add position_id column (Sample Packing) (num_proc=192): 44%|βββββ | 140344/315947 [00:03<00:01, 106033.74 examples/s]
Add position_id column (Sample Packing) (num_proc=192): 50%|βββββ | 159450/315947 [00:03<00:01, 117072.05 examples/s]
Add position_id column (Sample Packing) (num_proc=192): 56%|ββββββ | 177618/315947 [00:03<00:01, 112166.72 examples/s]
Add position_id column (Sample Packing) (num_proc=192): 61%|βββββββ | 193556/315947 [00:04<00:01, 115644.44 examples/s]
Add position_id column (Sample Packing) (num_proc=192): 66%|βββββββ | 208494/315947 [00:04<00:00, 115935.54 examples/s]
Add position_id column (Sample Packing) (num_proc=192): 71%|βββββββ | 222951/315947 [00:04<00:00, 118182.98 examples/s]
Add posit
2: ion_id column (Sample Packing) (num_proc=192): 75%|ββββββββ | 237276/315947 [00:04<00:00, 120116.28 examples/s]
Add position_id column (Sample Packing) (num_proc=192): 80%|ββββββββ | 251503/315947 [00:04<00:00, 123948.93 examples/s]
Add position_id column (Sample Packing) (num_proc=192): 85%|βββββββββ | 267246/315947 [00:04<00:00, 131860.70 examples/s]
Add position_id column (Sample Packing) (num_proc=192): 89%|βββββββββ | 282342/315947 [00:04<00:00, 130278.29 examples/s]
Add position_id column (Sample Packing) (num_proc=192): 94%|ββββββββββ| 295952/315947 [00:04<00:00, 112389.92 examples/s]
Add position_id column (Sample Packing) (num_proc=192): 98%|ββββββββββ| 308207/315947 [00:05<00:00, 89401.52 examples/s]
Add position_id column (Sample Packing) (num_proc=192): 100%|ββββββββββ| 315947/315947 [00:05<00:00, 54860.47 examples/s]
2:
Saving the dataset (0/192 shards): 0%| | 0/315947 [00:00<?, ? examples/s]
Saving the dataset (0/192 shards): 1%| | 1646/315947 [00:01<05:27, 958.98 examples/s]
Saving the dataset (1/192 shards): 1%| | 1646/315947 [00:01<05:27, 958.98 examples/s]
Saving the dataset (2/192 shards): 2%|β | 4938/315947 [00:01<05:24, 958.98 examples/s]
Saving the dataset (3/192 shards): 2%|β | 4938/315947 [00:01<05:24, 958.98 examples/s]
Saving the dataset (4/192 shards): 2%|β | 6584/315947 [00:01<05:22, 958.98 examples/s]
Saving the dataset (5/192 shards): 3%|β | 8230/315947 [00:01<05:20, 958.98 examples/s]
Saving the dataset (6/192 shards): 3%|β | 9876/315947 [00:01<05:19, 958.98 examples/s]
Saving the dataset (7/192 shards): 4%|β | 11522/315947 [00:01<05:17, 958.98 examples/s]
Saving the dataset (8/192 shards): 4%|β | 13168/315947 [00:01<05:15, 958.98 examples/s]
Saving the dataset (9/192 shards): 5%|β
2: | 14814/315947 [00:01<05:14, 958.98 examples/s]
Saving the dataset (10/192 shards): 5%|β | 16460/315947 [00:01<05:12, 958.98 examples/s]
Saving the dataset (11/192 shards): 6%|β | 18106/315947 [00:01<05:10, 958.98 examples/s]
Saving the dataset (12/192 shards): 6%|β | 19752/315947 [00:01<05:08, 958.98 examples/s]
Saving the dataset (13/192 shards): 7%|β | 23044/315947 [00:01<05:05, 958.98 examples/s]
Saving the dataset (14/192 shards): 7%|β | 23044/315947 [00:01<05:05, 958.98 examples/s]
Saving the dataset (15/192 shards): 8%|β | 24690/315947 [00:01<05:03, 958.98 examples/s]
Saving the dataset (16/192 shards): 8%|β | 26336/315947 [00:01<05:02, 958.98 examples/s]
Saving the dataset (17/192 shards): 9%|β | 27982/315947 [00:01<05:00, 958.98 examples/s]
Saving the dataset (18/192 shards): 9%|β | 29628/315947 [00:01<04:58, 958.98 examples/s]
Saving the dataset (19/192 shards): 10%|β | 31274/315
2: 947 [00:01<04:56, 958.98 examples/s]
Saving the dataset (20/192 shards): 10%|β | 32920/315947 [00:01<04:55, 958.98 examples/s]
Saving the dataset (21/192 shards): 11%|ββ | 36212/315947 [00:01<04:51, 958.98 examples/s]
Saving the dataset (22/192 shards): 11%|ββ | 36212/315947 [00:01<04:51, 958.98 examples/s]
Saving the dataset (23/192 shards): 12%|ββ | 37858/315947 [00:01<04:49, 958.98 examples/s]
Saving the dataset (24/192 shards): 13%|ββ | 41150/315947 [00:01<04:46, 958.98 examples/s]
Saving the dataset (25/192 shards): 13%|ββ | 41150/315947 [00:01<04:46, 958.98 examples/s]
Saving the dataset (26/192 shards): 14%|ββ | 44442/315947 [00:01<04:43, 958.98 examples/s]
Saving the dataset (27/192 shards): 14%|ββ | 44442/315947 [00:01<04:43, 958.98 examples/s]
Saving the dataset (28/192 shards): 15%|ββ | 46088/315947 [00:01<04:41, 958.98 examples/s]
Saving the dataset (29/192 shards): 15%|ββ | 47734
2: /315947 [00:01<04:39, 958.98 examples/s]
Saving the dataset (30/192 shards): 16%|ββ | 49380/315947 [00:01<04:37, 958.98 examples/s]
Saving the dataset (31/192 shards): 16%|ββ | 51026/315947 [00:01<04:36, 958.98 examples/s]
Saving the dataset (32/192 shards): 17%|ββ | 52672/315947 [00:01<04:34, 958.98 examples/s]
Saving the dataset (33/192 shards): 18%|ββ | 55964/315947 [00:01<04:31, 958.98 examples/s]
Saving the dataset (34/192 shards): 18%|ββ | 55964/315947 [00:01<04:31, 958.98 examples/s]
Saving the dataset (35/192 shards): 18%|ββ | 57610/315947 [00:01<04:29, 958.98 examples/s]
Saving the dataset (36/192 shards): 19%|ββ | 60902/315947 [00:01<04:25, 958.98 examples/s]
Saving the dataset (37/192 shards): 19%|ββ | 60902/315947 [00:01<04:25, 958.98 examples/s]
Saving the dataset (38/192 shards): 20%|ββ | 62548/315947 [00:01<04:24, 958.98 examples/s]
Saving the dataset (39/192 shards): 20%|ββ |
2: 64194/315947 [00:01<04:22, 958.98 examples/s]
Saving the dataset (40/192 shards): 21%|ββ | 65840/315947 [00:01<04:20, 958.98 examples/s]
Saving the dataset (41/192 shards): 22%|βββ | 69132/315947 [00:01<04:17, 958.98 examples/s]
Saving the dataset (42/192 shards): 22%|βββ | 70778/315947 [00:01<04:15, 958.98 examples/s]
Saving the dataset (43/192 shards): 22%|βββ | 70778/315947 [00:01<04:15, 958.98 examples/s]
Saving the dataset (44/192 shards): 23%|βββ | 72424/315947 [00:01<04:13, 958.98 examples/s]
Saving the dataset (45/192 shards): 24%|βββ | 75716/315947 [00:01<04:10, 958.98 examples/s]
Saving the dataset (46/192 shards): 24%|βββ | 75716/315947 [00:01<04:10, 958.98 examples/s]
Saving the dataset (47/192 shards): 24%|βββ | 77362/315947 [00:01<04:08, 958.98 examples/s]
Saving the dataset (48/192 shards): 26%|βββ | 80654/315947 [00:01<04:05, 958.98 examples/s]
Saving the dataset (49/192 shards)
2: : 26%|βββ | 80654/315947 [00:01<04:05, 958.98 examples/s]
Saving the dataset (50/192 shards): 26%|βββ | 82300/315947 [00:01<04:03, 958.98 examples/s]
Saving the dataset (51/192 shards): 27%|βββ | 83946/315947 [00:01<04:01, 958.98 examples/s]
Saving the dataset (52/192 shards): 27%|βββ | 85592/315947 [00:01<04:00, 958.98 examples/s]
Saving the dataset (53/192 shards): 28%|βββ | 87238/315947 [00:01<03:58, 958.98 examples/s]
Saving the dataset (54/192 shards): 28%|βββ | 88884/315947 [00:01<03:56, 958.98 examples/s]
Saving the dataset (55/192 shards): 29%|βββ | 90530/315947 [00:01<03:55, 958.98 examples/s]
Saving the dataset (56/192 shards): 30%|βββ | 93822/315947 [00:01<03:51, 958.98 examples/s]
Saving the dataset (57/192 shards): 30%|βββ | 95468/315947 [00:01<03:49, 958.98 examples/s]
Saving the dataset (58/192 shards): 30%|βββ | 95468/315947 [00:01<03:49, 958.98 examples/s]
Saving t
2: he dataset (59/192 shards): 31%|ββββ | 98760/315947 [00:01<03:46, 958.98 examples/s]
Saving the dataset (60/192 shards): 31%|ββββ | 98760/315947 [00:01<03:46, 958.98 examples/s]
Saving the dataset (61/192 shards): 32%|ββββ | 100406/315947 [00:01<03:44, 958.98 examples/s]
Saving the dataset (62/192 shards): 32%|ββββ | 102052/315947 [00:01<03:43, 958.98 examples/s]
Saving the dataset (63/192 shards): 33%|ββββ | 103698/315947 [00:01<03:41, 958.98 examples/s]
Saving the dataset (64/192 shards): 33%|ββββ | 105344/315947 [00:01<03:39, 958.98 examples/s]
Saving the dataset (65/192 shards): 34%|ββββ | 108636/315947 [00:01<03:36, 958.98 examples/s]
Saving the dataset (66/192 shards): 34%|ββββ | 108636/315947 [00:01<03:36, 958.98 examples/s]
Saving the dataset (67/192 shards): 35%|ββββ | 110282/315947 [00:01<03:34, 958.98 examples/s]
Saving the dataset (68/192 shards): 35%|ββββ | 1
2: 11928/315947 [00:01<03:32, 958.98 examples/s]
Saving the dataset (69/192 shards): 36%|ββββ | 113574/315947 [00:01<03:31, 958.98 examples/s]
Saving the dataset (70/192 shards): 36%|ββββ | 115220/315947 [00:01<03:29, 958.98 examples/s]
Saving the dataset (71/192 shards): 37%|ββββ | 116866/315947 [00:01<03:27, 958.98 examples/s]
Saving the dataset (72/192 shards): 38%|ββββ | 118512/315947 [00:01<03:25, 958.98 examples/s]
Saving the dataset (73/192 shards): 38%|ββββ | 120158/315947 [00:01<03:24, 958.98 examples/s]
Saving the dataset (74/192 shards): 39%|ββββ | 121804/315947 [00:01<03:22, 958.98 examples/s]
Saving the dataset (75/192 shards): 39%|ββββ | 123450/315947 [00:01<03:20, 958.98 examples/s]
Saving the dataset (76/192 shards): 40%|ββββ | 125096/315947 [00:01<03:19, 958.98 examples/s]
Saving the dataset (77/192 shards): 40%|ββββ | 126742/315947 [00:01<03:17, 958.98 examples/s]
Saving
2: the dataset (78/192 shards): 41%|ββββ | 130034/315947 [00:01<03:13, 958.98 examples/s]
Saving the dataset (79/192 shards): 42%|βββββ | 131680/315947 [00:01<03:12, 958.98 examples/s]
Saving the dataset (80/192 shards): 42%|βββββ | 131680/315947 [00:01<03:12, 958.98 examples/s]
Saving the dataset (81/192 shards): 42%|βββββ | 133326/315947 [00:01<03:10, 958.98 examples/s]
Saving the dataset (82/192 shards): 43%|βββββ | 134972/315947 [00:01<03:08, 958.98 examples/s]
Saving the dataset (83/192 shards): 43%|βββββ | 136618/315947 [00:01<03:07, 958.98 examples/s]
Saving the dataset (84/192 shards): 44%|βββββ | 138264/315947 [00:01<03:05, 958.98 examples/s]
Saving the dataset (85/192 shards): 44%|βββββ | 139910/315947 [00:01<03:03, 958.98 examples/s]
Saving the dataset (86/192 shards): 45%|βββββ | 141556/315947 [00:01<03:01, 958.98 examples/s]
Saving the dataset (87/192 shards): 45%|οΏ½
2: οΏ½οΏ½ββββ | 143202/315947 [00:01<03:00, 958.98 examples/s]
Saving the dataset (88/192 shards): 46%|βββββ | 144848/315947 [00:01<02:58, 958.98 examples/s]
Saving the dataset (89/192 shards): 46%|βββββ | 146494/315947 [00:01<02:56, 958.98 examples/s]
Saving the dataset (90/192 shards): 47%|βββββ | 148140/315947 [00:01<02:54, 958.98 examples/s]
Saving the dataset (91/192 shards): 48%|βββββ | 151432/315947 [00:01<02:51, 958.98 examples/s]
Saving the dataset (92/192 shards): 48%|βββββ | 151432/315947 [00:01<02:51, 958.98 examples/s]
Saving the dataset (93/192 shards): 48%|βββββ | 153078/315947 [00:01<02:49, 958.98 examples/s]
Saving the dataset (94/192 shards): 49%|βββββ | 154724/315947 [00:01<02:48, 958.98 examples/s]
Saving the dataset (95/192 shards): 49%|βββββ | 156370/315947 [00:01<02:46, 958.98 examples/s]
Saving the dataset (96/192 shards): 50%|βββββ | 158016/315947
2: [00:01<02:44, 958.98 examples/s]
Saving the dataset (97/192 shards): 51%|βββββ | 159662/315947 [00:01<02:42, 958.98 examples/s]
Saving the dataset (98/192 shards): 51%|βββββ | 161308/315947 [00:01<02:41, 958.98 examples/s]
Saving the dataset (99/192 shards): 52%|ββββββ | 162954/315947 [00:01<02:39, 958.98 examples/s]
Saving the dataset (100/192 shards): 52%|ββββββ | 164600/315947 [00:01<02:37, 958.98 examples/s]
Saving the dataset (101/192 shards): 53%|ββββββ | 166246/315947 [00:01<02:36, 958.98 examples/s]
Saving the dataset (102/192 shards): 53%|ββββββ | 167892/315947 [00:01<02:34, 958.98 examples/s]
Saving the dataset (103/192 shards): 54%|ββββββ | 169538/315947 [00:01<02:32, 958.98 examples/s]
Saving the dataset (104/192 shards): 55%|ββββββ | 172830/315947 [00:01<02:29, 958.98 examples/s]
Saving the dataset (105/192 shards): 55%|ββββββ | 172830/315947 [00:01<02:29,
2: 958.98 examples/s]
Saving the dataset (106/192 shards): 55%|ββββββ | 174476/315947 [00:01<02:27, 958.98 examples/s]
Saving the dataset (107/192 shards): 56%|ββββββ | 176122/315947 [00:01<02:25, 958.98 examples/s]
Saving the dataset (108/192 shards): 57%|ββββββ | 181057/315947 [00:01<02:20, 958.98 examples/s]
Saving the dataset (109/192 shards): 57%|ββββββ | 181057/315947 [00:01<02:20, 958.98 examples/s]
Saving the dataset (110/192 shards): 57%|ββββββ | 181057/315947 [00:01<02:20, 958.98 examples/s]
Saving the dataset (111/192 shards): 58%|ββββββ | 182702/315947 [00:01<02:18, 958.98 examples/s]
Saving the dataset (112/192 shards): 59%|ββββββ | 185992/315947 [00:01<02:15, 958.98 examples/s]
Saving the dataset (113/192 shards): 59%|ββββββ | 185992/315947 [00:01<02:15, 958.98 examples/s]
Saving the dataset (114/192 shards): 59%|ββββββ | 187637/315947 [00:01<02:13, 958.98
2: examples/s]
Saving the dataset (115/192 shards): 60%|ββββββ | 189282/315947 [00:01<02:12, 958.98 examples/s]
Saving the dataset (116/192 shards): 60%|ββββββ | 190927/315947 [00:01<02:10, 958.98 examples/s]
Saving the dataset (117/192 shards): 61%|ββββββ | 192572/315947 [00:01<02:08, 958.98 examples/s]
Saving the dataset (118/192 shards): 61%|βββββββ | 194217/315947 [00:01<02:06, 958.98 examples/s]
Saving the dataset (119/192 shards): 62%|βββββββ | 195862/315947 [00:01<02:05, 958.98 examples/s]
Saving the dataset (120/192 shards): 63%|βββββββ | 197507/315947 [00:01<02:03, 958.98 examples/s]
Saving the dataset (121/192 shards): 63%|βββββββ | 199152/315947 [00:01<02:01, 958.98 examples/s]
Saving the dataset (122/192 shards): 64%|βββββββ | 200797/315947 [00:01<02:00, 958.98 examples/s]
Saving the dataset (123/192 shards): 64%|βββββββ | 202442/315947 [00:01<01:58, 9
2: 58.98 examples/s]
Saving the dataset (124/192 shards): 65%|βββββββ | 205732/315947 [00:01<01:54, 958.98 examples/s]
Saving the dataset (125/192 shards): 66%|βββββββ | 207377/315947 [00:01<01:53, 958.98 examples/s]
Saving the dataset (126/192 shards): 66%|βββββββ | 207377/315947 [00:01<01:53, 958.98 examples/s]
Saving the dataset (127/192 shards): 67%|βββββββ | 210667/315947 [00:01<01:49, 958.98 examples/s]
Saving the dataset (128/192 shards): 67%|βββββββ | 210667/315947 [00:01<01:49, 958.98 examples/s]
Saving the dataset (129/192 shards): 67%|βββββββ | 212312/315947 [00:01<01:48, 958.98 examples/s]
Saving the dataset (130/192 shards): 68%|βββββββ | 213957/315947 [00:01<01:46, 958.98 examples/s]
Saving the dataset (131/192 shards): 69%|βββββββ | 217247/315947 [00:01<01:42, 958.98 examples/s]
Saving the dataset (132/192 shards): 69%|βββββββ | 217247/315947 [00:
2: 01<01:42, 958.98 examples/s]
Saving the dataset (133/192 shards): 69%|βββββββ | 218892/315947 [00:01<01:41, 958.98 examples/s]
Saving the dataset (134/192 shards): 70%|βββββββ | 220537/315947 [00:01<01:39, 958.98 examples/s]
Saving the dataset (135/192 shards): 70%|βββββββ | 222182/315947 [00:01<01:37, 958.98 examples/s]
Saving the dataset (136/192 shards): 71%|βββββββ | 223827/315947 [00:01<01:36, 958.98 examples/s]
Saving the dataset (137/192 shards): 71%|ββββββββ | 225472/315947 [00:01<01:34, 958.98 examples/s]
Saving the dataset (138/192 shards): 72%|ββββββββ | 227117/315947 [00:01<01:32, 958.98 examples/s]
Saving the dataset (139/192 shards): 72%|ββββββββ | 228762/315947 [00:01<01:30, 958.98 examples/s]
Saving the dataset (140/192 shards): 73%|ββββββββ | 230407/315947 [00:01<01:29, 958.98 examples/s]
Saving the dataset (141/192 shards): 73%|ββββββββ
2: | 232052/315947 [00:01<01:27, 958.98 examples/s]
Saving the dataset (142/192 shards): 74%|ββββββββ | 233697/315947 [00:01<01:25, 958.98 examples/s]
Saving the dataset (143/192 shards): 74%|ββββββββ | 235342/315947 [00:01<01:24, 958.98 examples/s]
Saving the dataset (144/192 shards): 75%|ββββββββ | 236987/315947 [00:01<01:22, 958.98 examples/s]
Saving the dataset (145/192 shards): 76%|ββββββββ | 238632/315947 [00:01<01:20, 958.98 examples/s]
Saving the dataset (146/192 shards): 76%|ββββββββ | 240277/315947 [00:01<01:18, 958.98 examples/s]
Saving the dataset (147/192 shards): 77%|ββββββββ | 243567/315947 [00:01<01:15, 958.98 examples/s]
Saving the dataset (148/192 shards): 77%|ββββββββ | 243567/315947 [00:01<01:15, 958.98 examples/s]
Saving the dataset (149/192 shards): 78%|ββββββββ | 245212/315947 [00:01<01:13, 958.98 examples/s]
Saving the dataset (150/192 shards):
2: 78%|ββββββββ | 246857/315947 [00:01<01:12, 958.98 examples/s]
Saving the dataset (151/192 shards): 79%|ββββββββ | 248502/315947 [00:01<01:10, 958.98 examples/s]
Saving the dataset (152/192 shards): 80%|ββββββββ | 251792/315947 [00:01<01:06, 958.98 examples/s]
Saving the dataset (153/192 shards): 80%|ββββββββ | 251792/315947 [00:01<01:06, 958.98 examples/s]
Saving the dataset (154/192 shards): 80%|ββββββββ | 253437/315947 [00:01<01:05, 958.98 examples/s]
Saving the dataset (155/192 shards): 81%|ββββββββ | 255082/315947 [00:01<01:03, 958.98 examples/s]
Saving the dataset (156/192 shards): 82%|βββββββββ | 258372/315947 [00:01<01:00, 958.98 examples/s]
Saving the dataset (157/192 shards): 82%|βββββββββ | 258372/315947 [00:01<01:00, 958.98 examples/s]
Saving the dataset (158/192 shards): 82%|βββββββββ | 260017/315947 [00:01<00:58, 958.98 examples/s]
Sav
2: ing the dataset (159/192 shards): 83%|βββββββββ | 261662/315947 [00:01<00:56, 958.98 examples/s]
Saving the dataset (160/192 shards): 83%|βββββββββ | 263307/315947 [00:01<00:54, 958.98 examples/s]
Saving the dataset (161/192 shards): 84%|βββββββββ | 264952/315947 [00:01<00:53, 958.98 examples/s]
Saving the dataset (162/192 shards): 84%|βββββββββ | 266597/315947 [00:01<00:51, 958.98 examples/s]
Saving the dataset (163/192 shards): 85%|βββββββββ | 268242/315947 [00:01<00:49, 958.98 examples/s]
Saving the dataset (164/192 shards): 85%|βββββββββ | 269887/315947 [00:01<00:48, 958.98 examples/s]
Saving the dataset (165/192 shards): 86%|βββββββββ | 273177/315947 [00:01<00:44, 958.98 examples/s]
Saving the dataset (166/192 shards): 86%|βββββββββ | 273177/315947 [00:01<00:44, 958.98 examples/s]
Saving the dataset (167/192 shards): 87%|βββββββββ | 274
2: 822/315947 [00:01<00:42, 958.98 examples/s]
Saving the dataset (168/192 shards): 88%|βββββββββ | 276467/315947 [00:01<00:41, 958.98 examples/s]
Saving the dataset (169/192 shards): 88%|βββββββββ | 278112/315947 [00:01<00:39, 958.98 examples/s]
Saving the dataset (170/192 shards): 89%|βββββββββ | 279757/315947 [00:01<00:37, 958.98 examples/s]
Saving the dataset (171/192 shards): 89%|βββββββββ | 281402/315947 [00:01<00:36, 958.98 examples/s]
Saving the dataset (172/192 shards): 90%|βββββββββ | 283047/315947 [00:01<00:34, 958.98 examples/s]
Saving the dataset (173/192 shards): 90%|βββββββββ | 284692/315947 [00:01<00:32, 958.98 examples/s]
Saving the dataset (174/192 shards): 91%|βββββββββ | 286337/315947 [00:01<00:30, 958.98 examples/s]
Saving the dataset (175/192 shards): 92%|ββββββββββ| 289627/315947 [00:01<00:27, 958.98 examples/s]
Saving the dataset (176/19
2: 2 shards): 92%|ββββββββββ| 289627/315947 [00:01<00:27, 958.98 examples/s]
Saving the dataset (177/192 shards): 93%|ββββββββββ| 292917/315947 [00:01<00:24, 958.98 examples/s]
Saving the dataset (178/192 shards): 93%|ββββββββββ| 292917/315947 [00:01<00:24, 958.98 examples/s]
Saving the dataset (179/192 shards): 93%|ββββββββββ| 294562/315947 [00:01<00:22, 958.98 examples/s]
Saving the dataset (180/192 shards): 94%|ββββββββββ| 296207/315947 [00:01<00:20, 958.98 examples/s]
Saving the dataset (181/192 shards): 94%|ββββββββββ| 297852/315947 [00:01<00:18, 958.98 examples/s]
Saving the dataset (182/192 shards): 95%|ββββββββββ| 301142/315947 [00:01<00:15, 958.98 examples/s]
Saving the dataset (183/192 shards): 95%|ββββββββββ| 301142/315947 [00:01<00:15, 958.98 examples/s]
Saving the dataset (184/192 shards): 96%|ββββββββββ| 304432/3
2: 15947 [00:01<00:12, 958.98 examples/s]
Saving the dataset (185/192 shards): 96%|ββββββββββ| 304432/315947 [00:01<00:12, 958.98 examples/s]
Saving the dataset (186/192 shards): 97%|ββββββββββ| 306077/315947 [00:01<00:10, 958.98 examples/s]
Saving the dataset (187/192 shards): 97%|ββββββββββ| 307722/315947 [00:01<00:08, 958.98 examples/s]
Saving the dataset (188/192 shards): 98%|ββββββββββ| 309367/315947 [00:01<00:06, 958.98 examples/s]
Saving the dataset (189/192 shards): 98%|ββββββββββ| 311012/315947 [00:01<00:05, 958.98 examples/s]
Saving the dataset (190/192 shards): 99%|ββββββββββ| 312657/315947 [00:01<00:03, 958.98 examples/s]
Saving the dataset (191/192 shards): 99%|ββββββββββ| 314302/315947 [00:01<00:01, 958.98 examples/s]
Saving the dataset (192/192 shards): 100%|ββββββββββ| 315947/315947 [00:01<00:00, 958.98 examples/s]
Saving the datase
2: t (192/192 shards): 100%|ββββββββββ| 315947/315947 [00:01<00:00, 169075.72 examples/s]
0: [2025-09-02 18:43:32,409] [INFO] [axolotl.utils.data.shared.load_preprocessed_dataset:472] [PID:1478787] [RANK:0] Loading prepared dataset from disk at /lustre/fsn1/projects/rech/dgo/udv55np/dataset_math/Qwen3-235B-A22B/0/b1771c7e92212c2fb90b5a0bac7a225c...[39m
0: [2025-09-02 18:45:12,633] [INFO] [axolotl.utils.samplers.multipack.calc_min_len:436] [PID:1478787] [RANK:0] gather_len_batches: [25939, 25939, 25938, 25939, 25939, 25938, 25940, 25938, 25939, 25939, 25939, 25937, 25939, 25940, 25939, 25938][39m
0: [2025-09-02 18:45:12,660] [INFO] [axolotl.utils.trainer.calc_sample_packing_eff_est:495] [PID:1478787] [RANK:0] sample_packing_eff_est across ranks: [0.9965550303459167, 0.9965550303459167, 0.9964781999588013, 0.9965550303459167, 0.9965166449546814, 0.9965934753417969, 0.9965550303459167, 0.9965166449546814, 0.9965934753417969, 0.9965550303459167, 0.9965934753417969, 0.9965934753417969, 0.9965550303459167, 0.9965550303459167, 0.9965934753417969, 0.9965934753417969][39m
0: [2025-09-02 18:45:12,665] [INFO] [axolotl.utils.data.sft._prepare_standard_dataset:127] [PID:1478787] [RANK:0] Maximum number of steps set at 1621[39m
0: [2025-09-02 18:45:12,990] [INFO] [axolotl.monkeypatch.transformers.trainer_loss_calc.patch_evaluation_loop:110] [PID:1478787] [RANK:0] Patched Trainer.evaluation_loop with nanmean loss calculation[39m
0: [2025-09-02 18:45:12,991] [INFO] [axolotl.monkeypatch.transformers.trainer_loss_calc.patch_maybe_log_save_evaluate:164] [PID:1478787] [RANK:0] Patched Trainer._maybe_log_save_evaluate with nanmean loss calculation[39m
0:
Loading checkpoint shards: 0%| | 0/2 [00:00<?, ?it/s]
Loading checkpoint shards: 0%| | 0/2 [00:00<?, ?it/s]
Loading checkpoint shards: 0%| | 0/2 [00:00<?, ?it/s]
Loading checkpoint shards: 0%| | 0/2 [00:00<?, ?it/s]
Loading checkpoint shards: 50%|βββββ | 1/2 [00:14<00:14, 14.97s/it]
Loading checkpoint shards: 50%|βββββ | 1/2 [00:14<00:14, 14.97s/it]
Loading checkpoint shards: 50%|βββββ | 1/2 [00:14<00:14, 14.97s/it]
Loading checkpoint shards: 50%|βββββ | 1/2 [00:15<00:15, 15.06s/it]
Loading checkpoint shards: 100%|ββββββββββ| 2/2 [00:17<00:00, 7.51s/it]
Loading checkpoint shards: 100%|ββββββββββ| 2/2 [00:17<00:00, 8.63s/it]
Loading checkpoint shards: 100%|ββββββββββ| 2/2 [00:17<00:00, 7.51s/it]
0:
Loading checkpoint shards: 100%|ββββββββββ| 2/2 [00:17<00:00, 7.51s/it]
Loading checkpoint shards: 100%|ββββββββββ| 2/2 [00:17<00:00, 8.63s/it]
3:
Loading checkpoint shards: 0%| | 0/2 [00:00<?, ?it/s]
Loading checkpoint shards: 0%| | 0/2 [00:00<?, ?it/s]
Loading checkpoint shards: 0%| | 0/2 [00:00<?, ?it/s]
Loading checkpoint shards: 0%| | 0/2 [00:00<?, ?it/s]
Loading checkpoint shards: 50%|βββββ | 1/2 [00:14<00:14, 14.99s/it]
Loading checkpoint shards: 50%|βββββ | 1/2 [00:14<00:14, 14.99s/it]
Loading checkpoint shards: 50%|βββββ | 1/2 [00:14<00:14, 14.98s/it]
Loading checkpoint shards: 50%|βββββ | 1/2 [00:14<00:14, 14.99s/it]
Loading checkpoint shards: 100%|ββββββββββ| 2/2 [00:17<00:00, 7.52s/it]
Loading checkpoint shards: 100%|ββββββββββ| 2/2 [00:17<00:00, 7.52s/it]
Loading checkpoint shards: 100%|ββββββββββ| 2/2 [00:17<00:00, 7.52s/it]
Loading checkpoint shards: 100%|ββββββββββ| 2/2 [00:17<00:00, 8.64s/it]
1:
Loading checkpoint shards: 0%| | 0/2 [00:00<?, ?it/s]
Loading checkpoint shards: 0%| | 0/2 [00:00<?, ?it/s]
Loading checkpoint shards: 0%| | 0/2 [00:00<?, ?it/s]
Loading checkpoint shards: 0%| | 0/2 [00:00<?, ?it/s]
Loading checkpoint shards: 50%|βββββ | 1/2 [00:14<00:14, 14.97s/it]
Loading checkpoint shards: 50%|βββββ | 1/2 [00:14<00:14, 14.97s/it]
Loading checkpoint shards: 50%|βββββ | 1/2 [00:14<00:14, 14.97s/it]
Loading checkpoint shards: 50%|βββββ | 1/2 [00:14<00:14, 14.98s/it]
Loading checkpoint shards: 100%|ββββββββββ| 2/2 [00:17<00:00, 7.51s/it]
Loading checkpoint shards: 100%|ββββββββββ| 2/2 [00:17<00:00, 7.51s/it]
Loading checkpoint shards: 100%|ββββββββββ| 2/2 [00:17<00:00, 7.51s/it]
Loading checkpoint shards: 100%|ββββββββββ| 2/2 [00:17<00:00, 8.63s/it]
2:
Loading checkpoint shards: 0%| | 0/2 [00:00<?, ?it/s]
Loading checkpoint shards: 0%| | 0/2 [00:00<?, ?it/s]
Loading checkpoint shards: 0%| | 0/2 [00:00<?, ?it/s]
Loading checkpoint shards: 0%| | 0/2 [00:00<?, ?it/s]
Loading checkpoint shards: 50%|βββββ | 1/2 [00:15<00:15, 15.02s/it]
Loading checkpoint shards: 50%|βββββ | 1/2 [00:15<00:15, 15.02s/it]
Loading checkpoint shards: 50%|βββββ | 1/2 [00:15<00:15, 15.01s/it]
Loading checkpoint shards: 50%|βββββ | 1/2 [00:15<00:15, 15.01s/it]
Loading checkpoint shards: 100%|ββββββββββ| 2/2 [00:17<00:00, 7.53s/it]
Loading checkpoint shards: 100%|ββββββββββ| 2/2 [00:17<00:00, 8.65s/it]
0:
Loading checkpoint shards: 100%|ββββββββββ| 2/2 [00:17<00:00, 8.63s/it]
3:
Loading checkpoint shards: 100%|ββββββββββ| 2/2 [00:17<00:00, 8.64s/it]
1:
Loading checkpoint shards: 100%|ββββββββββ| 2/2 [00:17<00:00, 8.63s/it]
1:
Loading checkpoint shards: 100%|ββββββββββ| 2/2 [00:17<00:00, 8.63s/it]
2:
Loading checkpoint shards: 100%|ββββββββββ| 2/2 [00:17<00:00, 7.53s/it]
Loading checkpoint shards: 100%|ββββββββββ| 2/2 [00:17<00:00, 7.53s/it]
Loading checkpoint shards: 100%|ββββββββββ| 2/2 [00:17<00:00, 8.65s/it]
3:
Loading checkpoint shards: 100%|ββββββββββ| 2/2 [00:17<00:00, 8.64s/it]
2:
Loading checkpoint shards: 100%|ββββββββββ| 2/2 [00:17<00:00, 8.65s/it]
1:
Loading checkpoint shards: 100%|ββββββββββ| 2/2 [00:17<00:00, 7.51s/it]
Loading checkpoint shards: 100%|ββββββββββ| 2/2 [00:17<00:00, 8.63s/it]
3:
Loading checkpoint shards: 100%|ββββββββββ| 2/2 [00:17<00:00, 7.51s/it]
Loading checkpoint shards: 100%|ββββββββββ| 2/2 [00:17<00:00, 8.63s/it]
2:
Loading checkpoint shards: 100%|ββββββββββ| 2/2 [00:17<00:00, 7.53s/it]
Loading checkpoint shards: 100%|ββββββββββ| 2/2 [00:17<00:00, 8.65s/it]
0:
Loading checkpoint shards: 100%|ββββββββββ| 2/2 [00:17<00:00, 7.55s/it]
Loading checkpoint shards: 100%|ββββββββββ| 2/2 [00:17<00:00, 8.67s/it]
0: [2025-09-02 18:45:30,643] [INFO] [axolotl.loaders.model._configure_embedding_dtypes:345] [PID:1478787] [RANK:0] Converting modules to torch.bfloat16[39m
0: [2025-09-02 18:45:39,599] [INFO] [axolotl.train.save_initial_configs:416] [PID:1478787] [RANK:0] Pre-saving tokenizer to /lustre/fswork/projects/rech/dgo/udv55np/math/Qwen3-235B-A22B/Qwen2.5-3B_ift/0...[39m
0: [2025-09-02 18:45:39,769] [INFO] [axolotl.train.save_initial_configs:419] [PID:1478787] [RANK:0] Pre-saving model config to /lustre/fswork/projects/rech/dgo/udv55np/math/Qwen3-235B-A22B/Qwen2.5-3B_ift/0...[39m
0: [2025-09-02 18:45:39,777] [INFO] [axolotl.train.execute_training:203] [PID:1478787] [RANK:0] Starting trainer...[39m
0: [2025-09-02 18:47:46,046] [INFO] [axolotl.utils.samplers.multipack.calc_min_len:436] [PID:1478787] [RANK:0] gather_len_batches: [25939, 25939, 25939, 25939, 25939, 25939, 25939, 25939, 25939, 25939, 25939, 25939, 25939, 25939, 25939, 25939][39m
0: Parameter Offload - Persistent parameters statistics: param_count = 181, numel = 241664
0: {'loss': 0.293, 'grad_norm': 0.3438611558851885, 'learning_rate': 7.7e-07, 'memory/max_mem_active(gib)': 35.16, 'memory/max_mem_allocated(gib)': 35.16, 'memory/device_mem_reserved(gib)': 41.77, 'epoch': 0.01}
0:
0%| | 0/1621 [00:00<?, ?it/s]
0%| | 1/1621 [03:16<88:16:18, 196.16s/it]
0%| | 2/1621 [03:18<37:02:55, 82.38s/it]
0%| | 3/1621 [03:20<20:24:21, 45.40s/it]
0%| | 4/1621 [03:21<12:35:47, 28.04s/it]
0%| | 5/1621 [03:23<8:16:55, 18.45s/it]
0%| | 6/1621 [03:24<5:40:48, 12.66s/it]
0%| | 7/1621 [03:26<4:01:45, 8.99s/it]
0%| | 8/1621 [03:27<2:58:05, 6.62s/it]
1%| | 9/1621 [03:29<2:14:25, 5.00s/it]
1%| | 10/1621 [03:30<1:45:26, 3.93s/it]
1%| | 10/1621 [03:30<1:45:26, 3.93s/it]
1%| | 11/1621 [03:31<1:25:08, 3.17s/it]
1%| | 12/1621 [03:33<1:10:52, 2.64s/it]
1%| | 13/1621 [03:34<1:01:40, 2.30s/it]
1%| | 14/1621 [03:36<54:29, 2.03s/it]
1%| | 15/1621 [03:37<49:26, 1.85s/it]
1%| | 16/1621 [03:39<46:23, 1.73s/it]
1%| | 17/1621 [03:40<43:46, 1.64s/it]
0: {'loss': 0.2902, 'grad_norm': 0.32969781245683594, 'learning_rate': 1.0700000000000001e-06, 'memory/max_mem_active(gib)': 35.16, 'memory/max_mem_allocated(gib)': 35.16, 'memory/device_mem_reserved(gib)': 41.77, 'epoch': 0.01}
0: {'loss': 0.2916, 'grad_norm': 0.2957381320197924, 'learning_rate': 1.3700000000000002e-06, 'memory/max_mem_active(gib)': 35.36, 'memory/max_mem_allocated(gib)': 35.16, 'memory/device_mem_reserved(gib)': 42.35, 'epoch': 0.02}
0: 1%| | 18/1621 [03:42<42:43, 1.60s/it]
1%| | 19/1621 [03:43<42:48, 1.60s/it]
1%| | 20/1621 [03:45<41:24, 1.55s/it]
1%| | 20/1621 [03:45<41:24, 1.55s/it]
1%|β | 21/1621 [03:47<43:38, 1.64s/it]
1%|β | 22/1621 [03:48<41:53, 1.57s/it]
1%|β | 23/1621 [03:49<40:35, 1.52s/it]
1%|β | 24/1621 [03:51<39:54, 1.50s/it]
2%|β | 25/1621 [03:52<39:20, 1.48s/it]
2%|β | 26/1621 [03:54<38:55, 1.46s/it]
2%|β | 27/1621 [03:55<38:35, 1.45s/it]
2%|β | 28/1621 [03:57<40:41, 1.53s/it]
2%|β | 29/1621 [03:58<39:43, 1.50s/it]
2%|β | 30/1621 [04:00<40:17, 1.52s/it]
2%|β | 30/1621 [04:00<40:17, 1.52s/it]
2%|β | 31/1621 [04:01<40:17, 1.52s/it]
2%|β | 32/1621 [04:03<39:46, 1.50s/it]
2%|β | 33/1621 [04:04<39:13, 1.48s
0: {'loss': 0.2879, 'grad_norm': 0.7741302157876179, 'learning_rate': 1.6700000000000003e-06, 'memory/max_mem_active(gib)': 35.36, 'memory/max_mem_allocated(gib)': 35.16, 'memory/device_mem_reserved(gib)': 42.35, 'epoch': 0.02}
0: /it]
2%|β | 34/1621 [04:06<39:51, 1.51s/it]
2%|β | 35/1621 [04:07<39:09, 1.48s/it]
2%|β | 36/1621 [04:09<38:39, 1.46s/it]
2%|β | 37/1621 [04:10<38:28, 1.46s/it]
2%|β | 38/1621 [04:12<38:11, 1.45s/it]
2%|β | 39/1621 [04:13<38:00, 1.44s/it]
2%|β | 40/1621 [04:14<38:20, 1.45s/it]
2%|β | 40/1621 [04:14<38:20, 1.45s/it]
3%|β | 41/1621 [04:16<38:05, 1.45s/it]
3%|β | 42/1621 [04:17<38:07, 1.45s/it]
3%|β | 43/1621 [04:19<38:02, 1.45s/it]
3%|β | 44/1621 [04:20<38:23, 1.46s/it]
3%|β | 45/1621 [04:22<40:59, 1.56s/it]
3%|β | 46/1621 [04:24<40:34, 1.55s/it]
3%|β | 47/1621 [04:25<40:17, 1.54s/it]
3%|β | 48/1621 [04:26<39:20, 1.50s/it]
3%|β | 49/1621 [04:28<38:39, 1.48s/it]
3%|β | 50/1621 [04:29<38:14, 1.46s/it]
0: {'loss': 0.2893, 'grad_norm': 0.30490400114093213, 'learning_rate': 1.97e-06, 'memory/max_mem_active(gib)': 35.36, 'memory/max_mem_allocated(gib)': 35.16, 'memory/device_mem_reserved(gib)': 42.35, 'epoch': 0.03}
0: {'loss': 0.2882, 'grad_norm': 0.299265789503041, 'learning_rate': 2.27e-06, 'memory/max_mem_active(gib)': 35.36, 'memory/max_mem_allocated(gib)': 35.16, 'memory/device_mem_reserved(gib)': 42.35, 'epoch': 0.04}
0:
3%|β | 50/1621 [04:29<38:14, 1.46s/it]
3%|β | 51/1621 [04:31<37:56, 1.45s/it]
3%|β | 52/1621 [04:32<37:40, 1.44s/it]
3%|β | 53/1621 [04:34<40:10, 1.54s/it]
3%|β | 54/1621 [04:35<39:27, 1.51s/it]
3%|β | 55/1621 [04:37<38:36, 1.48s/it]
3%|β | 56/1621 [04:38<38:04, 1.46s/it]
4%|β | 57/1621 [04:40<37:45, 1.45s/it]
4%|β | 58/1621 [04:41<37:26, 1.44s/it]
4%|β | 59/1621 [04:42<37:16, 1.43s/it]
4%|β | 60/1621 [04:44<37:05, 1.43s/it]
4%|β | 60/1621 [04:44<37:05, 1.43s/it]
4%|β | 61/1621 [04:45<37:02, 1.42s/it]
4%|β | 62/1621 [04:47<36:56, 1.42s/it]
4%|β | 63/1621 [04:48<36:46, 1.42s/it]
4%|β | 64/1621 [04:50<36:50, 1.42s/it]
4%|β | 65/1621 [04:51<36:52, 1.42s/it]
4%|β | 66/1621 [04:52<36:47, 1.42s/it]
4%|β |
0: {'loss': 0.2852, 'grad_norm': 0.3075656415183605, 'learning_rate': 2.5700000000000004e-06, 'memory/max_mem_active(gib)': 35.36, 'memory/max_mem_allocated(gib)': 35.16, 'memory/device_mem_reserved(gib)': 42.35, 'epoch': 0.04}
0: {'loss': 0.2809, 'grad_norm': 0.2915611347823235, 'learning_rate': 2.87e-06, 'memory/max_mem_active(gib)': 35.36, 'memory/max_mem_allocated(gib)': 35.16, 'memory/device_mem_reserved(gib)': 42.35, 'epoch': 0.05}
0: 67/1621 [04:54<36:53, 1.42s/it]
4%|β | 68/1621 [04:55<36:52, 1.42s/it]
4%|β | 69/1621 [04:57<36:55, 1.43s/it]
4%|β | 70/1621 [04:58<37:38, 1.46s/it]
4%|β | 70/1621 [04:58<37:38, 1.46s/it]
4%|β | 71/1621 [05:00<37:59, 1.47s/it]
4%|β | 72/1621 [05:01<37:34, 1.46s/it]
5%|β | 73/1621 [05:03<37:12, 1.44s/it]
5%|β | 74/1621 [05:04<37:25, 1.45s/it]
5%|β | 75/1621 [05:05<37:39, 1.46s/it]
5%|β | 76/1621 [05:07<37:20, 1.45s/it]
5%|β | 77/1621 [05:08<38:22, 1.49s/it]
5%|β | 78/1621 [05:10<37:41, 1.47s/it]
5%|β | 79/1621 [05:11<37:28, 1.46s/it]
5%|β | 80/1621 [05:13<37:56, 1.48s/it]
5%|β | 80/1621 [05:13<37:56, 1.48s/it]
5%|β | 81/1621 [05:14<37:23, 1.46s/it]
5%|β | 82/1621 [05:16<37:36, 1.47s/it]
5%
0: {'loss': 0.2866, 'grad_norm': 0.3188606948350198, 'learning_rate': 3.17e-06, 'memory/max_mem_active(gib)': 35.36, 'memory/max_mem_allocated(gib)': 35.16, 'memory/device_mem_reserved(gib)': 42.35, 'epoch': 0.06}
0: |β | 83/1621 [05:17<37:10, 1.45s/it]
5%|β | 84/1621 [05:19<36:55, 1.44s/it]
5%|β | 85/1621 [05:20<36:49, 1.44s/it]
5%|β | 86/1621 [05:21<36:38, 1.43s/it]
5%|β | 87/1621 [05:23<36:44, 1.44s/it]
5%|β | 88/1621 [05:24<36:29, 1.43s/it]
5%|β | 89/1621 [05:26<36:19, 1.42s/it]
6%|β | 90/1621 [05:27<36:49, 1.44s/it]
6%|β | 90/1621 [05:27<36:49, 1.44s/it]
6%|β | 91/1621 [05:29<36:33, 1.43s/it]
6%|β | 92/1621 [05:30<36:45, 1.44s/it]
6%|β | 93/1621 [05:32<37:16, 1.46s/it]
6%|β | 94/1621 [05:33<36:47, 1.45s/it]
6%|β | 95/1621 [05:34<36:28, 1.43s/it]
6%|β | 96/1621 [05:36<36:20, 1.43s/it]
6%|β | 97/1621 [05:38<38:52, 1.53s/it]
6%|β | 98/1621 [05:39<38:14, 1.51s/it]
6%|β | 99/1621 [05:40<37:28, 1.48s/it]
6%|β | 100/1621 [05:42<36:55,
0: {'loss': 0.2892, 'grad_norm': 0.3196600090952391, 'learning_rate': 3.4700000000000007e-06, 'memory/max_mem_active(gib)': 35.36, 'memory/max_mem_allocated(gib)': 35.16, 'memory/device_mem_reserved(gib)': 42.35, 'epoch': 0.06}
0: {'loss': 0.2886, 'grad_norm': 0.3064739256293986, 'learning_rate': 3.7700000000000003e-06, 'memory/max_mem_active(gib)': 35.36, 'memory/max_mem_allocated(gib)': 35.16, 'memory/device_mem_reserved(gib)': 42.35, 'epoch': 0.07}
0: 1.46s/it]
6%|β | 100/1621 [05:42<36:55, 1.46s/it]
6%|β | 101/1621 [05:43<37:06, 1.46s/it]
6%|β | 102/1621 [05:45<36:37, 1.45s/it]
6%|β | 103/1621 [05:46<36:27, 1.44s/it]
6%|β | 104/1621 [05:48<36:37, 1.45s/it]
6%|β | 105/1621 [05:49<36:16, 1.44s/it]
7%|β | 106/1621 [05:50<36:26, 1.44s/it]
7%|β | 107/1621 [05:52<36:24, 1.44s/it]
7%|β | 108/1621 [05:53<36:24, 1.44s/it]
7%|β | 109/1621 [05:55<36:33, 1.45s/it]
7%|β | 110/1621 [05:56<36:19, 1.44s/it]
7%|β | 110/1621 [05:56<36:19, 1.44s/it]
7%|β | 111/1621 [05:58<36:14, 1.44s/it]
7%|β | 112/1621 [05:59<35:59, 1.43s/it]
7%|β | 113/1621 [06:01<36:09, 1.44s/it]
7%|β | 114/1621 [06:02<36:03, 1.44s/it]
7%|β | 115/1621 [06:03<35:50, 1.43s/it]
7%|οΏ½
0: {'loss': 0.2892, 'grad_norm': 0.4347169189893856, 'learning_rate': 4.07e-06, 'memory/max_mem_active(gib)': 35.36, 'memory/max_mem_allocated(gib)': 35.16, 'memory/device_mem_reserved(gib)': 42.35, 'epoch': 0.07}
0: {'loss': 0.2864, 'grad_norm': 0.2939409486111771, 'learning_rate': 4.3700000000000005e-06, 'memory/max_mem_active(gib)': 35.36, 'memory/max_mem_allocated(gib)': 35.16, 'memory/device_mem_reserved(gib)': 42.35, 'epoch': 0.08}
0: οΏ½ | 116/1621 [06:05<35:58, 1.43s/it]
7%|β | 117/1621 [06:06<35:45, 1.43s/it]
7%|β | 118/1621 [06:08<37:32, 1.50s/it]
7%|β | 119/1621 [06:09<36:53, 1.47s/it]
7%|β | 120/1621 [06:11<39:52, 1.59s/it]
7%|β | 120/1621 [06:11<39:52, 1.59s/it]
7%|β | 121/1621 [06:13<38:33, 1.54s/it]
8%|β | 122/1621 [06:14<38:12, 1.53s/it]
8%|β | 123/1621 [06:16<37:29, 1.50s/it]
8%|β | 124/1621 [06:17<38:19, 1.54s/it]
8%|β | 125/1621 [06:19<37:40, 1.51s/it]
8%|β | 126/1621 [06:20<36:54, 1.48s/it]
8%|β | 127/1621 [06:22<37:21, 1.50s/it]
8%|β | 128/1621 [06:23<36:45, 1.48s/it]
8%|β | 129/1621 [06:24<36:20, 1.46s/it]
8%|β | 130/1621 [06:26<36:32, 1.47s/it]
8%|β | 130/1621 [06:26<36:32, 1.47s/it]
8%|β | 131/162
0: {'loss': 0.281, 'grad_norm': 0.3037682241274547, 'learning_rate': 4.67e-06, 'memory/max_mem_active(gib)': 35.36, 'memory/max_mem_allocated(gib)': 35.16, 'memory/device_mem_reserved(gib)': 42.35, 'epoch': 0.09}
0: 1 [06:28<38:40, 1.56s/it]
8%|β | 132/1621 [06:29<38:01, 1.53s/it]
8%|β | 133/1621 [06:31<37:03, 1.49s/it]
8%|β | 134/1621 [06:32<36:20, 1.47s/it]
8%|β | 135/1621 [06:33<35:58, 1.45s/it]
8%|β | 136/1621 [06:35<35:44, 1.44s/it]
8%|β | 137/1621 [06:36<35:36, 1.44s/it]
9%|β | 138/1621 [06:38<35:34, 1.44s/it]
9%|β | 139/1621 [06:39<35:27, 1.44s/it]
9%|β | 140/1621 [06:41<36:24, 1.47s/it]
9%|β | 140/1621 [06:41<36:24, 1.47s/it]
9%|β | 141/1621 [06:42<36:13, 1.47s/it]
9%|β | 142/1621 [06:44<35:42, 1.45s/it]
9%|β | 143/1621 [06:45<35:25, 1.44s/it]
9%|β | 144/1621 [06:46<35:41, 1.45s/it]
9%|β | 145/1621 [06:48<35:31, 1.44s/it]
9%|β | 146/1621 [06:49<35:13, 1.43s/it]
9%|β | 147/1621 [06:51<35:00, 1.43s/it]
9%|β | 148/1621 [06:52<34:49, 1
0: {'loss': 0.2872, 'grad_norm': 0.31896588075238047, 'learning_rate': 4.970000000000001e-06, 'memory/max_mem_active(gib)': 35.36, 'memory/max_mem_allocated(gib)': 35.16, 'memory/device_mem_reserved(gib)': 42.35, 'epoch': 0.09}
0: {'loss': 0.2745, 'grad_norm': 0.3079236544412073, 'learning_rate': 5e-06, 'memory/max_mem_active(gib)': 35.36, 'memory/max_mem_allocated(gib)': 35.16, 'memory/device_mem_reserved(gib)': 42.35, 'epoch': 0.1}
0: .42s/it]
9%|β | 149/1621 [06:54<35:19, 1.44s/it]
9%|β | 150/1621 [06:55<35:03, 1.43s/it]
9%|β | 150/1621 [06:55<35:03, 1.43s/it]
9%|β | 151/1621 [06:57<36:42, 1.50s/it]
9%|β | 152/1621 [06:58<36:43, 1.50s/it]
9%|β | 153/1621 [07:00<38:25, 1.57s/it]
10%|β | 154/1621 [07:01<37:12, 1.52s/it]
10%|β | 155/1621 [07:03<37:08, 1.52s/it]
10%|β | 156/1621 [07:04<36:52, 1.51s/it]
10%|β | 157/1621 [07:06<36:39, 1.50s/it]
10%|β | 158/1621 [07:07<36:16, 1.49s/it]
10%|β | 159/1621 [07:09<35:54, 1.47s/it]
10%|β | 160/1621 [07:10<37:48, 1.55s/it]
10%|β | 160/1621 [07:10<37:48, 1.55s/it]
10%|β | 161/1621 [07:12<37:09, 1.53s/it]
10%|β | 162/1621 [07:13<36:24, 1.50s/it]
10%|β | 163/1621 [07:15<35:42, 1.47s/it]
10%|β
0: {'loss': 0.2822, 'grad_norm': 0.30913370447364324, 'learning_rate': 5e-06, 'memory/max_mem_active(gib)': 35.36, 'memory/max_mem_allocated(gib)': 35.16, 'memory/device_mem_reserved(gib)': 42.35, 'epoch': 0.1}
0: | 164/1621 [07:16<35:13, 1.45s/it]
10%|β | 165/1621 [07:18<35:36, 1.47s/it]
10%|β | 166/1621 [07:19<35:31, 1.46s/it]
10%|β | 167/1621 [07:21<35:11, 1.45s/it]
10%|β | 168/1621 [07:22<35:03, 1.45s/it]
10%|β | 169/1621 [07:23<34:49, 1.44s/it]
10%|β | 170/1621 [07:25<34:34, 1.43s/it]
10%|β | 170/1621 [07:25<34:34, 1.43s/it]
11%|β | 171/1621 [07:26<34:39, 1.43s/it]
11%|β | 172/1621 [07:28<34:59, 1.45s/it]
11%|β | 173/1621 [07:29<34:44, 1.44s/it]
11%|β | 174/1621 [07:31<34:48, 1.44s/it]
11%|β | 175/1621 [07:32<34:35, 1.44s/it]
11%|β | 176/1621 [07:34<36:14, 1.50s/it]
11%|β | 177/1621 [07:35<36:48, 1.53s/it]
11%|β | 178/1621 [07:37<37:07, 1.54s/it]
11%|β | 179/1621 [07:38<36:20, 1.51s/it]
11%|β | 180/1621 [07:40<35:35, 1.48s/it]
0: {'loss': 0.2757, 'grad_norm': 0.30350079506000416, 'learning_rate': 5e-06, 'memory/max_mem_active(gib)': 35.36, 'memory/max_mem_allocated(gib)': 35.16, 'memory/device_mem_reserved(gib)': 42.35, 'epoch': 0.11}
0: {'loss': 0.2709, 'grad_norm': 0.31655651271681584, 'learning_rate': 5e-06, 'memory/max_mem_active(gib)': 35.36, 'memory/max_mem_allocated(gib)': 35.16, 'memory/device_mem_reserved(gib)': 42.35, 'epoch': 0.12}
0:
11%|β | 180/1621 [07:40<35:35, 1.48s/it]
11%|β | 181/1621 [07:41<37:12, 1.55s/it]
11%|β | 182/1621 [07:43<36:18, 1.51s/it]
11%|ββ | 183/1621 [07:44<35:33, 1.48s/it]
11%|ββ | 184/1621 [07:46<35:08, 1.47s/it]
11%|ββ | 185/1621 [07:47<35:46, 1.49s/it]
11%|ββ | 186/1621 [07:49<36:02, 1.51s/it]
12%|ββ | 187/1621 [07:50<36:06, 1.51s/it]
12%|ββ | 188/1621 [07:52<35:49, 1.50s/it]
12%|ββ | 189/1621 [07:53<35:16, 1.48s/it]
12%|ββ | 190/1621 [07:55<35:37, 1.49s/it]
12%|ββ | 190/1621 [07:55<35:37, 1.49s/it]
12%|ββ | 191/1621 [07:56<36:04, 1.51s/it]
12%|ββ | 192/1621 [07:58<36:16, 1.52s/it]
12%|ββ | 193/1621 [07:59<37:00, 1.56s/it]
12%|ββ | 194/1621 [08:01<36:01, 1.51s/it]
12%|ββ | 195/1621 [08:03<37:00, 1.56s/it]
12%|ββ
0: {'loss': 0.2814, 'grad_norm': 0.3044835281174804, 'learning_rate': 5e-06, 'memory/max_mem_active(gib)': 35.36, 'memory/max_mem_allocated(gib)': 35.16, 'memory/device_mem_reserved(gib)': 42.35, 'epoch': 0.12}
0: {'loss': 0.2749, 'grad_norm': 0.3002036469553508, 'learning_rate': 5e-06, 'memory/max_mem_active(gib)': 35.36, 'memory/max_mem_allocated(gib)': 35.16, 'memory/device_mem_reserved(gib)': 42.35, 'epoch': 0.13}
0: | 196/1621 [08:04<35:52, 1.51s/it]
12%|ββ | 197/1621 [08:05<35:16, 1.49s/it]
12%|ββ | 198/1621 [08:07<34:42, 1.46s/it]
12%|ββ | 199/1621 [08:08<34:24, 1.45s/it]
12%|ββ | 200/1621 [08:10<34:04, 1.44s/it]
12%|ββ | 200/1621 [08:10<34:04, 1.44s/it]
12%|ββ | 201/1621 [08:11<33:54, 1.43s/it]
12%|ββ | 202/1621 [08:12<33:39, 1.42s/it]
13%|ββ | 203/1621 [08:14<33:31, 1.42s/it]
13%|ββ | 204/1621 [08:15<34:04, 1.44s/it]
13%|ββ | 205/1621 [08:17<34:24, 1.46s/it]
13%|ββ | 206/1621 [08:18<34:14, 1.45s/it]
13%|ββ | 207/1621 [08:20<33:53, 1.44s/it]
13%|ββ | 208/1621 [08:21<34:09, 1.45s/it]
13%|ββ | 209/1621 [08:23<34:02, 1.45s/it]
13%|ββ | 210/1621 [08:24<34:30, 1.47s/it]
13%|ββ | 210/1621 [08:24<34:30, 1.47s/it]
13%
0: {'loss': 0.2797, 'grad_norm': 0.2967747880428994, 'learning_rate': 5e-06, 'memory/max_mem_active(gib)': 35.36, 'memory/max_mem_allocated(gib)': 35.16, 'memory/device_mem_reserved(gib)': 42.35, 'epoch': 0.14}
0: |ββ | 211/1621 [08:26<34:10, 1.45s/it]
13%|ββ | 212/1621 [08:27<33:48, 1.44s/it]
13%|ββ | 213/1621 [08:28<33:37, 1.43s/it]
13%|ββ | 214/1621 [08:30<33:32, 1.43s/it]
13%|ββ | 215/1621 [08:31<33:21, 1.42s/it]
13%|ββ | 216/1621 [08:33<34:03, 1.45s/it]
13%|ββ | 217/1621 [08:34<33:43, 1.44s/it]
13%|ββ | 218/1621 [08:36<33:46, 1.44s/it]
14%|ββ | 219/1621 [08:37<33:29, 1.43s/it]
14%|ββ | 220/1621 [08:39<35:14, 1.51s/it]
14%|ββ | 220/1621 [08:39<35:14, 1.51s/it]
14%|ββ | 221/1621 [08:40<34:47, 1.49s/it]
14%|ββ | 222/1621 [08:42<34:32, 1.48s/it]
14%|ββ | 223/1621 [08:43<34:02, 1.46s/it]
14%|ββ | 224/1621 [08:44<34:29, 1.48s/it]
14%|ββ | 225/1621 [08:46<34:08, 1.47s/it]
14%|ββ | 226/1621 [08:47<33:39, 1.45s/it]
14%|ββ | 227/1621 [08:49<34:0
0: {'loss': 0.267, 'grad_norm': 0.31143673730927085, 'learning_rate': 5e-06, 'memory/max_mem_active(gib)': 35.36, 'memory/max_mem_allocated(gib)': 35.16, 'memory/device_mem_reserved(gib)': 42.35, 'epoch': 0.14}
0: {'loss': 0.2743, 'grad_norm': 0.3155526747255406, 'learning_rate': 5e-06, 'memory/max_mem_active(gib)': 35.36, 'memory/max_mem_allocated(gib)': 35.16, 'memory/device_mem_reserved(gib)': 42.35, 'epoch': 0.15}
0: 2, 1.47s/it]
14%|ββ | 228/1621 [08:50<34:07, 1.47s/it]
14%|ββ | 229/1621 [08:52<33:45, 1.46s/it]
14%|ββ | 230/1621 [08:53<33:39, 1.45s/it]
14%|ββ | 230/1621 [08:53<33:39, 1.45s/it]
14%|ββ | 231/1621 [08:55<33:31, 1.45s/it]
14%|ββ | 232/1621 [08:56<33:29, 1.45s/it]
14%|ββ | 233/1621 [08:58<33:29, 1.45s/it]
14%|ββ | 234/1621 [08:59<33:17, 1.44s/it]
14%|ββ | 235/1621 [09:00<33:31, 1.45s/it]
15%|ββ | 236/1621 [09:02<33:28, 1.45s/it]
15%|ββ | 237/1621 [09:03<33:31, 1.45s/it]
15%|ββ | 238/1621 [09:05<33:07, 1.44s/it]
15%|ββ | 239/1621 [09:06<33:20, 1.45s/it]
15%|ββ | 240/1621 [09:08<33:17, 1.45s/it]
15%|ββ | 240/1621 [09:08<33:17, 1.45s/it]
15%|ββ | 241/1621 [09:09<33:16, 1.45s/it]
15%|ββ | 242/1
0: {'loss': 0.2788, 'grad_norm': 0.3136432802461907, 'learning_rate': 5e-06, 'memory/max_mem_active(gib)': 35.36, 'memory/max_mem_allocated(gib)': 35.16, 'memory/device_mem_reserved(gib)': 42.35, 'epoch': 0.15}
0: 621 [09:11<33:18, 1.45s/it]
15%|ββ | 243/1621 [09:12<33:03, 1.44s/it]
15%|ββ | 244/1621 [09:14<35:31, 1.55s/it]
15%|ββ | 245/1621 [09:15<34:31, 1.51s/it]
15%|ββ | 246/1621 [09:17<34:07, 1.49s/it]
15%|ββ | 247/1621 [09:18<33:36, 1.47s/it]
15%|ββ | 248/1621 [09:19<33:11, 1.45s/it]
15%|ββ | 249/1621 [09:21<33:12, 1.45s/it]
15%|ββ | 250/1621 [09:22<33:00, 1.44s/it]
15%|ββ | 250/1621 [09:22<33:00, 1.44s/it]
15%|ββ | 251/1621 [09:24<33:01, 1.45s/it]
16%|ββ | 252/1621 [09:25<32:56, 1.44s/it]
16%|ββ | 253/1621 [09:27<33:06, 1.45s/it]
16%|ββ | 254/1621 [09:28<33:39, 1.48s/it]
16%|ββ | 255/1621 [09:30<33:17, 1.46s/it]
16%|ββ | 256/1621 [09:31<33:37, 1.48s/it]
16%|ββ | 257/1621 [09:33<33:18, 1.46s/it]
16%|ββ | 258/1621 [09:34<32:51, 1.45s/it]
16%|β
0: {'loss': 0.2809, 'grad_norm': 0.3423992975218093, 'learning_rate': 5e-06, 'memory/max_mem_active(gib)': 35.36, 'memory/max_mem_allocated(gib)': 35.16, 'memory/device_mem_reserved(gib)': 42.35, 'epoch': 0.16}
0: {'loss': 0.2701, 'grad_norm': 0.3288994173746047, 'learning_rate': 5e-06, 'memory/max_mem_active(gib)': 35.36, 'memory/max_mem_allocated(gib)': 35.16, 'memory/device_mem_reserved(gib)': 42.35, 'epoch': 0.17}
0: β | 259/1621 [09:35<32:43, 1.44s/it]
16%|ββ | 260/1621 [09:37<32:41, 1.44s/it]
16%|ββ | 260/1621 [09:37<32:41, 1.44s/it]
16%|ββ | 261/1621 [09:38<32:38, 1.44s/it]
16%|ββ | 262/1621 [09:40<35:34, 1.57s/it]
16%|ββ | 263/1621 [09:42<34:53, 1.54s/it]
16%|ββ | 264/1621 [09:43<34:05, 1.51s/it]
16%|ββ | 265/1621 [09:45<33:58, 1.50s/it]
16%|ββ | 266/1621 [09:46<33:35, 1.49s/it]
16%|ββ | 267/1621 [09:47<32:58, 1.46s/it]
17%|ββ | 268/1621 [09:49<32:32, 1.44s/it]
17%|ββ | 269/1621 [09:50<33:35, 1.49s/it]
17%|ββ | 270/1621 [09:52<33:04, 1.47s/it]
17%|ββ | 270/1621 [09:52<33:04, 1.47s/it]
17%|ββ | 271/1621 [09:53<32:41, 1.45s/it]
17%|ββ | 272/1621 [09:55<34:13, 1.52s/it]
17%|ββ | 273/1621 [09:56<33:25, 1.4
0: {'loss': 0.2807, 'grad_norm': 0.29274925430224524, 'learning_rate': 5e-06, 'memory/max_mem_active(gib)': 35.36, 'memory/max_mem_allocated(gib)': 35.16, 'memory/device_mem_reserved(gib)': 42.35, 'epoch': 0.17}
0: 9s/it]
17%|ββ | 274/1621 [09:58<32:57, 1.47s/it]
17%|ββ | 275/1621 [09:59<32:34, 1.45s/it]
17%|ββ | 276/1621 [10:01<32:38, 1.46s/it]
17%|ββ | 277/1621 [10:02<32:33, 1.45s/it]
17%|ββ | 278/1621 [10:04<32:28, 1.45s/it]
17%|ββ | 279/1621 [10:05<32:07, 1.44s/it]
17%|ββ | 280/1621 [10:06<31:50, 1.42s/it]
17%|ββ | 280/1621 [10:06<31:50, 1.42s/it]
17%|ββ | 281/1621 [10:08<31:48, 1.42s/it]
17%|ββ | 282/1621 [10:09<31:38, 1.42s/it]
17%|ββ | 283/1621 [10:11<32:33, 1.46s/it]
18%|ββ | 284/1621 [10:12<32:10, 1.44s/it]
18%|ββ | 285/1621 [10:14<32:00, 1.44s/it]
18%|ββ | 286/1621 [10:15<33:05, 1.49s/it]
18%|ββ | 287/1621 [10:17<32:53, 1.48s/it]
18%|ββ | 288/1621 [10:18<32:42, 1.47s/it]
18%|ββ | 289/1621 [10:19<32:14, 1.45s/it]
18%|ββ | 290/1621
0: {'loss': 0.2773, 'grad_norm': 0.31838982571156305, 'learning_rate': 5e-06, 'memory/max_mem_active(gib)': 35.36, 'memory/max_mem_allocated(gib)': 35.16, 'memory/device_mem_reserved(gib)': 42.35, 'epoch': 0.18}
0: {'loss': 0.278, 'grad_norm': 0.32447615695347176, 'learning_rate': 5e-06, 'memory/max_mem_active(gib)': 35.36, 'memory/max_mem_allocated(gib)': 35.16, 'memory/device_mem_reserved(gib)': 42.35, 'epoch': 0.19}
0: [10:21<32:04, 1.45s/it]
18%|ββ | 290/1621 [10:21<32:04, 1.45s/it]
18%|ββ | 291/1621 [10:23<33:39, 1.52s/it]
18%|ββ | 292/1621 [10:24<32:57, 1.49s/it]
18%|ββ | 293/1621 [10:26<33:42, 1.52s/it]
18%|ββ | 294/1621 [10:27<33:04, 1.50s/it]
18%|ββ | 295/1621 [10:29<34:11, 1.55s/it]
18%|ββ | 296/1621 [10:30<33:22, 1.51s/it]
18%|ββ | 297/1621 [10:32<32:50, 1.49s/it]
18%|ββ | 298/1621 [10:33<32:43, 1.48s/it]
18%|ββ | 299/1621 [10:34<32:19, 1.47s/it]
19%|ββ | 300/1621 [10:36<32:09, 1.46s/it]
19%|ββ | 300/1621 [10:36<32:09, 1.46s/it]
19%|ββ | 301/1621 [10:37<31:51, 1.45s/it]
19%|ββ | 302/1621 [10:39<31:35, 1.44s/it]
19%|ββ | 303/1621 [10:40<31:23, 1.43s/it]
19%|ββ | 304/1621 [10:42<31:30, 1.44s/it]
19%|ββ
0: {'loss': 0.2753, 'grad_norm': 0.342886066749926, 'learning_rate': 5e-06, 'memory/max_mem_active(gib)': 35.36, 'memory/max_mem_allocated(gib)': 35.16, 'memory/device_mem_reserved(gib)': 42.35, 'epoch': 0.19}
0: {'loss': 0.2776, 'grad_norm': 0.30166316287017786, 'learning_rate': 5e-06, 'memory/max_mem_active(gib)': 35.36, 'memory/max_mem_allocated(gib)': 35.16, 'memory/device_mem_reserved(gib)': 42.93, 'epoch': 0.2}
0: | 305/1621 [10:43<32:15, 1.47s/it]
19%|ββ | 306/1621 [10:45<31:50, 1.45s/it]
19%|ββ | 307/1621 [10:46<31:42, 1.45s/it]
19%|ββ | 308/1621 [10:47<31:42, 1.45s/it]
19%|ββ | 309/1621 [10:49<31:25, 1.44s/it]
19%|ββ | 310/1621 [10:50<31:20, 1.43s/it]
19%|ββ | 310/1621 [10:50<31:20, 1.43s/it]
19%|ββ | 311/1621 [10:52<31:25, 1.44s/it]
19%|ββ | 312/1621 [10:53<31:24, 1.44s/it]
19%|ββ | 313/1621 [10:55<32:04, 1.47s/it]
19%|ββ | 314/1621 [10:56<32:53, 1.51s/it]
19%|ββ | 315/1621 [10:58<32:18, 1.48s/it]
19%|ββ | 316/1621 [10:59<31:48, 1.46s/it]
20%|ββ | 317/1621 [11:01<31:27, 1.45s/it]
20%|ββ | 318/1621 [11:02<32:08, 1.48s/it]
20%|ββ | 319/1621 [11:04<31:47, 1.47s/it]
20%|ββ | 320/1621 [11:05<31:25, 1.45s/it]
0: [2025-09-02 18:59:03,462] [INFO] [axolotl.core.trainers.base._save:613] [PID:1478787] [RANK:0] Saving model checkpoint to /lustre/fswork/projects/rech/dgo/udv55np/math/Qwen3-235B-A22B/Qwen2.5-3B_ift/0/checkpoint-325[39m
0: [2025-09-02 18:59:08,211] [INFO] [axolotl.core.trainers.base._save:662] [PID:1478787] [RANK:0] Saving Trainer.data_collator.tokenizer by default as Trainer.processing_class is `None`[39m
0: {'loss': 0.2799, 'grad_norm': 0.3399264182401738, 'learning_rate': 5e-06, 'memory/max_mem_active(gib)': 35.36, 'memory/max_mem_allocated(gib)': 35.16, 'memory/device_mem_reserved(gib)': 42.93, 'epoch': 0.2}
0: 20%|ββ | 320/1621 [11:05<31:25, 1.45s/it]
20%|ββ | 321/1621 [11:06<31:13, 1.44s/it]
20%|ββ | 322/1621 [11:08<35:05, 1.62s/it]
20%|ββ | 323/1621 [11:10<33:43, 1.56s/it]
20%|ββ | 324/1621 [11:11<32:41, 1.51s/it]
20%|ββ | 325/1621 [11:13<32:05, 1.49s/it]
20%|ββ | 326/1621 [11:23<1:32:18, 4.28s/it]
20%|ββ | 327/1621 [11:25<1:15:29, 3.50s/it]
20%|ββ | 328/1621 [11:27<1:02:02, 2.88s/it]
20%|ββ | 329/1621 [11:28<53:10, 2.47s/it]
20%|ββ | 330/1621 [11:30<46:38, 2.17s/it]
20%|ββ | 330/1621 [11:30<46:38, 2.17s/it]
20%|ββ | 331/1621 [11:31<41:45, 1.94s/it]
20%|ββ | 332/1621 [11:33<39:29, 1.84s/it]
21%|ββ | 333/1621 [11:34<36:48, 1.71s/it]
21%|ββ | 334/1621 [11:36<35:24, 1.65s/it]
21%|ββ | 335/1621 [11:37<34:03, 1.59s/it]
21%|ββ | 336/1621
0: {'loss': 0.268, 'grad_norm': 0.3251493921539059, 'learning_rate': 5e-06, 'memory/max_mem_active(gib)': 35.36, 'memory/max_mem_allocated(gib)': 35.16, 'memory/device_mem_reserved(gib)': 42.93, 'epoch': 0.21}
0: {'loss': 0.2727, 'grad_norm': 0.3288623888122016, 'learning_rate': 5e-06, 'memory/max_mem_active(gib)': 35.36, 'memory/max_mem_allocated(gib)': 35.16, 'memory/device_mem_reserved(gib)': 42.93, 'epoch': 0.22}
0: [11:39<34:18, 1.60s/it]
21%|ββ | 337/1621 [11:40<33:44, 1.58s/it]
21%|ββ | 338/1621 [11:42<32:55, 1.54s/it]
21%|ββ | 339/1621 [11:43<32:29, 1.52s/it]
21%|ββ | 340/1621 [11:45<32:21, 1.52s/it]
21%|ββ | 340/1621 [11:45<32:21, 1.52s/it]
21%|ββ | 341/1621 [11:46<33:41, 1.58s/it]
21%|ββ | 342/1621 [11:48<33:55, 1.59s/it]
21%|ββ | 343/1621 [11:49<32:46, 1.54s/it]
21%|ββ | 344/1621 [11:51<32:27, 1.53s/it]
21%|βββ | 345/1621 [11:52<31:48, 1.50s/it]
21%|βββ | 346/1621 [11:54<31:13, 1.47s/it]
21%|βββ | 347/1621 [11:55<31:07, 1.47s/it]
21%|βββ | 348/1621 [11:57<30:46, 1.45s/it]
22%|βββ | 349/1621 [11:58<30:38, 1.45s/it]
22%|βββ | 350/1621 [11:59<30:35, 1.44s/it]
22%|βββ | 350/1621 [11:59<30:35, 1.44s/it]
0: {'loss': 0.2751, 'grad_norm': 0.3024279886733832, 'learning_rate': 5e-06, 'memory/max_mem_active(gib)': 35.36, 'memory/max_mem_allocated(gib)': 35.16, 'memory/device_mem_reserved(gib)': 42.93, 'epoch': 0.22}
0: 22%|βββ | 351/1621 [12:01<30:23, 1.44s/it]
22%|βββ | 352/1621 [12:02<30:25, 1.44s/it]
22%|βββ | 353/1621 [12:04<30:17, 1.43s/it]
22%|βββ | 354/1621 [12:05<30:10, 1.43s/it]
22%|βββ | 355/1621 [12:07<30:06, 1.43s/it]
22%|βββ | 356/1621 [12:08<30:00, 1.42s/it]
22%|βββ | 357/1621 [12:09<30:09, 1.43s/it]
22%|βββ | 358/1621 [12:11<30:13, 1.44s/it]
22%|βββ | 359/1621 [12:12<30:31, 1.45s/it]
22%|βββ | 360/1621 [12:14<30:22, 1.45s/it]
22%|βββ | 360/1621 [12:14<30:22, 1.45s/it]
22%|βββ | 361/1621 [12:15<30:19, 1.44s/it]
22%|βββ | 362/1621 [12:17<30:30, 1.45s/it]
22%|βββ | 363/1621 [12:18<30:11, 1.44s/it]
22%|βββ | 364/1621 [12:19<30:05, 1.44s/it]
23%|βββ | 365/1621 [12:21<30:27, 1.45s/it]
23%|βββ | 366/1621 [12:22<30:21, 1.45s/it]
23
0: {'loss': 0.2709, 'grad_norm': 0.32115118197616366, 'learning_rate': 5e-06, 'memory/max_mem_active(gib)': 35.36, 'memory/max_mem_allocated(gib)': 35.16, 'memory/device_mem_reserved(gib)': 42.93, 'epoch': 0.23}
0: {'loss': 0.2705, 'grad_norm': 0.3241814781093123, 'learning_rate': 5e-06, 'memory/max_mem_active(gib)': 35.36, 'memory/max_mem_allocated(gib)': 35.16, 'memory/device_mem_reserved(gib)': 42.93, 'epoch': 0.23}
0: %|βββ | 367/1621 [12:24<30:09, 1.44s/it]
23%|βββ | 368/1621 [12:25<30:15, 1.45s/it]
23%|βββ | 369/1621 [12:27<30:28, 1.46s/it]
23%|βββ | 370/1621 [12:28<30:24, 1.46s/it]
23%|βββ | 370/1621 [12:28<30:24, 1.46s/it]
23%|βββ | 371/1621 [12:30<30:14, 1.45s/it]
23%|βββ | 372/1621 [12:31<29:52, 1.44s/it]
23%|βββ | 373/1621 [12:33<29:41, 1.43s/it]
23%|βββ | 374/1621 [12:34<29:43, 1.43s/it]
23%|βββ | 375/1621 [12:36<31:24, 1.51s/it]
23%|βββ | 376/1621 [12:37<30:43, 1.48s/it]
23%|βββ | 377/1621 [12:39<30:34, 1.47s/it]
23%|βββ | 378/1621 [12:40<30:17, 1.46s/it]
23%|βββ | 379/1621 [12:41<29:55, 1.45s/it]
23%|βββ | 380/1621 [12:43<29:45, 1.44s/it]
23%|βββ | 380/1621 [12:43<29:45, 1.44s/it]
24%|ββ
0: {'loss': 0.2701, 'grad_norm': 0.3202907610900123, 'learning_rate': 5e-06, 'memory/max_mem_active(gib)': 35.36, 'memory/max_mem_allocated(gib)': 35.16, 'memory/device_mem_reserved(gib)': 42.93, 'epoch': 0.24}
0: β | 381/1621 [12:44<29:42, 1.44s/it]
24%|βββ | 382/1621 [12:46<32:44, 1.59s/it]
24%|βββ | 383/1621 [12:48<31:35, 1.53s/it]
24%|βββ | 384/1621 [12:49<30:44, 1.49s/it]
24%|βββ | 385/1621 [12:50<30:18, 1.47s/it]
24%|βββ | 386/1621 [12:52<30:02, 1.46s/it]
24%|βββ | 387/1621 [12:53<30:11, 1.47s/it]
24%|βββ | 388/1621 [12:55<30:15, 1.47s/it]
24%|βββ | 389/1621 [12:56<31:05, 1.51s/it]
24%|βββ | 390/1621 [12:58<30:29, 1.49s/it]
24%|βββ | 390/1621 [12:58<30:29, 1.49s/it]
24%|βββ | 391/1621 [12:59<30:03, 1.47s/it]
24%|βββ | 392/1621 [13:01<29:45, 1.45s/it]
24%|βββ | 393/1621 [13:02<29:36, 1.45s/it]
24%|βββ | 394/1621 [13:04<31:00, 1.52s/it]
24%|βββ | 395/1621 [13:05<30:50, 1.51s/it]
24%|βββ | 396/1621 [13:07<30:19, 1.49s/it]
24%|βββ
0: {'loss': 0.268, 'grad_norm': 0.34656413820425974, 'learning_rate': 5e-06, 'memory/max_mem_active(gib)': 35.36, 'memory/max_mem_allocated(gib)': 35.16, 'memory/device_mem_reserved(gib)': 42.93, 'epoch': 0.25}
0: {'loss': 0.2643, 'grad_norm': 0.31693873851656673, 'learning_rate': 5e-06, 'memory/max_mem_active(gib)': 35.36, 'memory/max_mem_allocated(gib)': 35.16, 'memory/device_mem_reserved(gib)': 42.93, 'epoch': 0.25}
0: | 397/1621 [13:08<29:51, 1.46s/it]
25%|βββ | 398/1621 [13:10<32:15, 1.58s/it]
25%|βββ | 399/1621 [13:11<31:10, 1.53s/it]
25%|βββ | 400/1621 [13:13<30:33, 1.50s/it]
25%|βββ | 400/1621 [13:13<30:33, 1.50s/it]
25%|βββ | 401/1621 [13:14<30:38, 1.51s/it]
25%|βββ | 402/1621 [13:16<30:12, 1.49s/it]
25%|βββ | 403/1621 [13:17<29:42, 1.46s/it]
25%|βββ | 404/1621 [13:19<31:40, 1.56s/it]
25%|βββ | 405/1621 [13:20<30:45, 1.52s/it]
25%|βββ | 406/1621 [13:22<31:22, 1.55s/it]
25%|βββ | 407/1621 [13:23<30:36, 1.51s/it]
25%|βββ | 408/1621 [13:25<29:51, 1.48s/it]
25%|βββ | 409/1621 [13:26<29:27, 1.46s/it]
25%|βββ | 410/1621 [13:28<29:15, 1.45s/it]
25%|βββ | 410/1621 [13:28<29:15, 1.45s/it]
25%|βββ |
0: {'loss': 0.2672, 'grad_norm': 0.2971789023650299, 'learning_rate': 5e-06, 'memory/max_mem_active(gib)': 35.36, 'memory/max_mem_allocated(gib)': 35.16, 'memory/device_mem_reserved(gib)': 42.93, 'epoch': 0.26}
0: 411/1621 [13:29<29:03, 1.44s/it]
25%|βββ | 412/1621 [13:31<30:57, 1.54s/it]
25%|βββ | 413/1621 [13:32<30:23, 1.51s/it]
26%|βββ | 414/1621 [13:34<29:45, 1.48s/it]
26%|βββ | 415/1621 [13:35<29:49, 1.48s/it]
26%|βββ | 416/1621 [13:37<29:25, 1.46s/it]
26%|βββ | 417/1621 [13:38<30:17, 1.51s/it]
26%|βββ | 418/1621 [13:40<30:55, 1.54s/it]
26%|βββ | 419/1621 [13:41<30:36, 1.53s/it]
26%|βββ | 420/1621 [13:43<30:11, 1.51s/it]
26%|βββ | 420/1621 [13:43<30:11, 1.51s/it]
26%|βββ | 421/1621 [13:44<30:35, 1.53s/it]
26%|βββ | 422/1621 [13:46<30:04, 1.50s/it]
26%|βββ | 423/1621 [13:47<29:41, 1.49s/it]
26%|βββ | 424/1621 [13:49<29:19, 1.47s/it]
26%|βββ | 425/1621 [13:50<29:01, 1.46s/it]
26%|βββ | 426/1621 [13:52<29:34, 1.48s/it]
26%|βββ | 42
0: {'loss': 0.2613, 'grad_norm': 0.31251578412801284, 'learning_rate': 5e-06, 'memory/max_mem_active(gib)': 35.36, 'memory/max_mem_allocated(gib)': 35.16, 'memory/device_mem_reserved(gib)': 42.93, 'epoch': 0.27}
0: {'loss': 0.2693, 'grad_norm': 0.30507923848851765, 'learning_rate': 5e-06, 'memory/max_mem_active(gib)': 35.36, 'memory/max_mem_allocated(gib)': 35.16, 'memory/device_mem_reserved(gib)': 42.93, 'epoch': 0.27}
0: 7/1621 [13:53<29:49, 1.50s/it]
26%|βββ | 428/1621 [13:55<29:39, 1.49s/it]
26%|βββ | 429/1621 [13:56<29:11, 1.47s/it]
27%|βββ | 430/1621 [13:58<30:02, 1.51s/it]
27%|βββ | 430/1621 [13:58<30:02, 1.51s/it]
27%|βββ | 431/1621 [13:59<30:46, 1.55s/it]
27%|βββ | 432/1621 [14:01<30:03, 1.52s/it]
27%|βββ | 433/1621 [14:02<29:30, 1.49s/it]
27%|βββ | 434/1621 [14:04<31:03, 1.57s/it]
27%|βββ | 435/1621 [14:05<30:09, 1.53s/it]
27%|βββ | 436/1621 [14:07<29:34, 1.50s/it]
27%|βββ | 437/1621 [14:08<29:30, 1.50s/it]
27%|βββ | 438/1621 [14:10<30:06, 1.53s/it]
27%|βββ | 439/1621 [14:11<29:32, 1.50s/it]
27%|βββ | 440/1621 [14:13<28:58, 1.47s/it]
27%|βββ | 440/1621 [14:13<28:58, 1.47s/it]
27%|βββ | 441/1621 [
0: {'loss': 0.2694, 'grad_norm': 0.307964171218113, 'learning_rate': 5e-06, 'memory/max_mem_active(gib)': 35.36, 'memory/max_mem_allocated(gib)': 35.16, 'memory/device_mem_reserved(gib)': 42.93, 'epoch': 0.28}
0: 14:14<28:33, 1.45s/it]
27%|βββ | 442/1621 [14:16<28:20, 1.44s/it]
27%|βββ | 443/1621 [14:17<28:29, 1.45s/it]
27%|βββ | 444/1621 [14:19<28:25, 1.45s/it]
27%|βββ | 445/1621 [14:20<28:24, 1.45s/it]
28%|βββ | 446/1621 [14:21<28:17, 1.44s/it]
28%|βββ | 447/1621 [14:23<28:02, 1.43s/it]
28%|βββ | 448/1621 [14:24<27:58, 1.43s/it]
28%|βββ | 449/1621 [14:26<27:47, 1.42s/it]
28%|βββ | 450/1621 [14:27<27:45, 1.42s/it]
28%|βββ | 450/1621 [14:27<27:45, 1.42s/it]
28%|βββ | 451/1621 [14:28<27:51, 1.43s/it]
28%|βββ | 452/1621 [14:30<27:51, 1.43s/it]
28%|βββ | 453/1621 [14:31<27:49, 1.43s/it]
28%|βββ | 454/1621 [14:33<28:02, 1.44s/it]
28%|βββ | 455/1621 [14:34<27:51, 1.43s/it]
28%|βββ | 456/1621 [14:36<27:43, 1.43s/it]
28%|βββ | 457/1621 [14:
0: {'loss': 0.2718, 'grad_norm': 0.3093931433367332, 'learning_rate': 5e-06, 'memory/max_mem_active(gib)': 35.36, 'memory/max_mem_allocated(gib)': 35.16, 'memory/device_mem_reserved(gib)': 42.93, 'epoch': 0.28}
0: {'loss': 0.2638, 'grad_norm': 0.3165329083358544, 'learning_rate': 5e-06, 'memory/max_mem_active(gib)': 35.36, 'memory/max_mem_allocated(gib)': 35.16, 'memory/device_mem_reserved(gib)': 42.93, 'epoch': 0.29}
0: 37<27:44, 1.43s/it]
28%|βββ | 458/1621 [14:39<27:49, 1.44s/it]
28%|βββ | 459/1621 [14:40<27:56, 1.44s/it]
28%|βββ | 460/1621 [14:41<27:56, 1.44s/it]
28%|βββ | 460/1621 [14:41<27:56, 1.44s/it]
28%|βββ | 461/1621 [14:43<27:49, 1.44s/it]
29%|βββ | 462/1621 [14:44<27:38, 1.43s/it]
29%|βββ | 463/1621 [14:46<27:29, 1.42s/it]
29%|βββ | 464/1621 [14:47<29:02, 1.51s/it]
29%|βββ | 465/1621 [14:49<28:58, 1.50s/it]
29%|βββ | 466/1621 [14:50<28:34, 1.48s/it]
29%|βββ | 467/1621 [14:52<29:23, 1.53s/it]
29%|βββ | 468/1621 [14:53<28:45, 1.50s/it]
29%|βββ | 469/1621 [14:55<28:16, 1.47s/it]
29%|βββ | 470/1621 [14:56<27:54, 1.45s/it]
29%|βββ | 470/1621 [14:56<27:54, 1.45s/it]
29%|βββ | 471/1621 [14:58<29:34
0: {'loss': 0.2692, 'grad_norm': 0.3101656418893075, 'learning_rate': 5e-06, 'memory/max_mem_active(gib)': 35.36, 'memory/max_mem_allocated(gib)': 35.16, 'memory/device_mem_reserved(gib)': 42.93, 'epoch': 0.3}
0: , 1.54s/it]
29%|βββ | 472/1621 [14:59<28:51, 1.51s/it]
29%|βββ | 473/1621 [15:01<28:21, 1.48s/it]
29%|βββ | 474/1621 [15:02<28:53, 1.51s/it]
29%|βββ | 475/1621 [15:04<28:27, 1.49s/it]
29%|βββ | 476/1621 [15:05<27:59, 1.47s/it]
29%|βββ | 477/1621 [15:07<27:47, 1.46s/it]
29%|βββ | 478/1621 [15:08<27:28, 1.44s/it]
30%|βββ | 479/1621 [15:10<27:27, 1.44s/it]
30%|βββ | 480/1621 [15:11<27:21, 1.44s/it]
30%|βββ | 480/1621 [15:11<27:21, 1.44s/it]
30%|βββ | 481/1621 [15:13<28:29, 1.50s/it]
30%|βββ | 482/1621 [15:14<27:58, 1.47s/it]
30%|βββ | 483/1621 [15:15<27:39, 1.46s/it]
30%|βββ | 484/1621 [15:17<27:37, 1.46s/it]
30%|βββ | 485/1621 [15:18<27:22, 1.45s/it]
30%|βββ | 486/1621 [15:20<27:17, 1.44s/it]
30%|βββ | 487/1621 [15:21<27:06,
0: {'loss': 0.2662, 'grad_norm': 0.30695490828095756, 'learning_rate': 5e-06, 'memory/max_mem_active(gib)': 35.36, 'memory/max_mem_allocated(gib)': 35.16, 'memory/device_mem_reserved(gib)': 42.93, 'epoch': 0.3}
0: {'loss': 0.2704, 'grad_norm': 0.32199906361703134, 'learning_rate': 5e-06, 'memory/max_mem_active(gib)': 35.36, 'memory/max_mem_allocated(gib)': 35.16, 'memory/device_mem_reserved(gib)': 42.93, 'epoch': 0.31}
0: 1.43s/it]
30%|βββ | 488/1621 [15:23<27:11, 1.44s/it]
30%|βββ | 489/1621 [15:24<28:34, 1.51s/it]
30%|βββ | 490/1621 [15:26<28:01, 1.49s/it]
30%|βββ | 490/1621 [15:26<28:01, 1.49s/it]
30%|βββ | 491/1621 [15:27<29:22, 1.56s/it]
30%|βββ | 492/1621 [15:29<28:32, 1.52s/it]
30%|βββ | 493/1621 [15:30<27:55, 1.49s/it]
30%|βββ | 494/1621 [15:32<27:45, 1.48s/it]
31%|βββ | 495/1621 [15:33<27:28, 1.46s/it]
31%|βββ | 496/1621 [15:35<27:28, 1.47s/it]
31%|βββ | 497/1621 [15:36<27:33, 1.47s/it]
31%|βββ | 498/1621 [15:38<27:06, 1.45s/it]
31%|βββ | 499/1621 [15:39<27:05, 1.45s/it]
31%|βββ | 500/1621 [15:40<26:51, 1.44s/it]
31%|βββ | 500/1621 [15:40<26:51, 1.44s/it]
31%|βββ | 501/1621 [15:42<26:54, 1.44s/it
0: {'loss': 0.2698, 'grad_norm': 0.3168722994354358, 'learning_rate': 5e-06, 'memory/max_mem_active(gib)': 35.36, 'memory/max_mem_allocated(gib)': 35.16, 'memory/device_mem_reserved(gib)': 42.93, 'epoch': 0.31}
0: ]
31%|βββ | 502/1621 [15:43<27:53, 1.50s/it]
31%|βββ | 503/1621 [15:45<27:32, 1.48s/it]
31%|βββ | 504/1621 [15:46<27:12, 1.46s/it]
31%|βββ | 505/1621 [15:48<26:55, 1.45s/it]
31%|βββ | 506/1621 [15:49<26:47, 1.44s/it]
31%|ββββ | 507/1621 [15:51<26:32, 1.43s/it]
31%|ββββ | 508/1621 [15:52<26:23, 1.42s/it]
31%|ββββ | 509/1621 [15:54<27:44, 1.50s/it]
31%|ββββ | 510/1621 [15:55<27:21, 1.48s/it]
31%|ββββ | 510/1621 [15:55<27:21, 1.48s/it]
32%|ββββ | 511/1621 [15:57<27:29, 1.49s/it]
32%|ββββ | 512/1621 [15:58<27:02, 1.46s/it]
32%|ββββ | 513/1621 [15:59<26:44, 1.45s/it]
32%|ββββ | 514/1621 [16:01<26:32, 1.44s/it]
32%|ββββ | 515/1621 [16:02<26:21, 1.43s/it]
32%|ββββ | 516/1621 [16:04<27:26, 1.49s/it]
32%|ββββ | 517/1621 [1
0: {'loss': 0.2724, 'grad_norm': 0.3419596649304518, 'learning_rate': 5e-06, 'memory/max_mem_active(gib)': 35.36, 'memory/max_mem_allocated(gib)': 35.16, 'memory/device_mem_reserved(gib)': 42.93, 'epoch': 0.32}
0: {'loss': 0.2691, 'grad_norm': 0.3214826713689335, 'learning_rate': 5e-06, 'memory/max_mem_active(gib)': 35.36, 'memory/max_mem_allocated(gib)': 35.16, 'memory/device_mem_reserved(gib)': 42.93, 'epoch': 0.33}
0: 6:05<26:58, 1.47s/it]
32%|ββββ | 518/1621 [16:07<26:37, 1.45s/it]
32%|ββββ | 519/1621 [16:08<26:22, 1.44s/it]
32%|ββββ | 520/1621 [16:09<26:13, 1.43s/it]
32%|ββββ | 520/1621 [16:09<26:13, 1.43s/it]
32%|ββββ | 521/1621 [16:11<26:21, 1.44s/it]
32%|ββββ | 522/1621 [16:12<26:11, 1.43s/it]
32%|ββββ | 523/1621 [16:14<26:26, 1.44s/it]
32%|ββββ | 524/1621 [16:15<26:27, 1.45s/it]
32%|ββββ | 525/1621 [16:17<26:41, 1.46s/it]
32%|ββββ | 526/1621 [16:18<27:06, 1.49s/it]
33%|ββββ | 527/1621 [16:20<28:06, 1.54s/it]
33%|ββββ | 528/1621 [16:22<28:58, 1.59s/it]
33%|ββββ | 529/1621 [16:23<28:03, 1.54s/it]
33%|ββββ | 530/1621 [16:25<27:21, 1.50s/it]
33%|ββββ | 530/1621 [16:25<27:21, 1.50s/it]
33%|ββοΏ½
0: {'loss': 0.2723, 'grad_norm': 0.31076689228472376, 'learning_rate': 5e-06, 'memory/max_mem_active(gib)': 35.36, 'memory/max_mem_allocated(gib)': 35.16, 'memory/device_mem_reserved(gib)': 42.93, 'epoch': 0.33}
0: οΏ½οΏ½β | 531/1621 [16:26<27:16, 1.50s/it]
33%|ββββ | 532/1621 [16:28<27:28, 1.51s/it]
33%|ββββ | 533/1621 [16:29<26:53, 1.48s/it]
33%|ββββ | 534/1621 [16:31<28:29, 1.57s/it]
33%|ββββ | 535/1621 [16:32<27:34, 1.52s/it]
33%|ββββ | 536/1621 [16:34<28:02, 1.55s/it]
33%|ββββ | 537/1621 [16:35<27:27, 1.52s/it]
33%|ββββ | 538/1621 [16:37<27:09, 1.50s/it]
33%|ββββ | 539/1621 [16:38<27:26, 1.52s/it]
33%|ββββ | 540/1621 [16:40<27:29, 1.53s/it]
33%|ββββ | 540/1621 [16:40<27:29, 1.53s/it]
33%|ββββ | 541/1621 [16:41<27:11, 1.51s/it]
33%|ββββ | 542/1621 [16:43<26:35, 1.48s/it]
33%|ββββ | 543/1621 [16:44<26:11, 1.46s/it]
34%|ββββ | 544/1621 [16:46<25:53, 1.44s/it]
34%|ββββ | 545/1621 [16:47<25:43, 1.43s/it]
34%|ββββ | 546/1621 [16:48
0: {'loss': 0.267, 'grad_norm': 0.3096662553218259, 'learning_rate': 5e-06, 'memory/max_mem_active(gib)': 35.36, 'memory/max_mem_allocated(gib)': 35.16, 'memory/device_mem_reserved(gib)': 42.93, 'epoch': 0.34}
0: {'loss': 0.2652, 'grad_norm': 0.3305774329274305, 'learning_rate': 5e-06, 'memory/max_mem_active(gib)': 35.36, 'memory/max_mem_allocated(gib)': 35.16, 'memory/device_mem_reserved(gib)': 42.93, 'epoch': 0.35}
0: <25:33, 1.43s/it]
34%|ββββ | 547/1621 [16:50<25:40, 1.43s/it]
34%|ββββ | 548/1621 [16:51<25:37, 1.43s/it]
34%|ββββ | 549/1621 [16:53<25:57, 1.45s/it]
34%|ββββ | 550/1621 [16:54<26:54, 1.51s/it]
34%|ββββ | 550/1621 [16:54<26:54, 1.51s/it]
34%|ββββ | 551/1621 [16:56<26:36, 1.49s/it]
34%|ββββ | 552/1621 [16:57<26:14, 1.47s/it]
34%|ββββ | 553/1621 [16:59<25:54, 1.46s/it]
34%|ββββ | 554/1621 [17:00<25:42, 1.45s/it]
34%|ββββ | 555/1621 [17:02<27:30, 1.55s/it]
34%|ββββ | 556/1621 [17:03<27:11, 1.53s/it]
34%|ββββ | 557/1621 [17:05<26:39, 1.50s/it]
34%|ββββ | 558/1621 [17:06<26:10, 1.48s/it]
34%|ββββ | 559/1621 [17:08<25:48, 1.46s/it]
35%|ββββ | 560/1621 [17:09<26:29, 1.50s/it]
35%|βββοΏ½
0: {'loss': 0.27, 'grad_norm': 0.3183396295658571, 'learning_rate': 5e-06, 'memory/max_mem_active(gib)': 35.36, 'memory/max_mem_allocated(gib)': 35.16, 'memory/device_mem_reserved(gib)': 42.93, 'epoch': 0.35}
0: οΏ½ | 560/1621 [17:09<26:29, 1.50s/it]
35%|ββββ | 561/1621 [17:11<26:17, 1.49s/it]
35%|ββββ | 562/1621 [17:12<25:50, 1.46s/it]
35%|ββββ | 563/1621 [17:14<25:33, 1.45s/it]
35%|ββββ | 564/1621 [17:15<25:34, 1.45s/it]
35%|ββββ | 565/1621 [17:16<25:23, 1.44s/it]
35%|ββββ | 566/1621 [17:18<25:08, 1.43s/it]
35%|ββββ | 567/1621 [17:19<24:59, 1.42s/it]
35%|ββββ | 568/1621 [17:21<24:56, 1.42s/it]
35%|ββββ | 569/1621 [17:22<26:16, 1.50s/it]
35%|ββββ | 570/1621 [17:24<26:08, 1.49s/it]
35%|ββββ | 570/1621 [17:24<26:08, 1.49s/it]
35%|ββββ | 571/1621 [17:25<26:08, 1.49s/it]
35%|ββββ | 572/1621 [17:27<25:39, 1.47s/it]
35%|ββββ | 573/1621 [17:28<26:19, 1.51s/it]
35%|ββββ | 574/1621 [17:30<26:44, 1.53s/it]
35%|ββββ | 575/1621 [17:31<26:
0: {'loss': 0.263, 'grad_norm': 0.3045611958885712, 'learning_rate': 5e-06, 'memory/max_mem_active(gib)': 35.36, 'memory/max_mem_allocated(gib)': 35.16, 'memory/device_mem_reserved(gib)': 42.93, 'epoch': 0.36}
0: 20, 1.51s/it]
36%|ββββ | 576/1621 [17:33<26:22, 1.51s/it]
36%|ββββ | 577/1621 [17:34<27:06, 1.56s/it]
36%|ββββ | 578/1621 [17:36<27:20, 1.57s/it]
36%|ββββ | 579/1621 [17:38<26:35, 1.53s/it]
36%|ββββ | 580/1621 [17:39<26:03, 1.50s/it]
36%|ββββ | 580/1621 [17:39<26:03, 1.50s/it]
36%|ββββ | 581/1621 [17:40<25:33, 1.47s/it]
36%|ββββ | 582/1621 [17:42<25:19, 1.46s/it]
36%|ββββ | 583/1621 [17:43<25:56, 1.50s/it]
36%|ββββ | 584/1621 [17:45<25:47, 1.49s/it]
36%|ββββ | 585/1621 [17:46<25:23, 1.47s/it]
36%|ββββ | 586/1621 [17:48<25:18, 1.47s/it]
36%|ββββ | 587/1621 [17:50<26:48, 1.56s/it]
36%|ββββ | 588/1621 [17:51<25:59, 1.51s/it]
36%|ββββ | 589/1621 [17:52<25:32, 1.48s/it]
36%|ββββ | 590/1621 [17:54<25:09, 1.46s/it]
0: {'loss': 0.2654, 'grad_norm': 0.30739048454915474, 'learning_rate': 5e-06, 'memory/max_mem_active(gib)': 35.36, 'memory/max_mem_allocated(gib)': 35.16, 'memory/device_mem_reserved(gib)': 42.93, 'epoch': 0.36}
0: {'loss': 0.2681, 'grad_norm': 0.3042454032840815, 'learning_rate': 5e-06, 'memory/max_mem_active(gib)': 35.36, 'memory/max_mem_allocated(gib)': 35.16, 'memory/device_mem_reserved(gib)': 42.93, 'epoch': 0.37}
0:
36%|ββββ | 590/1621 [17:54<25:09, 1.46s/it]
36%|ββββ | 591/1621 [17:55<24:57, 1.45s/it]
37%|ββββ | 592/1621 [17:57<24:49, 1.45s/it]
37%|ββββ | 593/1621 [17:58<24:36, 1.44s/it]
37%|ββββ | 594/1621 [17:59<24:39, 1.44s/it]
37%|ββββ | 595/1621 [18:01<24:28, 1.43s/it]
37%|ββββ | 596/1621 [18:02<24:23, 1.43s/it]
37%|ββββ | 597/1621 [18:04<24:33, 1.44s/it]
37%|ββββ | 598/1621 [18:05<24:30, 1.44s/it]
37%|ββββ | 599/1621 [18:07<24:27, 1.44s/it]
37%|ββββ | 600/1621 [18:08<24:21, 1.43s/it]
37%|ββββ | 600/1621 [18:08<24:21, 1.43s/it]
37%|ββββ | 601/1621 [18:10<24:19, 1.43s/it]
37%|ββββ | 602/1621 [18:11<24:54, 1.47s/it]
37%|ββββ | 603/1621 [18:12<24:45, 1.46s/it]
37%|ββββ | 604/1621 [18:14<24:34,
0: {'loss': 0.2616, 'grad_norm': 0.30618895900501564, 'learning_rate': 5e-06, 'memory/max_mem_active(gib)': 35.36, 'memory/max_mem_allocated(gib)': 35.16, 'memory/device_mem_reserved(gib)': 42.93, 'epoch': 0.38}
0: 1.45s/it]
37%|ββββ | 605/1621 [18:15<24:26, 1.44s/it]
37%|ββββ | 606/1621 [18:17<24:15, 1.43s/it]
37%|ββββ | 607/1621 [18:18<24:25, 1.45s/it]
38%|ββββ | 608/1621 [18:20<24:17, 1.44s/it]
38%|ββββ | 609/1621 [18:21<25:29, 1.51s/it]
38%|ββββ | 610/1621 [18:23<25:15, 1.50s/it]
38%|ββββ | 610/1621 [18:23<25:15, 1.50s/it]
38%|ββββ | 611/1621 [18:24<25:04, 1.49s/it]
38%|ββββ | 612/1621 [18:26<25:54, 1.54s/it]
38%|ββββ | 613/1621 [18:27<25:13, 1.50s/it]
38%|ββββ | 614/1621 [18:29<24:53, 1.48s/it]
38%|ββββ | 615/1621 [18:30<24:36, 1.47s/it]
38%|ββββ | 616/1621 [18:32<24:54, 1.49s/it]
38%|ββββ | 617/1621 [18:33<24:41, 1.48s/it]
38%|ββββ | 618/1621 [18:35<24:55, 1.49s/it]
38%|ββββ | 619/1621 [18:36<24:38, 1.48s/it]
38%|ββββ
0: {'loss': 0.2613, 'grad_norm': 0.2919650844350329, 'learning_rate': 5e-06, 'memory/max_mem_active(gib)': 35.36, 'memory/max_mem_allocated(gib)': 35.16, 'memory/device_mem_reserved(gib)': 42.93, 'epoch': 0.38}
0: {'loss': 0.2675, 'grad_norm': 0.3040205468853955, 'learning_rate': 5e-06, 'memory/max_mem_active(gib)': 35.36, 'memory/max_mem_allocated(gib)': 35.16, 'memory/device_mem_reserved(gib)': 42.93, 'epoch': 0.39}
0: | 620/1621 [18:38<24:27, 1.47s/it]
38%|ββββ | 620/1621 [18:38<24:27, 1.47s/it]
38%|ββββ | 621/1621 [18:39<24:48, 1.49s/it]
38%|ββββ | 622/1621 [18:41<24:25, 1.47s/it]
38%|ββββ | 623/1621 [18:42<24:41, 1.48s/it]
38%|ββββ | 624/1621 [18:44<24:43, 1.49s/it]
39%|ββββ | 625/1621 [18:45<24:14, 1.46s/it]
39%|ββββ | 626/1621 [18:46<24:02, 1.45s/it]
39%|ββββ | 627/1621 [18:48<23:50, 1.44s/it]
39%|ββββ | 628/1621 [18:49<24:02, 1.45s/it]
39%|ββββ | 629/1621 [18:51<25:00, 1.51s/it]
39%|ββββ | 630/1621 [18:52<24:30, 1.48s/it]
39%|ββββ | 630/1621 [18:52<24:30, 1.48s/it]
39%|ββββ | 631/1621 [18:54<24:21, 1.48s/it]
39%|ββββ | 632/1621 [18:55<24:03, 1.46s/it]
39%|ββββ | 633/1621 [18:57<24:11, 1.4
0: {'loss': 0.2699, 'grad_norm': 0.31062647915000946, 'learning_rate': 5e-06, 'memory/max_mem_active(gib)': 35.36, 'memory/max_mem_allocated(gib)': 35.16, 'memory/device_mem_reserved(gib)': 42.93, 'epoch': 0.39}
0: 7s/it]
39%|ββββ | 634/1621 [18:58<25:13, 1.53s/it]
39%|ββββ | 635/1621 [19:00<24:52, 1.51s/it]
39%|ββββ | 636/1621 [19:01<24:20, 1.48s/it]
39%|ββββ | 637/1621 [19:03<24:52, 1.52s/it]
39%|ββββ | 638/1621 [19:04<24:19, 1.48s/it]
39%|ββββ | 639/1621 [19:06<23:58, 1.47s/it]
39%|ββββ | 640/1621 [19:07<23:49, 1.46s/it]
39%|ββββ | 640/1621 [19:07<23:49, 1.46s/it]
40%|ββββ | 641/1621 [19:09<24:03, 1.47s/it]
40%|ββββ | 642/1621 [19:10<23:51, 1.46s/it]
40%|ββββ | 643/1621 [19:12<23:36, 1.45s/it]
40%|ββββ | 644/1621 [19:13<23:29, 1.44s/it]
40%|ββββ | 645/1621 [19:14<23:22, 1.44s/it]
40%|ββββ | 646/1621 [19:16<23:21, 1.44s/it]
40%|ββββ | 647/1621 [19:17<24:05, 1.48s/it]
40%|ββββ | 648/1621 [19:19<24:15, 1.50s/it]
40%|ββββ
0: {'loss': 0.2618, 'grad_norm': 0.3166654431631163, 'learning_rate': 5e-06, 'memory/max_mem_active(gib)': 35.36, 'memory/max_mem_allocated(gib)': 35.16, 'memory/device_mem_reserved(gib)': 42.93, 'epoch': 0.4}
0: [2025-09-02 19:07:12,499] [INFO] [axolotl.core.trainers.base._save:613] [PID:1478787] [RANK:0] Saving model checkpoint to /lustre/fswork/projects/rech/dgo/udv55np/math/Qwen3-235B-A22B/Qwen2.5-3B_ift/0/checkpoint-650[39m
0: [2025-09-02 19:07:17,316] [INFO] [axolotl.core.trainers.base._save:662] [PID:1478787] [RANK:0] Saving Trainer.data_collator.tokenizer by default as Trainer.processing_class is `None`[39m
0: {'loss': 0.2676, 'grad_norm': 0.3157907525928946, 'learning_rate': 5e-06, 'memory/max_mem_active(gib)': 35.36, 'memory/max_mem_allocated(gib)': 35.16, 'memory/device_mem_reserved(gib)': 42.93, 'epoch': 0.41}
0: | 649/1621 [19:20<23:51, 1.47s/it]
40%|ββββ | 650/1621 [19:22<23:59, 1.48s/it]
40%|ββββ | 650/1621 [19:22<23:59, 1.48s/it]
40%|ββββ | 651/1621 [19:32<1:07:48, 4.19s/it]
40%|ββββ | 652/1621 [19:34<54:15, 3.36s/it]
40%|ββββ | 653/1621 [19:35<45:04, 2.79s/it]
40%|ββββ | 654/1621 [19:37<38:26, 2.39s/it]
40%|ββββ | 655/1621 [19:38<33:59, 2.11s/it]
40%|ββββ | 656/1621 [19:40<30:43, 1.91s/it]
41%|ββββ | 657/1621 [19:41<29:56, 1.86s/it]
41%|ββββ | 658/1621 [19:43<27:43, 1.73s/it]
41%|ββββ | 659/1621 [19:44<26:15, 1.64s/it]
41%|ββββ | 660/1621 [19:46<25:07, 1.57s/it]
41%|ββββ | 660/1621 [19:46<25:07, 1.57s/it]
41%|ββββ | 661/1621 [19:47<24:20, 1.52s/it]
41%|ββββ | 662/1621 [19:49<24:15, 1.5
0: {'loss': 0.2635, 'grad_norm': 0.30820407823108603, 'learning_rate': 5e-06, 'memory/max_mem_active(gib)': 35.36, 'memory/max_mem_allocated(gib)': 35.16, 'memory/device_mem_reserved(gib)': 42.93, 'epoch': 0.41}
0: 2s/it]
41%|ββββ | 663/1621 [19:50<23:57, 1.50s/it]
41%|ββββ | 664/1621 [19:51<23:39, 1.48s/it]
41%|ββββ | 665/1621 [19:53<24:12, 1.52s/it]
41%|ββββ | 666/1621 [19:55<23:55, 1.50s/it]
41%|ββββ | 667/1621 [19:56<25:02, 1.57s/it]
41%|ββββ | 668/1621 [19:58<25:12, 1.59s/it]
41%|βββββ | 669/1621 [19:59<24:22, 1.54s/it]
41%|βββββ | 670/1621 [20:01<23:43, 1.50s/it]
41%|βββββ | 670/1621 [20:01<23:43, 1.50s/it]
41%|βββββ | 671/1621 [20:02<23:20, 1.47s/it]
41%|βββββ | 672/1621 [20:04<23:01, 1.46s/it]
42%|βββββ | 673/1621 [20:05<22:55, 1.45s/it]
42%|βββββ | 674/1621 [20:06<22:44, 1.44s/it]
42%|βββββ | 675/1621 [20:08<22:36, 1.43s/it]
42%|βββββ | 676/1621 [20:09<22:27, 1.43s/it]
42%|βββββ | 677/1621 [20:11<23:34, 1.50s/it]
0: {'loss': 0.2711, 'grad_norm': 0.3083107428928576, 'learning_rate': 5e-06, 'memory/max_mem_active(gib)': 35.36, 'memory/max_mem_allocated(gib)': 35.16, 'memory/device_mem_reserved(gib)': 42.93, 'epoch': 0.42}
0: {'loss': 0.2663, 'grad_norm': 0.3239813055521283, 'learning_rate': 5e-06, 'memory/max_mem_active(gib)': 35.36, 'memory/max_mem_allocated(gib)': 35.16, 'memory/device_mem_reserved(gib)': 42.93, 'epoch': 0.43}
0: 42%|βββββ | 678/1621 [20:13<24:26, 1.56s/it]
42%|βββββ | 679/1621 [20:14<23:53, 1.52s/it]
42%|βββββ | 680/1621 [20:15<23:21, 1.49s/it]
42%|βββββ | 680/1621 [20:15<23:21, 1.49s/it]
42%|βββββ | 681/1621 [20:17<24:32, 1.57s/it]
42%|βββββ | 682/1621 [20:19<24:05, 1.54s/it]
42%|βββββ | 683/1621 [20:20<23:51, 1.53s/it]
42%|βββββ | 684/1621 [20:22<23:35, 1.51s/it]
42%|βββββ | 685/1621 [20:23<23:05, 1.48s/it]
42%|βββββ | 686/1621 [20:24<22:43, 1.46s/it]
42%|βββββ | 687/1621 [20:26<22:29, 1.44s/it]
42%|βββββ | 688/1621 [20:27<22:28, 1.44s/it]
43%|βββββ | 689/1621 [20:29<22:17, 1.44s/it]
43%|βββββ | 690/1621 [20:30<22:19, 1.44s/it]
43%|βββββ | 690/1621 [20:30<22:19, 1.44s/it]
43%|οΏ½
0: {'loss': 0.2664, 'grad_norm': 0.3048360867705897, 'learning_rate': 5e-06, 'memory/max_mem_active(gib)': 35.36, 'memory/max_mem_allocated(gib)': 35.16, 'memory/device_mem_reserved(gib)': 42.93, 'epoch': 0.43}
0: οΏ½οΏ½ββββ | 691/1621 [20:32<22:08, 1.43s/it]
43%|βββββ | 692/1621 [20:33<21:59, 1.42s/it]
43%|βββββ | 693/1621 [20:34<21:54, 1.42s/it]
43%|βββββ | 694/1621 [20:36<21:49, 1.41s/it]
43%|βββββ | 695/1621 [20:37<21:46, 1.41s/it]
43%|βββββ | 696/1621 [20:39<22:08, 1.44s/it]
43%|βββββ | 697/1621 [20:40<22:00, 1.43s/it]
43%|βββββ | 698/1621 [20:41<21:51, 1.42s/it]
43%|βββββ | 699/1621 [20:43<21:43, 1.41s/it]
43%|βββββ | 700/1621 [20:44<21:44, 1.42s/it]
43%|βββββ | 700/1621 [20:44<21:44, 1.42s/it]
43%|βββββ | 701/1621 [20:46<21:50, 1.42s/it]
43%|βββββ | 702/1621 [20:47<21:53, 1.43s/it]
43%|βββββ | 703/1621 [20:49<21:51, 1.43s/it]
43%|βββββ | 704/1621 [20:50<21:44, 1.42s/it]
43%|βββββ | 705/1621 [20:51<21:42, 1.42s/it]
4
0: {'loss': 0.264, 'grad_norm': 0.2919821903782183, 'learning_rate': 5e-06, 'memory/max_mem_active(gib)': 35.36, 'memory/max_mem_allocated(gib)': 35.16, 'memory/device_mem_reserved(gib)': 42.93, 'epoch': 0.44}
0: 4%|βββββ | 706/1621 [20:53<22:05, 1.45s/it]
44%|βββββ | 707/1621 [20:55<23:19, 1.53s/it]
44%|βββββ | 708/1621 [20:56<22:46, 1.50s/it]
44%|βββββ | 709/1621 [20:58<22:52, 1.50s/it]
44%|βββββ | 710/1621 [20:59<22:28, 1.48s/it]
44%|βββββ | 710/1621 [20:59<22:28, 1.48s/it]
44%|βββββ | 711/1621 [21:01<23:08, 1.53s/it]
44%|βββββ | 712/1621 [21:02<22:43, 1.50s/it]
44%|βββββ | 713/1621 [21:04<22:17, 1.47s/it]
44%|βββββ | 714/1621 [21:05<21:58, 1.45s/it]
44%|βββββ | 715/1621 [21:06<22:07, 1.46s/it]
44%|βββββ | 716/1621 [21:08<22:28, 1.49s/it]
44%|βββββ | 717/1621 [21:09<22:01, 1.46s/it]
44%|βββββ | 718/1621 [21:11<21:58, 1.46s/it]
44%|βββββ | 719/1621 [21:12<21:50, 1.45s/it]
44%|βββββ | 720/1621 [21:14<21:39, 1.44s/it
0: {'loss': 0.2624, 'grad_norm': 0.30328239047498634, 'learning_rate': 5e-06, 'memory/max_mem_active(gib)': 35.36, 'memory/max_mem_allocated(gib)': 35.16, 'memory/device_mem_reserved(gib)': 42.93, 'epoch': 0.44}
0: {'loss': 0.2642, 'grad_norm': 0.29982742337438895, 'learning_rate': 5e-06, 'memory/max_mem_active(gib)': 35.36, 'memory/max_mem_allocated(gib)': 35.16, 'memory/device_mem_reserved(gib)': 42.93, 'epoch': 0.45}
0: ]
44%|βββββ | 720/1621 [21:14<21:39, 1.44s/it]
44%|βββββ | 721/1621 [21:15<21:48, 1.45s/it]
45%|βββββ | 722/1621 [21:17<21:43, 1.45s/it]
45%|βββββ | 723/1621 [21:18<22:12, 1.48s/it]
45%|βββββ | 724/1621 [21:20<21:53, 1.46s/it]
45%|βββββ | 725/1621 [21:21<21:42, 1.45s/it]
45%|βββββ | 726/1621 [21:22<21:32, 1.44s/it]
45%|βββββ | 727/1621 [21:24<21:26, 1.44s/it]
45%|βββββ | 728/1621 [21:25<21:19, 1.43s/it]
45%|βββββ | 729/1621 [21:27<21:27, 1.44s/it]
45%|βββββ | 730/1621 [21:28<21:19, 1.44s/it]
45%|βββββ | 730/1621 [21:28<21:19, 1.44s/it]
45%|βββββ | 731/1621 [21:30<21:17, 1.44s/it]
45%|βββββ | 732/1621 [21:31<21:09, 1.43s/it]
45%|βββββ | 733/1621 [21:33<21:36, 1.46s/it]
45
0: {'loss': 0.2673, 'grad_norm': 0.30890762426068, 'learning_rate': 5e-06, 'memory/max_mem_active(gib)': 35.36, 'memory/max_mem_allocated(gib)': 35.16, 'memory/device_mem_reserved(gib)': 42.93, 'epoch': 0.46}
0: %|βββββ | 734/1621 [21:34<22:02, 1.49s/it]
45%|βββββ | 735/1621 [21:36<22:31, 1.53s/it]
45%|βββββ | 736/1621 [21:37<22:03, 1.50s/it]
45%|βββββ | 737/1621 [21:39<21:43, 1.47s/it]
46%|βββββ | 738/1621 [21:40<21:43, 1.48s/it]
46%|βββββ | 739/1621 [21:42<22:17, 1.52s/it]
46%|βββββ | 740/1621 [21:43<21:51, 1.49s/it]
46%|βββββ | 740/1621 [21:43<21:51, 1.49s/it]
46%|βββββ | 741/1621 [21:45<21:39, 1.48s/it]
46%|βββββ | 742/1621 [21:46<21:27, 1.46s/it]
46%|βββββ | 743/1621 [21:47<21:11, 1.45s/it]
46%|βββββ | 744/1621 [21:49<20:59, 1.44s/it]
46%|βββββ | 745/1621 [21:50<20:49, 1.43s/it]
46%|βββββ | 746/1621 [21:52<20:45, 1.42s/it]
46%|βββββ | 747/1621 [21:53<20:59, 1.44s/it]
46%|βββββ | 748/1621 [21:55<20:57, 1.44s/it]
0: {'loss': 0.2591, 'grad_norm': 0.30747963031394887, 'learning_rate': 5e-06, 'memory/max_mem_active(gib)': 35.36, 'memory/max_mem_allocated(gib)': 35.16, 'memory/device_mem_reserved(gib)': 42.93, 'epoch': 0.46}
0: {'loss': 0.2642, 'grad_norm': 0.30645470994710144, 'learning_rate': 5e-06, 'memory/max_mem_active(gib)': 35.36, 'memory/max_mem_allocated(gib)': 35.16, 'memory/device_mem_reserved(gib)': 42.93, 'epoch': 0.47}
0:
46%|βββββ | 749/1621 [21:56<20:53, 1.44s/it]
46%|βββββ | 750/1621 [21:57<20:47, 1.43s/it]
46%|βββββ | 750/1621 [21:57<20:47, 1.43s/it]
46%|βββββ | 751/1621 [21:59<21:09, 1.46s/it]
46%|βββββ | 752/1621 [22:00<21:08, 1.46s/it]
46%|βββββ | 753/1621 [22:02<20:57, 1.45s/it]
47%|βββββ | 754/1621 [22:03<20:46, 1.44s/it]
47%|βββββ | 755/1621 [22:05<20:42, 1.43s/it]
47%|βββββ | 756/1621 [22:06<20:59, 1.46s/it]
47%|βββββ | 757/1621 [22:08<20:53, 1.45s/it]
47%|βββββ | 758/1621 [22:09<21:05, 1.47s/it]
47%|βββββ | 759/1621 [22:10<20:54, 1.45s/it]
47%|βββββ | 760/1621 [22:12<20:42, 1.44s/it]
47%|βββββ | 760/1621 [22:12<20:42, 1.44s/it]
47%|βββββ | 761/1621 [22:13<20:34, 1.44s/it]
47%
0: {'loss': 0.2636, 'grad_norm': 0.3113139232378856, 'learning_rate': 5e-06, 'memory/max_mem_active(gib)': 35.36, 'memory/max_mem_allocated(gib)': 35.16, 'memory/device_mem_reserved(gib)': 42.93, 'epoch': 0.48}
0: |βββββ | 762/1621 [22:15<21:09, 1.48s/it]
47%|βββββ | 763/1621 [22:16<20:51, 1.46s/it]
47%|βββββ | 764/1621 [22:18<21:57, 1.54s/it]
47%|βββββ | 765/1621 [22:19<21:21, 1.50s/it]
47%|βββββ | 766/1621 [22:21<21:06, 1.48s/it]
47%|βββββ | 767/1621 [22:22<20:53, 1.47s/it]
47%|βββββ | 768/1621 [22:24<20:52, 1.47s/it]
47%|βββββ | 769/1621 [22:25<20:38, 1.45s/it]
48%|βββββ | 770/1621 [22:27<20:30, 1.45s/it]
48%|βββββ | 770/1621 [22:27<20:30, 1.45s/it]
48%|βββββ | 771/1621 [22:28<20:23, 1.44s/it]
48%|βββββ | 772/1621 [22:29<20:21, 1.44s/it]
48%|βββββ | 773/1621 [22:31<20:30, 1.45s/it]
48%|βββββ | 774/1621 [22:32<20:20, 1.44s/it]
48%|βββββ | 775/1621 [22:34<20:38, 1.46s/it]
48%|βββββ | 776/1621 [22:35<20:32, 1.46s/it]
0: {'loss': 0.2548, 'grad_norm': 0.29543505645103424, 'learning_rate': 5e-06, 'memory/max_mem_active(gib)': 35.36, 'memory/max_mem_allocated(gib)': 35.16, 'memory/device_mem_reserved(gib)': 42.93, 'epoch': 0.48}
0: {'loss': 0.2602, 'grad_norm': 0.29282257246610377, 'learning_rate': 5e-06, 'memory/max_mem_active(gib)': 35.36, 'memory/max_mem_allocated(gib)': 35.16, 'memory/device_mem_reserved(gib)': 42.93, 'epoch': 0.49}
0: 48%|βββββ | 777/1621 [22:37<20:23, 1.45s/it]
48%|βββββ | 778/1621 [22:38<21:04, 1.50s/it]
48%|βββββ | 779/1621 [22:40<20:51, 1.49s/it]
48%|βββββ | 780/1621 [22:41<20:45, 1.48s/it]
48%|βββββ | 780/1621 [22:41<20:45, 1.48s/it]
48%|βββββ | 781/1621 [22:43<20:41, 1.48s/it]
48%|βββββ | 782/1621 [22:44<20:28, 1.46s/it]
48%|βββββ | 783/1621 [22:46<20:15, 1.45s/it]
48%|βββββ | 784/1621 [22:47<21:18, 1.53s/it]
48%|βββββ | 785/1621 [22:49<20:52, 1.50s/it]
48%|βββββ | 786/1621 [22:50<20:43, 1.49s/it]
49%|βββββ | 787/1621 [22:52<20:25, 1.47s/it]
49%|βββββ | 788/1621 [22:53<20:27, 1.47s/it]
49%|βββββ | 789/1621 [22:55<20:18, 1.46s/it]
49%|βββββ | 790/1621 [22:56<20:58, 1.51s/it]
49%|
0: {'loss': 0.2561, 'grad_norm': 0.30099682495532426, 'learning_rate': 5e-06, 'memory/max_mem_active(gib)': 35.36, 'memory/max_mem_allocated(gib)': 35.16, 'memory/device_mem_reserved(gib)': 42.93, 'epoch': 0.49}
0: βββββ | 790/1621 [22:56<20:58, 1.51s/it]
49%|βββββ | 791/1621 [22:58<20:33, 1.49s/it]
49%|βββββ | 792/1621 [22:59<21:12, 1.53s/it]
49%|βββββ | 793/1621 [23:01<22:04, 1.60s/it]
49%|βββββ | 794/1621 [23:02<21:14, 1.54s/it]
49%|βββββ | 795/1621 [23:04<21:02, 1.53s/it]
49%|βββββ | 796/1621 [23:05<20:32, 1.49s/it]
49%|βββββ | 797/1621 [23:07<20:20, 1.48s/it]
49%|βββββ | 798/1621 [23:08<20:50, 1.52s/it]
49%|βββββ | 799/1621 [23:10<20:49, 1.52s/it]
49%|βββββ | 800/1621 [23:11<20:41, 1.51s/it]
49%|βββββ | 800/1621 [23:11<20:41, 1.51s/it]
49%|βββββ | 801/1621 [23:13<21:04, 1.54s/it]
49%|βββββ | 802/1621 [23:15<20:48, 1.52s/it]
50%|βββββ | 803/1621 [23:16<20:39, 1.52s/it]
50%|βββββ | 804/1621 [23:17<20:16, 1.49s/it]
0: {'loss': 0.2608, 'grad_norm': 0.28990308697565914, 'learning_rate': 5e-06, 'memory/max_mem_active(gib)': 35.36, 'memory/max_mem_allocated(gib)': 35.16, 'memory/device_mem_reserved(gib)': 42.93, 'epoch': 0.5}
0: 50%|βββββ | 805/1621 [23:19<19:57, 1.47s/it]
50%|βββββ | 806/1621 [23:20<19:40, 1.45s/it]
50%|βββββ | 807/1621 [23:22<19:49, 1.46s/it]
50%|βββββ | 808/1621 [23:23<19:48, 1.46s/it]
50%|βββββ | 809/1621 [23:25<19:38, 1.45s/it]
50%|βββββ | 810/1621 [23:26<19:42, 1.46s/it]
50%|βββββ | 810/1621 [23:26<19:42, 1.46s/it]
50%|βββββ | 811/1621 [23:28<19:33, 1.45s/it]
50%|βββββ | 812/1621 [23:29<19:29, 1.45s/it]
50%|βββββ | 813/1621 [23:30<19:39, 1.46s/it]
50%|βββββ | 814/1621 [23:32<19:42, 1.47s/it]
50%|βββββ | 815/1621 [23:33<19:50, 1.48s/it]
50%|βββββ | 816/1621 [23:35<19:37, 1.46s/it]
50%|βββββ | 817/1621 [23:36<19:29, 1.45s/it]
50%|βββββ | 818/1621 [23:38<19:23, 1.45s/it]
51%|βββββ | 819/1621 [23:39<20:23, 1.53s/i
0: {'loss': 0.2593, 'grad_norm': 0.30472493668896977, 'learning_rate': 5e-06, 'memory/max_mem_active(gib)': 35.36, 'memory/max_mem_allocated(gib)': 35.16, 'memory/device_mem_reserved(gib)': 42.93, 'epoch': 0.51}
0: {'loss': 0.2672, 'grad_norm': 0.32931684813090084, 'learning_rate': 5e-06, 'memory/max_mem_active(gib)': 35.36, 'memory/max_mem_allocated(gib)': 35.16, 'memory/device_mem_reserved(gib)': 42.93, 'epoch': 0.51}
0: t]
51%|βββββ | 820/1621 [23:41<19:58, 1.50s/it]
51%|βββββ | 820/1621 [23:41<19:58, 1.50s/it]
51%|βββββ | 821/1621 [23:42<20:06, 1.51s/it]
51%|βββββ | 822/1621 [23:44<19:41, 1.48s/it]
51%|βββββ | 823/1621 [23:45<19:26, 1.46s/it]
51%|βββββ | 824/1621 [23:47<19:14, 1.45s/it]
51%|βββββ | 825/1621 [23:48<19:58, 1.51s/it]
51%|βββββ | 826/1621 [23:50<19:46, 1.49s/it]
51%|βββββ | 827/1621 [23:51<19:27, 1.47s/it]
51%|βββββ | 828/1621 [23:53<19:17, 1.46s/it]
51%|βββββ | 829/1621 [23:54<19:03, 1.44s/it]
51%|βββββ | 830/1621 [23:55<18:52, 1.43s/it]
51%|βββββ | 830/1621 [23:55<18:52, 1.43s/it]
51%|ββββββ | 831/1621 [23:57<18:54, 1.44s/it]
51%|ββββββ | 832/1621 [23:58<18:47, 1.43s/it
0: {'loss': 0.2649, 'grad_norm': 0.3394419476608706, 'learning_rate': 5e-06, 'memory/max_mem_active(gib)': 35.94, 'memory/max_mem_allocated(gib)': 35.16, 'memory/device_mem_reserved(gib)': 42.93, 'epoch': 0.52}
0: ]
51%|ββββββ | 833/1621 [24:00<18:41, 1.42s/it]
51%|ββββββ | 834/1621 [24:01<18:41, 1.43s/it]
52%|ββββββ | 835/1621 [24:03<19:05, 1.46s/it]
52%|ββββββ | 836/1621 [24:04<19:00, 1.45s/it]
52%|ββββββ | 837/1621 [24:06<19:07, 1.46s/it]
52%|ββββββ | 838/1621 [24:07<20:22, 1.56s/it]
52%|ββββββ | 839/1621 [24:09<20:50, 1.60s/it]
52%|ββββββ | 840/1621 [24:11<20:13, 1.55s/it]
52%|ββββββ | 840/1621 [24:11<20:13, 1.55s/it]
52%|ββββββ | 841/1621 [24:12<20:25, 1.57s/it]
52%|ββββββ | 842/1621 [24:14<19:56, 1.54s/it]
52%|ββββββ | 843/1621 [24:15<19:25, 1.50s/it]
52%|ββββββ | 844/1621 [24:16<19:02, 1.47s/it]
52%|ββββββ | 845/1621 [24:18<19:54, 1.54s/it]
52%|ββββββ | 846/1621 [24:20<19:29, 1.51s/it]
52%|ββββββ
0: {'loss': 0.2671, 'grad_norm': 0.2952695242398675, 'learning_rate': 5e-06, 'memory/max_mem_active(gib)': 35.94, 'memory/max_mem_allocated(gib)': 35.16, 'memory/device_mem_reserved(gib)': 42.93, 'epoch': 0.52}
0: {'loss': 0.264, 'grad_norm': 0.29373714171314075, 'learning_rate': 5e-06, 'memory/max_mem_active(gib)': 35.94, 'memory/max_mem_allocated(gib)': 35.16, 'memory/device_mem_reserved(gib)': 42.93, 'epoch': 0.53}
0: | 847/1621 [24:21<19:08, 1.48s/it]
52%|ββββββ | 848/1621 [24:22<18:48, 1.46s/it]
52%|ββββββ | 849/1621 [24:24<19:33, 1.52s/it]
52%|ββββββ | 850/1621 [24:25<19:12, 1.49s/it]
52%|ββββββ | 850/1621 [24:25<19:12, 1.49s/it]
52%|ββββββ | 851/1621 [24:27<18:59, 1.48s/it]
53%|ββββββ | 852/1621 [24:28<18:47, 1.47s/it]
53%|ββββββ | 853/1621 [24:30<18:50, 1.47s/it]
53%|ββββββ | 854/1621 [24:31<18:51, 1.48s/it]
53%|ββββββ | 855/1621 [24:33<19:00, 1.49s/it]
53%|ββββββ | 856/1621 [24:34<18:42, 1.47s/it]
53%|ββββββ | 857/1621 [24:36<18:31, 1.45s/it]
53%|ββββββ | 858/1621 [24:37<18:22, 1.44s/it]
53%|ββββββ | 859/1621 [24:39<18:13, 1.44s/it]
53%|ββββββ | 860/1621 [24:40<18:07, 1.43s/it]
0: {'loss': 0.2591, 'grad_norm': 0.2933249021776934, 'learning_rate': 5e-06, 'memory/max_mem_active(gib)': 35.94, 'memory/max_mem_allocated(gib)': 35.16, 'memory/device_mem_reserved(gib)': 42.93, 'epoch': 0.54}
0: 53%|ββββββ | 860/1621 [24:40<18:07, 1.43s/it]
53%|ββββββ | 861/1621 [24:41<18:09, 1.43s/it]
53%|ββββββ | 862/1621 [24:43<18:04, 1.43s/it]
53%|ββββββ | 863/1621 [24:44<18:10, 1.44s/it]
53%|ββββββ | 864/1621 [24:46<18:52, 1.50s/it]
53%|ββββββ | 865/1621 [24:47<18:33, 1.47s/it]
53%|ββββββ | 866/1621 [24:49<18:23, 1.46s/it]
53%|ββββββ | 867/1621 [24:50<18:17, 1.46s/it]
54%|ββββββ | 868/1621 [24:52<18:29, 1.47s/it]
54%|ββββββ | 869/1621 [24:53<18:18, 1.46s/it]
54%|ββββββ | 870/1621 [24:55<19:23, 1.55s/it]
54%|ββββββ | 870/1621 [24:55<19:23, 1.55s/it]
54%|ββββββ | 871/1621 [24:56<18:54, 1.51s/it]
54%|ββββββ | 872/1621 [24:58<18:38, 1.49s/it]
54%|ββββββ | 873/1621 [24:59<18:37, 1.49s/it]
54%|ββββββ
0: {'loss': 0.2644, 'grad_norm': 0.30874390029265875, 'learning_rate': 5e-06, 'memory/max_mem_active(gib)': 35.94, 'memory/max_mem_allocated(gib)': 35.16, 'memory/device_mem_reserved(gib)': 42.93, 'epoch': 0.54}
0: | 874/1621 [25:01<18:27, 1.48s/it]
54%|ββββββ | 875/1621 [25:02<18:10, 1.46s/it]
54%|ββββββ | 876/1621 [25:04<18:33, 1.49s/it]
54%|ββββββ | 877/1621 [25:05<18:22, 1.48s/it]
54%|ββββββ | 878/1621 [25:07<18:09, 1.47s/it]
54%|ββββββ | 879/1621 [25:08<18:07, 1.47s/it]
54%|ββββββ | 880/1621 [25:09<17:55, 1.45s/it]
54%|ββββββ | 880/1621 [25:09<17:55, 1.45s/it]
54%|ββββββ | 881/1621 [25:11<17:48, 1.44s/it]
54%|ββββββ | 882/1621 [25:12<18:13, 1.48s/it]
54%|ββββββ | 883/1621 [25:14<18:00, 1.46s/it]
55%|ββββββ | 884/1621 [25:15<17:47, 1.45s/it]
55%|ββββββ | 885/1621 [25:17<17:38, 1.44s/it]
55%|ββββββ | 886/1621 [25:18<17:44, 1.45s/it]
55%|ββββββ | 887/1621 [25:20<17:38, 1.44s/it]
55%|ββββββ | 888/1621 [25:21<18:40, 1
0: {'loss': 0.2605, 'grad_norm': 0.334940089088556, 'learning_rate': 5e-06, 'memory/max_mem_active(gib)': 35.94, 'memory/max_mem_allocated(gib)': 35.16, 'memory/device_mem_reserved(gib)': 42.93, 'epoch': 0.55}
0: {'loss': 0.2684, 'grad_norm': 0.3085779318464317, 'learning_rate': 5e-06, 'memory/max_mem_active(gib)': 35.94, 'memory/max_mem_allocated(gib)': 35.16, 'memory/device_mem_reserved(gib)': 42.93, 'epoch': 0.56}
0: .53s/it]
55%|ββββββ | 889/1621 [25:23<18:22, 1.51s/it]
55%|ββββββ | 890/1621 [25:24<18:20, 1.51s/it]
55%|ββββββ | 890/1621 [25:24<18:20, 1.51s/it]
55%|ββββββ | 891/1621 [25:26<18:14, 1.50s/it]
55%|ββββββ | 892/1621 [25:27<17:59, 1.48s/it]
55%|ββββββ | 893/1621 [25:29<17:53, 1.47s/it]
55%|ββββββ | 894/1621 [25:30<17:41, 1.46s/it]
55%|ββββββ | 895/1621 [25:32<17:28, 1.44s/it]
55%|ββββββ | 896/1621 [25:33<17:17, 1.43s/it]
55%|ββββββ | 897/1621 [25:34<17:17, 1.43s/it]
55%|ββββββ | 898/1621 [25:36<17:12, 1.43s/it]
55%|ββββββ | 899/1621 [25:37<17:08, 1.42s/it]
56%|ββββββ | 900/1621 [25:39<18:02, 1.50s/it]
56%|ββββββ | 900/1621 [25:39<18:02, 1.50s/it]
56%|ββββββ |
0: {'loss': 0.2617, 'grad_norm': 0.3477064834521338, 'learning_rate': 5e-06, 'memory/max_mem_active(gib)': 35.94, 'memory/max_mem_allocated(gib)': 35.16, 'memory/device_mem_reserved(gib)': 42.93, 'epoch': 0.56}
0: 901/1621 [25:40<17:53, 1.49s/it]
56%|ββββββ | 902/1621 [25:42<17:34, 1.47s/it]
56%|ββββββ | 903/1621 [25:43<17:22, 1.45s/it]
56%|ββββββ | 904/1621 [25:45<17:11, 1.44s/it]
56%|ββββββ | 905/1621 [25:46<17:11, 1.44s/it]
56%|ββββββ | 906/1621 [25:47<17:05, 1.43s/it]
56%|ββββββ | 907/1621 [25:49<17:01, 1.43s/it]
56%|ββββββ | 908/1621 [25:50<17:02, 1.43s/it]
56%|ββββββ | 909/1621 [25:52<16:57, 1.43s/it]
56%|ββββββ | 910/1621 [25:53<16:56, 1.43s/it]
56%|ββββββ | 910/1621 [25:53<16:56, 1.43s/it]
56%|ββββββ | 911/1621 [25:55<17:24, 1.47s/it]
56%|ββββββ | 912/1621 [25:56<17:12, 1.46s/it]
56%|ββββββ | 913/1621 [25:58<17:01, 1.44s/it]
56%|ββββββ | 914/1621 [25:59<16:54, 1.43s/it]
56%|ββββββ | 915/1621 [26:00<16:51, 1.4
0: {'loss': 0.2648, 'grad_norm': 0.30501036108316015, 'learning_rate': 5e-06, 'memory/max_mem_active(gib)': 35.94, 'memory/max_mem_allocated(gib)': 35.16, 'memory/device_mem_reserved(gib)': 42.93, 'epoch': 0.57}
0: 3s/it]
57%|ββββββ | 916/1621 [26:02<16:43, 1.42s/it]
57%|ββββββ | 917/1621 [26:03<16:37, 1.42s/it]
57%|ββββββ | 918/1621 [26:05<16:36, 1.42s/it]
57%|ββββββ | 919/1621 [26:06<16:35, 1.42s/it]
57%|ββββββ | 920/1621 [26:07<16:36, 1.42s/it]
57%|ββββββ | 920/1621 [26:07<16:36, 1.42s/it]
57%|ββββββ | 921/1621 [26:09<16:35, 1.42s/it]
57%|ββββββ | 922/1621 [26:10<16:34, 1.42s/it]
57%|ββββββ | 923/1621 [26:12<16:43, 1.44s/it]
57%|ββββββ | 924/1621 [26:13<16:43, 1.44s/it]
57%|ββββββ | 925/1621 [26:15<17:29, 1.51s/it]
57%|ββββββ | 926/1621 [26:16<17:09, 1.48s/it]
57%|ββββββ | 927/1621 [26:18<17:02, 1.47s/it]
57%|ββββββ | 928/1621 [26:19<16:50, 1.46s/it]
57%|ββββββ | 929/1621 [26:21<16:44, 1.45s/it]
57%|βββββ
0: {'loss': 0.2639, 'grad_norm': 0.29127250759681794, 'learning_rate': 5e-06, 'memory/max_mem_active(gib)': 35.94, 'memory/max_mem_allocated(gib)': 35.16, 'memory/device_mem_reserved(gib)': 42.93, 'epoch': 0.57}
0: {'loss': 0.2578, 'grad_norm': 0.32113325015435573, 'learning_rate': 5e-06, 'memory/max_mem_active(gib)': 35.94, 'memory/max_mem_allocated(gib)': 35.16, 'memory/device_mem_reserved(gib)': 42.93, 'epoch': 0.58}
0: β | 930/1621 [26:22<16:36, 1.44s/it]
57%|ββββββ | 930/1621 [26:22<16:36, 1.44s/it]
57%|ββββββ | 931/1621 [26:23<16:33, 1.44s/it]
57%|ββββββ | 932/1621 [26:25<16:27, 1.43s/it]
58%|ββββββ | 933/1621 [26:26<16:49, 1.47s/it]
58%|ββββββ | 934/1621 [26:28<16:55, 1.48s/it]
58%|ββββββ | 935/1621 [26:29<16:39, 1.46s/it]
58%|ββββββ | 936/1621 [26:31<16:48, 1.47s/it]
58%|ββββββ | 937/1621 [26:33<17:21, 1.52s/it]
58%|ββββββ | 938/1621 [26:34<17:11, 1.51s/it]
58%|ββββββ | 939/1621 [26:35<17:02, 1.50s/it]
58%|ββββββ | 940/1621 [26:37<16:43, 1.47s/it]
58%|ββββββ | 940/1621 [26:37<16:43, 1.47s/it]
58%|ββββββ | 941/1621 [26:39<17:13, 1.52s/it]
58%|ββββββ | 942/1621 [26:40<17:13, 1.52s
0: {'loss': 0.2557, 'grad_norm': 0.29622986437781335, 'learning_rate': 5e-06, 'memory/max_mem_active(gib)': 35.94, 'memory/max_mem_allocated(gib)': 35.16, 'memory/device_mem_reserved(gib)': 42.93, 'epoch': 0.59}
0: /it]
58%|ββββββ | 943/1621 [26:41<16:51, 1.49s/it]
58%|ββββββ | 944/1621 [26:43<16:36, 1.47s/it]
58%|ββββββ | 945/1621 [26:44<16:31, 1.47s/it]
58%|ββββββ | 946/1621 [26:46<16:23, 1.46s/it]
58%|ββββββ | 947/1621 [26:47<16:17, 1.45s/it]
58%|ββββββ | 948/1621 [26:49<16:09, 1.44s/it]
59%|ββββββ | 949/1621 [26:50<16:20, 1.46s/it]
59%|ββββββ | 950/1621 [26:52<16:26, 1.47s/it]
59%|ββββββ | 950/1621 [26:52<16:26, 1.47s/it]
59%|ββββββ | 951/1621 [26:53<16:15, 1.46s/it]
59%|ββββββ | 952/1621 [26:54<16:06, 1.45s/it]
59%|ββββββ | 953/1621 [26:56<16:42, 1.50s/it]
59%|ββββββ | 954/1621 [26:58<16:25, 1.48s/it]
59%|ββββββ | 955/1621 [26:59<16:13, 1.46s/it]
59%|ββββββ | 956/1621 [27:00<16:10, 1.46s/it]
59%|βββββοΏ½
0: {'loss': 0.2527, 'grad_norm': 0.3334298807383501, 'learning_rate': 5e-06, 'memory/max_mem_active(gib)': 35.94, 'memory/max_mem_allocated(gib)': 35.16, 'memory/device_mem_reserved(gib)': 42.93, 'epoch': 0.59}
0: οΏ½ | 957/1621 [27:02<16:37, 1.50s/it]
59%|ββββββ | 958/1621 [27:04<16:36, 1.50s/it]
59%|ββββββ | 959/1621 [27:05<17:28, 1.58s/it]
59%|ββββββ | 960/1621 [27:07<17:25, 1.58s/it]
59%|ββββββ | 960/1621 [27:07<17:25, 1.58s/it]
59%|ββββββ | 961/1621 [27:08<16:47, 1.53s/it]
59%|ββββββ | 962/1621 [27:10<16:25, 1.50s/it]
59%|ββββββ | 963/1621 [27:11<16:13, 1.48s/it]
59%|ββββββ | 964/1621 [27:13<16:13, 1.48s/it]
60%|ββββββ | 965/1621 [27:14<16:01, 1.47s/it]
60%|ββββββ | 966/1621 [27:15<15:51, 1.45s/it]
60%|ββββββ | 967/1621 [27:17<15:45, 1.45s/it]
60%|ββββββ | 968/1621 [27:18<15:38, 1.44s/it]
60%|ββββββ | 969/1621 [27:20<15:41, 1.44s/it]
60%|ββββββ | 970/1621 [27:21<15:37, 1.44s/it]
0: {'loss': 0.2671, 'grad_norm': 0.3152370154555651, 'learning_rate': 5e-06, 'memory/max_mem_active(gib)': 35.94, 'memory/max_mem_allocated(gib)': 35.16, 'memory/device_mem_reserved(gib)': 42.93, 'epoch': 0.6}
0: [2025-09-02 19:15:19,083] [INFO] [axolotl.core.trainers.base._save:613] [PID:1478787] [RANK:0] Saving model checkpoint to /lustre/fswork/projects/rech/dgo/udv55np/math/Qwen3-235B-A22B/Qwen2.5-3B_ift/0/checkpoint-975[39m
0: [2025-09-02 19:15:23,850] [INFO] [axolotl.core.trainers.base._save:662] [PID:1478787] [RANK:0] Saving Trainer.data_collator.tokenizer by default as Trainer.processing_class is `None`[39m
0: {'loss': 0.2586, 'grad_norm': 0.2761551896866444, 'learning_rate': 5e-06, 'memory/max_mem_active(gib)': 35.94, 'memory/max_mem_allocated(gib)': 35.16, 'memory/device_mem_reserved(gib)': 42.93, 'epoch': 0.6}
0:
60%|ββββββ | 970/1621 [27:21<15:37, 1.44s/it]
60%|ββββββ | 971/1621 [27:23<15:29, 1.43s/it]
60%|ββββββ | 972/1621 [27:24<15:25, 1.43s/it]
60%|ββββββ | 973/1621 [27:25<15:22, 1.42s/it]
60%|ββββββ | 974/1621 [27:27<15:26, 1.43s/it]
60%|ββββββ | 975/1621 [27:28<15:25, 1.43s/it]
60%|ββββββ | 976/1621 [27:39<45:02, 4.19s/it]
60%|ββββββ | 977/1621 [27:40<36:09, 3.37s/it]
60%|ββββββ | 978/1621 [27:42<29:54, 2.79s/it]
60%|ββββββ | 979/1621 [27:43<25:37, 2.39s/it]
60%|ββββββ | 980/1621 [27:45<22:35, 2.11s/it]
60%|ββββββ | 980/1621 [27:45<22:35, 2.11s/it]
61%|ββββββ | 981/1621 [27:46<20:20, 1.91s/it]
61%|ββββββ | 982/1621 [27:48<18:46, 1.76s/it]
61%|ββββββ | 983/1621 [27:49<17:43, 1.67s/it]
61%|ββββββ
0: {'loss': 0.2666, 'grad_norm': 0.3193029520192468, 'learning_rate': 5e-06, 'memory/max_mem_active(gib)': 35.94, 'memory/max_mem_allocated(gib)': 35.16, 'memory/device_mem_reserved(gib)': 42.93, 'epoch': 0.61}
0: | 984/1621 [27:51<17:39, 1.66s/it]
61%|ββββββ | 985/1621 [27:52<16:48, 1.59s/it]
61%|ββββββ | 986/1621 [27:54<16:12, 1.53s/it]
61%|ββββββ | 987/1621 [27:55<15:53, 1.50s/it]
61%|ββββββ | 988/1621 [27:56<15:32, 1.47s/it]
61%|ββββββ | 989/1621 [27:58<16:08, 1.53s/it]
61%|ββββββ | 990/1621 [28:00<16:21, 1.56s/it]
61%|ββββββ | 990/1621 [28:00<16:21, 1.56s/it]
61%|ββββββ | 991/1621 [28:01<15:53, 1.51s/it]
61%|ββββββ | 992/1621 [28:03<15:45, 1.50s/it]
61%|βββββββ | 993/1621 [28:04<15:27, 1.48s/it]
61%|βββββββ | 994/1621 [28:05<15:21, 1.47s/it]
61%|βββββββ | 995/1621 [28:07<15:09, 1.45s/it]
61%|βββββββ | 996/1621 [28:08<15:00, 1.44s/it]
62%|βββββββ | 997/1621 [28:10<15:00, 1.44s/it]
62%|βββββββ | 998/1621 [
0: {'loss': 0.2576, 'grad_norm': 0.32033329683867157, 'learning_rate': 5e-06, 'memory/max_mem_active(gib)': 35.94, 'memory/max_mem_allocated(gib)': 35.16, 'memory/device_mem_reserved(gib)': 42.93, 'epoch': 0.62}
0: {'loss': 0.2554, 'grad_norm': 0.324086242099498, 'learning_rate': 5e-06, 'memory/max_mem_active(gib)': 35.94, 'memory/max_mem_allocated(gib)': 35.16, 'memory/device_mem_reserved(gib)': 42.93, 'epoch': 0.62}
0: 28:11<15:41, 1.51s/it]
62%|βββββββ | 999/1621 [28:13<15:23, 1.48s/it]
62%|βββββββ | 1000/1621 [28:14<15:08, 1.46s/it]
62%|βββββββ | 1000/1621 [28:14<15:08, 1.46s/it]
62%|βββββββ | 1001/1621 [28:16<14:59, 1.45s/it]
62%|βββββββ | 1002/1621 [28:17<14:49, 1.44s/it]
62%|βββββββ | 1003/1621 [28:18<14:42, 1.43s/it]
62%|βββββββ | 1004/1621 [28:20<15:49, 1.54s/it]
62%|βββββββ | 1005/1621 [28:22<15:51, 1.55s/it]
62%|βββββββ | 1006/1621 [28:23<15:26, 1.51s/it]
62%|βββββββ | 1007/1621 [28:25<15:20, 1.50s/it]
62%|βββββββ | 1008/1621 [28:26<15:08, 1.48s/it]
62%|βββββββ | 1009/1621 [28:28<14:58, 1.47s/it]
62%|βββββββ | 1010/1621 [28:29<14:46, 1.45s/it]
62%|βββββββ | 1010/1
0: {'loss': 0.2586, 'grad_norm': 0.2985933975674141, 'learning_rate': 5e-06, 'memory/max_mem_active(gib)': 35.94, 'memory/max_mem_allocated(gib)': 35.16, 'memory/device_mem_reserved(gib)': 42.93, 'epoch': 0.63}
0: 621 [28:29<14:46, 1.45s/it]
62%|βββββββ | 1011/1621 [28:30<14:37, 1.44s/it]
62%|βββββββ | 1012/1621 [28:32<14:59, 1.48s/it]
62%|βββββββ | 1013/1621 [28:33<14:49, 1.46s/it]
63%|βββββββ | 1014/1621 [28:35<14:49, 1.46s/it]
63%|βββββββ | 1015/1621 [28:36<14:39, 1.45s/it]
63%|βββββββ | 1016/1621 [28:38<14:32, 1.44s/it]
63%|βββββββ | 1017/1621 [28:39<14:25, 1.43s/it]
63%|βββββββ | 1018/1621 [28:41<14:34, 1.45s/it]
63%|βββββββ | 1019/1621 [28:42<14:56, 1.49s/it]
63%|βββββββ | 1020/1621 [28:44<14:43, 1.47s/it]
63%|βββββββ | 1020/1621 [28:44<14:43, 1.47s/it]
63%|βββββββ | 1021/1621 [28:45<14:32, 1.45s/it]
63%|βββββββ | 1022/1621 [28:46<14:31, 1.46s/it]
63%|βββββββ | 1023/1621 [28:48<14:39, 1.47s/it]
63%|ββββοΏ½
0: {'loss': 0.2678, 'grad_norm': 0.3133514681538571, 'learning_rate': 5e-06, 'memory/max_mem_active(gib)': 35.94, 'memory/max_mem_allocated(gib)': 35.16, 'memory/device_mem_reserved(gib)': 42.93, 'epoch': 0.64}
0: οΏ½οΏ½ββ | 1024/1621 [28:49<14:33, 1.46s/it]
63%|βββββββ | 1025/1621 [28:51<14:32, 1.46s/it]
63%|βββββββ | 1026/1621 [28:52<14:24, 1.45s/it]
63%|βββββββ | 1027/1621 [28:54<14:16, 1.44s/it]
63%|βββββββ | 1028/1621 [28:55<14:16, 1.45s/it]
63%|βββββββ | 1029/1621 [28:57<14:13, 1.44s/it]
64%|βββββββ | 1030/1621 [28:58<14:04, 1.43s/it]
64%|βββββββ | 1030/1621 [28:58<14:04, 1.43s/it]
64%|βββββββ | 1031/1621 [28:59<14:10, 1.44s/it]
64%|βββββββ | 1032/1621 [29:01<14:05, 1.44s/it]
64%|βββββββ | 1033/1621 [29:02<14:04, 1.44s/it]
64%|βββββββ | 1034/1621 [29:04<14:03, 1.44s/it]
64%|βββββββ | 1035/1621 [29:05<14:03, 1.44s/it]
64%|βββββββ | 1036/1621 [29:07<14:11, 1.46s/it]
64%|βββββββ | 1037/1621 [29:08<14:32, 1.49s/it]
0: {'loss': 0.259, 'grad_norm': 0.29610628515170656, 'learning_rate': 5e-06, 'memory/max_mem_active(gib)': 35.94, 'memory/max_mem_allocated(gib)': 35.16, 'memory/device_mem_reserved(gib)': 42.93, 'epoch': 0.64}
0:
64%|βββββββ | 1038/1621 [29:10<14:23, 1.48s/it]
64%|βββββββ | 1039/1621 [29:11<14:11, 1.46s/it]
64%|βββββββ | 1040/1621 [29:13<14:00, 1.45s/it]
64%|βββββββ | 1040/1621 [29:13<14:00, 1.45s/it]
64%|βββββββ | 1041/1621 [29:14<13:53, 1.44s/it]
64%|βββββββ | 1042/1621 [29:16<14:05, 1.46s/it]
64%|βββββββ | 1043/1621 [29:17<13:57, 1.45s/it]
64%|βββββββ | 1044/1621 [29:18<14:04, 1.46s/it]
64%|βββββββ | 1045/1621 [29:20<14:40, 1.53s/it]
65%|βββββββ | 1046/1621 [29:22<14:23, 1.50s/it]
65%|βββββββ | 1047/1621 [29:23<14:32, 1.52s/it]
65%|βββββββ | 1048/1621 [29:25<14:13, 1.49s/it]
65%|βββββββ | 1049/1621 [29:26<14:21, 1.51s/it]
65%|βββββββ | 1050/1621 [29:28<15:13, 1.60s/it]
0: {'loss': 0.2581, 'grad_norm': 0.36909157148741467, 'learning_rate': 5e-06, 'memory/max_mem_active(gib)': 35.94, 'memory/max_mem_allocated(gib)': 35.16, 'memory/device_mem_reserved(gib)': 42.93, 'epoch': 0.65}
0: {'loss': 0.2554, 'grad_norm': 0.32556652711144385, 'learning_rate': 5e-06, 'memory/max_mem_active(gib)': 35.94, 'memory/max_mem_allocated(gib)': 35.16, 'memory/device_mem_reserved(gib)': 42.93, 'epoch': 0.65}
0:
65%|βββββββ | 1050/1621 [29:28<15:13, 1.60s/it]
65%|βββββββ | 1051/1621 [29:30<15:45, 1.66s/it]
65%|βββββββ | 1052/1621 [29:31<15:01, 1.59s/it]
65%|βββββββ | 1053/1621 [29:33<15:04, 1.59s/it]
65%|βββββββ | 1054/1621 [29:34<14:34, 1.54s/it]
65%|βββββββ | 1055/1621 [29:36<14:18, 1.52s/it]
65%|βββββββ | 1056/1621 [29:37<14:49, 1.57s/it]
65%|βββββββ | 1057/1621 [29:39<14:41, 1.56s/it]
65%|βββββββ | 1058/1621 [29:40<14:14, 1.52s/it]
65%|βββββββ | 1059/1621 [29:42<13:53, 1.48s/it]
65%|βββββββ | 1060/1621 [29:43<13:45, 1.47s/it]
65%|βββββββ | 1060/1621 [29:43<13:45, 1.47s/it]
65%|βββββββ | 1061/1621 [29:45<13:37, 1.46s/it]
66%|βββββββ | 1062/1621 [29:46<13:38, 1.46s/it]
66%|βββββββ | 1063/1621
0: {'loss': 0.2549, 'grad_norm': 0.32018891136312116, 'learning_rate': 5e-06, 'memory/max_mem_active(gib)': 35.94, 'memory/max_mem_allocated(gib)': 35.16, 'memory/device_mem_reserved(gib)': 43.51, 'epoch': 0.66}
0: [29:48<13:44, 1.48s/it]
66%|βββββββ | 1064/1621 [29:49<14:10, 1.53s/it]
66%|βββββββ | 1065/1621 [29:51<13:50, 1.49s/it]
66%|βββββββ | 1066/1621 [29:52<14:10, 1.53s/it]
66%|βββββββ | 1067/1621 [29:54<13:48, 1.50s/it]
66%|βββββββ | 1068/1621 [29:55<13:34, 1.47s/it]
66%|βββββββ | 1069/1621 [29:57<13:34, 1.47s/it]
66%|βββββββ | 1070/1621 [29:58<13:23, 1.46s/it]
66%|βββββββ | 1070/1621 [29:58<13:23, 1.46s/it]
66%|βββββββ | 1071/1621 [29:59<13:20, 1.46s/it]
66%|βββββββ | 1072/1621 [30:01<13:12, 1.44s/it]
66%|βββββββ | 1073/1621 [30:02<13:07, 1.44s/it]
66%|βββββββ | 1074/1621 [30:04<13:01, 1.43s/it]
66%|βββββββ | 1075/1621 [30:05<13:48, 1.52s/it]
66%|βββββββ | 1076/1621 [30:07<13:40, 1.51s/it]
66%|βββββοΏ½
0: {'loss': 0.2636, 'grad_norm': 0.3165670706179018, 'learning_rate': 5e-06, 'memory/max_mem_active(gib)': 35.94, 'memory/max_mem_allocated(gib)': 35.16, 'memory/device_mem_reserved(gib)': 43.51, 'epoch': 0.67}
0: οΏ½οΏ½β | 1077/1621 [30:08<13:31, 1.49s/it]
67%|βββββββ | 1078/1621 [30:10<13:19, 1.47s/it]
67%|βββββββ | 1079/1621 [30:11<13:10, 1.46s/it]
67%|βββββββ | 1080/1621 [30:13<13:01, 1.44s/it]
67%|βββββββ | 1080/1621 [30:13<13:01, 1.44s/it]
67%|βββββββ | 1081/1621 [30:14<12:55, 1.44s/it]
67%|βββββββ | 1082/1621 [30:15<12:49, 1.43s/it]
67%|βββββββ | 1083/1621 [30:17<13:35, 1.52s/it]
67%|βββββββ | 1084/1621 [30:19<13:55, 1.56s/it]
67%|βββββββ | 1085/1621 [30:20<13:34, 1.52s/it]
67%|βββββββ | 1086/1621 [30:22<13:16, 1.49s/it]
67%|βββββββ | 1087/1621 [30:23<13:42, 1.54s/it]
67%|βββββββ | 1088/1621 [30:25<13:28, 1.52s/it]
67%|βββββββ | 1089/1621 [30:26<13:11, 1.49s/it]
67%|βββββββ | 1090/1621 [30:28<13:34, 1.53s/it]
0: {'loss': 0.2623, 'grad_norm': 0.32402128653847556, 'learning_rate': 5e-06, 'memory/max_mem_active(gib)': 35.94, 'memory/max_mem_allocated(gib)': 35.16, 'memory/device_mem_reserved(gib)': 43.51, 'epoch': 0.67}
0: {'loss': 0.2547, 'grad_norm': 0.3385641999618941, 'learning_rate': 5e-06, 'memory/max_mem_active(gib)': 35.94, 'memory/max_mem_allocated(gib)': 35.16, 'memory/device_mem_reserved(gib)': 43.51, 'epoch': 0.68}
0:
67%|βββββββ | 1090/1621 [30:28<13:34, 1.53s/it]
67%|βββββββ | 1091/1621 [30:29<13:20, 1.51s/it]
67%|βββββββ | 1092/1621 [30:31<13:19, 1.51s/it]
67%|βββββββ | 1093/1621 [30:32<13:03, 1.48s/it]
67%|βββββββ | 1094/1621 [30:34<12:51, 1.46s/it]
68%|βββββββ | 1095/1621 [30:35<12:43, 1.45s/it]
68%|βββββββ | 1096/1621 [30:37<13:12, 1.51s/it]
68%|βββββββ | 1097/1621 [30:38<13:12, 1.51s/it]
68%|βββββββ | 1098/1621 [30:40<12:59, 1.49s/it]
68%|βββββββ | 1099/1621 [30:41<13:02, 1.50s/it]
68%|βββββββ | 1100/1621 [30:43<12:51, 1.48s/it]
68%|βββββββ | 1100/1621 [30:43<12:51, 1.48s/it]
68%|βββββββ | 1101/1621 [30:44<13:10, 1.52s/it]
68%|βββββββ | 1102/1621 [30:46<12:59, 1.50s/
0: {'loss': 0.2559, 'grad_norm': 0.30780759695128085, 'learning_rate': 5e-06, 'memory/max_mem_active(gib)': 35.94, 'memory/max_mem_allocated(gib)': 35.16, 'memory/device_mem_reserved(gib)': 43.51, 'epoch': 0.68}
0: it]
68%|βββββββ | 1103/1621 [30:47<12:48, 1.48s/it]
68%|βββββββ | 1104/1621 [30:49<12:43, 1.48s/it]
68%|βββββββ | 1105/1621 [30:50<12:32, 1.46s/it]
68%|βββββββ | 1106/1621 [30:51<12:28, 1.45s/it]
68%|βββββββ | 1107/1621 [30:53<12:26, 1.45s/it]
68%|βββββββ | 1108/1621 [30:54<12:29, 1.46s/it]
68%|βββββββ | 1109/1621 [30:56<12:28, 1.46s/it]
68%|βββββββ | 1110/1621 [30:57<12:19, 1.45s/it]
68%|βββββββ | 1110/1621 [30:57<12:19, 1.45s/it]
69%|βββββββ | 1111/1621 [30:59<12:26, 1.46s/it]
69%|βββββββ | 1112/1621 [31:00<12:24, 1.46s/it]
69%|βββββββ | 1113/1621 [31:02<12:36, 1.49s/it]
69%|βββββββ | 1114/1621 [31:03<12:34, 1.49s/it]
69%|βββββββ | 1115/1621 [31:05<13:06, 1.55s/it]
69%|βββββββ | 1116/1621 [3
0: {'loss': 0.256, 'grad_norm': 0.3035060051707476, 'learning_rate': 5e-06, 'memory/max_mem_active(gib)': 35.94, 'memory/max_mem_allocated(gib)': 35.16, 'memory/device_mem_reserved(gib)': 43.51, 'epoch': 0.69}
0: 1:06<12:51, 1.53s/it]
69%|βββββββ | 1117/1621 [31:08<12:41, 1.51s/it]
69%|βββββββ | 1118/1621 [31:09<12:27, 1.49s/it]
69%|βββββββ | 1119/1621 [31:11<12:19, 1.47s/it]
69%|βββββββ | 1120/1621 [31:12<12:11, 1.46s/it]
69%|βββββββ | 1120/1621 [31:12<12:11, 1.46s/it]
69%|βββββββ | 1121/1621 [31:14<12:18, 1.48s/it]
69%|βββββββ | 1122/1621 [31:15<12:12, 1.47s/it]
69%|βββββββ | 1123/1621 [31:17<12:08, 1.46s/it]
69%|βββββββ | 1124/1621 [31:18<12:06, 1.46s/it]
69%|βββββββ | 1125/1621 [31:20<12:06, 1.46s/it]
69%|βββββββ | 1126/1621 [31:21<11:59, 1.45s/it]
70%|βββββββ | 1127/1621 [31:22<11:57, 1.45s/it]
70%|βββββββ | 1128/1621 [31:24<11:59, 1.46s/it]
70%|βββββββ | 1129/1621 [31:25<12:04, 1.47s/it]
70%|ββββββοΏ½
0: {'loss': 0.2548, 'grad_norm': 0.30070942936522693, 'learning_rate': 5e-06, 'memory/max_mem_active(gib)': 35.94, 'memory/max_mem_allocated(gib)': 35.16, 'memory/device_mem_reserved(gib)': 43.51, 'epoch': 0.7}
0: {'loss': 0.2575, 'grad_norm': 0.31196101931665887, 'learning_rate': 5e-06, 'memory/max_mem_active(gib)': 35.94, 'memory/max_mem_allocated(gib)': 35.16, 'memory/device_mem_reserved(gib)': 43.51, 'epoch': 0.7}
0: οΏ½οΏ½ | 1130/1621 [31:27<11:56, 1.46s/it]
70%|βββββββ | 1130/1621 [31:27<11:56, 1.46s/it]
70%|βββββββ | 1131/1621 [31:28<11:48, 1.45s/it]
70%|βββββββ | 1132/1621 [31:30<11:46, 1.44s/it]
70%|βββββββ | 1133/1621 [31:31<12:06, 1.49s/it]
70%|βββββββ | 1134/1621 [31:33<11:55, 1.47s/it]
70%|βββββββ | 1135/1621 [31:34<11:49, 1.46s/it]
70%|βββββββ | 1136/1621 [31:36<11:41, 1.45s/it]
70%|βββββββ | 1137/1621 [31:37<12:35, 1.56s/it]
70%|βββββββ | 1138/1621 [31:39<12:14, 1.52s/it]
70%|βββββββ | 1139/1621 [31:40<12:05, 1.51s/it]
70%|βββββββ | 1140/1621 [31:42<11:53, 1.48s/it]
70%|βββββββ | 1140/1621 [31:42<11:53, 1.48s/it]
70%|βββββββ | 1141/1621 [31:43<11:49, 1.48s/it]
70%|ββββοΏ½
0: {'loss': 0.2523, 'grad_norm': 0.3316408275634874, 'learning_rate': 5e-06, 'memory/max_mem_active(gib)': 35.94, 'memory/max_mem_allocated(gib)': 35.16, 'memory/device_mem_reserved(gib)': 43.51, 'epoch': 0.71}
0: οΏ½οΏ½ββ | 1142/1621 [31:45<12:06, 1.52s/it]
71%|βββββββ | 1143/1621 [31:46<12:37, 1.59s/it]
71%|βββββββ | 1144/1621 [31:48<12:16, 1.54s/it]
71%|βββββββ | 1145/1621 [31:49<11:56, 1.51s/it]
71%|βββββββ | 1146/1621 [31:51<11:46, 1.49s/it]
71%|βββββββ | 1147/1621 [31:52<11:41, 1.48s/it]
71%|βββββββ | 1148/1621 [31:54<12:11, 1.55s/it]
71%|βββββββ | 1149/1621 [31:55<11:52, 1.51s/it]
71%|βββββββ | 1150/1621 [31:57<12:05, 1.54s/it]
71%|βββββββ | 1150/1621 [31:57<12:05, 1.54s/it]
71%|βββββββ | 1151/1621 [31:59<12:14, 1.56s/it]
71%|βββββββ | 1152/1621 [32:00<12:02, 1.54s/it]
71%|βββββββ | 1153/1621 [32:02<11:55, 1.53s/it]
71%|βββββββ | 1154/1621 [32:03<12:03, 1.55s/it]
71%|ββββββββ | 1155/1621 [32:05<11:42, 1.51s/i
0: {'loss': 0.2534, 'grad_norm': 0.31318013713966153, 'learning_rate': 5e-06, 'memory/max_mem_active(gib)': 35.94, 'memory/max_mem_allocated(gib)': 35.16, 'memory/device_mem_reserved(gib)': 43.51, 'epoch': 0.72}
0: t]
71%|ββββββββ | 1156/1621 [32:06<11:27, 1.48s/it]
71%|ββββββββ | 1157/1621 [32:07<11:24, 1.48s/it]
71%|ββββββββ | 1158/1621 [32:09<11:15, 1.46s/it]
71%|ββββββββ | 1159/1621 [32:10<11:12, 1.46s/it]
72%|ββββββββ | 1160/1621 [32:12<11:08, 1.45s/it]
72%|ββββββββ | 1160/1621 [32:12<11:08, 1.45s/it]
72%|ββββββββ | 1161/1621 [32:13<11:02, 1.44s/it]
72%|ββββββββ | 1162/1621 [32:15<11:02, 1.44s/it]
72%|ββββββββ | 1163/1621 [32:16<10:56, 1.43s/it]
72%|ββββββββ | 1164/1621 [32:18<10:55, 1.43s/it]
72%|ββββββββ | 1165/1621 [32:19<10:55, 1.44s/it]
72%|ββββββββ | 1166/1621 [32:20<10:51, 1.43s/it]
72%|ββββββββ | 1167/1621 [32:22<10:47, 1.43s/it]
72%|ββββββββ | 1168/1621 [32:23<10:48, 1.43s/it]
72%|βββοΏ½
0: {'loss': 0.2614, 'grad_norm': 0.3167000616112638, 'learning_rate': 5e-06, 'memory/max_mem_active(gib)': 35.94, 'memory/max_mem_allocated(gib)': 35.16, 'memory/device_mem_reserved(gib)': 43.51, 'epoch': 0.72}
0: {'loss': 0.2543, 'grad_norm': 0.314470839342128, 'learning_rate': 5e-06, 'memory/max_mem_active(gib)': 35.94, 'memory/max_mem_allocated(gib)': 35.16, 'memory/device_mem_reserved(gib)': 43.51, 'epoch': 0.73}
0: οΏ½ββββ | 1169/1621 [32:25<10:48, 1.43s/it]
72%|ββββββββ | 1170/1621 [32:26<11:20, 1.51s/it]
72%|ββββββββ | 1170/1621 [32:26<11:20, 1.51s/it]
72%|ββββββββ | 1171/1621 [32:28<11:14, 1.50s/it]
72%|ββββββββ | 1172/1621 [32:29<11:02, 1.48s/it]
72%|ββββββββ | 1173/1621 [32:31<10:51, 1.46s/it]
72%|ββββββββ | 1174/1621 [32:32<10:48, 1.45s/it]
72%|ββββββββ | 1175/1621 [32:34<10:55, 1.47s/it]
73%|ββββββββ | 1176/1621 [32:35<10:54, 1.47s/it]
73%|ββββββββ | 1177/1621 [32:37<10:48, 1.46s/it]
73%|ββββββββ | 1178/1621 [32:38<10:45, 1.46s/it]
73%|ββββββββ | 1179/1621 [32:40<11:16, 1.53s/it]
73%|ββββββββ | 1180/1621 [32:41<11:05, 1.51s/it]
73%|ββββββββ | 1180/1621 [32:41<
0: {'loss': 0.2612, 'grad_norm': 0.2997645116358892, 'learning_rate': 5e-06, 'memory/max_mem_active(gib)': 35.94, 'memory/max_mem_allocated(gib)': 35.16, 'memory/device_mem_reserved(gib)': 43.51, 'epoch': 0.73}
0: 11:05, 1.51s/it]
73%|ββββββββ | 1181/1621 [32:43<10:51, 1.48s/it]
73%|ββββββββ | 1182/1621 [32:44<10:42, 1.46s/it]
73%|ββββββββ | 1183/1621 [32:45<10:35, 1.45s/it]
73%|ββββββββ | 1184/1621 [32:47<10:34, 1.45s/it]
73%|ββββββββ | 1185/1621 [32:48<10:30, 1.45s/it]
73%|ββββββββ | 1186/1621 [32:50<10:27, 1.44s/it]
73%|ββββββββ | 1187/1621 [32:51<10:22, 1.43s/it]
73%|ββββββββ | 1188/1621 [32:53<10:24, 1.44s/it]
73%|ββββββββ | 1189/1621 [32:54<10:20, 1.44s/it]
73%|ββββββββ | 1190/1621 [32:55<10:15, 1.43s/it]
73%|ββββββββ | 1190/1621 [32:55<10:15, 1.43s/it]
73%|ββββββββ | 1191/1621 [32:57<10:13, 1.43s/it]
74%|ββββββββ | 1192/1621 [32:58<10:37, 1.49s/it]
74%|ββββββββ | 1193/1621 [33:00<10:28, 1.47s/it]
0: {'loss': 0.2579, 'grad_norm': 0.3118112550629538, 'learning_rate': 5e-06, 'memory/max_mem_active(gib)': 35.94, 'memory/max_mem_allocated(gib)': 35.16, 'memory/device_mem_reserved(gib)': 43.51, 'epoch': 0.74}
0: 74%|ββββββββ | 1194/1621 [33:01<10:21, 1.46s/it]
74%|ββββββββ | 1195/1621 [33:03<10:15, 1.44s/it]
74%|ββββββββ | 1196/1621 [33:04<10:12, 1.44s/it]
74%|ββββββββ | 1197/1621 [33:06<10:06, 1.43s/it]
74%|ββββββββ | 1198/1621 [33:07<10:06, 1.43s/it]
74%|ββββββββ | 1199/1621 [33:08<10:04, 1.43s/it]
74%|ββββββββ | 1200/1621 [33:10<10:00, 1.43s/it]
74%|ββββββββ | 1200/1621 [33:10<10:00, 1.43s/it]
74%|ββββββββ | 1201/1621 [33:11<10:01, 1.43s/it]
74%|ββββββββ | 1202/1621 [33:13<09:57, 1.42s/it]
74%|ββββββββ | 1203/1621 [33:14<10:04, 1.45s/it]
74%|ββββββββ | 1204/1621 [33:16<10:05, 1.45s/it]
74%|ββββββββ | 1205/1621 [33:17<10:05, 1.46s/it]
74%|ββββββββ | 1206/1621 [33:19<09:58, 1.44s/it]
74%|βββββ
0: {'loss': 0.2595, 'grad_norm': 0.3115748471949704, 'learning_rate': 5e-06, 'memory/max_mem_active(gib)': 35.94, 'memory/max_mem_allocated(gib)': 35.16, 'memory/device_mem_reserved(gib)': 43.51, 'epoch': 0.75}
0: βββ | 1207/1621 [33:20<09:53, 1.43s/it]
75%|ββββββββ | 1208/1621 [33:21<09:50, 1.43s/it]
75%|ββββββββ | 1209/1621 [33:23<09:48, 1.43s/it]
75%|ββββββββ | 1210/1621 [33:24<09:43, 1.42s/it]
75%|ββββββββ | 1210/1621 [33:24<09:43, 1.42s/it]
75%|ββββββββ | 1211/1621 [33:26<09:43, 1.42s/it]
75%|ββββββββ | 1212/1621 [33:27<09:42, 1.42s/it]
75%|ββββββββ | 1213/1621 [33:29<09:41, 1.43s/it]
75%|ββββββββ | 1214/1621 [33:30<09:38, 1.42s/it]
75%|ββββββββ | 1215/1621 [33:31<09:47, 1.45s/it]
75%|ββββββββ | 1216/1621 [33:33<09:43, 1.44s/it]
75%|ββββββββ | 1217/1621 [33:34<09:38, 1.43s/it]
75%|ββββββββ | 1218/1621 [33:36<09:39, 1.44s/it]
75%|ββββββββ | 1219/1621 [33:37<09:35, 1.43s/it]
75%|ββββββββ | 1220/1
0: {'loss': 0.2622, 'grad_norm': 0.3260517255087193, 'learning_rate': 5e-06, 'memory/max_mem_active(gib)': 35.94, 'memory/max_mem_allocated(gib)': 35.16, 'memory/device_mem_reserved(gib)': 43.51, 'epoch': 0.75}
0: {'loss': 0.2566, 'grad_norm': 0.29314960466358514, 'learning_rate': 5e-06, 'memory/max_mem_active(gib)': 35.94, 'memory/max_mem_allocated(gib)': 35.16, 'memory/device_mem_reserved(gib)': 43.51, 'epoch': 0.76}
0: 621 [33:39<09:34, 1.43s/it]
75%|ββββββββ | 1220/1621 [33:39<09:34, 1.43s/it]
75%|ββββββββ | 1221/1621 [33:40<09:37, 1.44s/it]
75%|ββββββββ | 1222/1621 [33:41<09:32, 1.43s/it]
75%|ββββββββ | 1223/1621 [33:43<09:30, 1.43s/it]
76%|ββββββββ | 1224/1621 [33:44<09:37, 1.46s/it]
76%|ββββββββ | 1225/1621 [33:46<09:30, 1.44s/it]
76%|ββββββββ | 1226/1621 [33:47<09:26, 1.43s/it]
76%|ββββββββ | 1227/1621 [33:49<09:29, 1.45s/it]
76%|ββββββββ | 1228/1621 [33:50<09:24, 1.44s/it]
76%|ββββββββ | 1229/1621 [33:52<09:18, 1.43s/it]
76%|ββββββββ | 1230/1621 [33:53<09:18, 1.43s/it]
76%|ββββββββ | 1230/1621 [33:53<09:18, 1.43s/it]
76%|ββββββββ | 1231/1621 [33:54<09:20, 1.44s/it]
76%|
0: {'loss': 0.2569, 'grad_norm': 0.3515763746212918, 'learning_rate': 5e-06, 'memory/max_mem_active(gib)': 35.94, 'memory/max_mem_allocated(gib)': 35.16, 'memory/device_mem_reserved(gib)': 43.51, 'epoch': 0.76}
0: ββββββββ | 1232/1621 [33:56<09:17, 1.43s/it]
76%|ββββββββ | 1233/1621 [33:57<09:21, 1.45s/it]
76%|ββββββββ | 1234/1621 [33:59<09:20, 1.45s/it]
76%|ββββββββ | 1235/1621 [34:00<09:14, 1.44s/it]
76%|ββββββββ | 1236/1621 [34:02<09:10, 1.43s/it]
76%|ββββββββ | 1237/1621 [34:03<09:27, 1.48s/it]
76%|ββββββββ | 1238/1621 [34:05<09:22, 1.47s/it]
76%|ββββββββ | 1239/1621 [34:06<09:17, 1.46s/it]
76%|ββββββββ | 1240/1621 [34:07<09:11, 1.45s/it]
76%|ββββββββ | 1240/1621 [34:07<09:11, 1.45s/it]
77%|ββββββββ | 1241/1621 [34:09<09:08, 1.44s/it]
77%|ββββββββ | 1242/1621 [34:10<09:05, 1.44s/it]
77%|ββββββββ | 1243/1621 [34:12<09:03, 1.44s/it]
77%|ββββββββ | 1244/1621 [34:13<09:07, 1.45s/it]
77%|ββββββοΏ½
0: {'loss': 0.2568, 'grad_norm': 0.318913671719499, 'learning_rate': 5e-06, 'memory/max_mem_active(gib)': 35.94, 'memory/max_mem_allocated(gib)': 35.16, 'memory/device_mem_reserved(gib)': 43.51, 'epoch': 0.77}
0: οΏ½οΏ½β | 1245/1621 [34:15<09:02, 1.44s/it]
77%|ββββββββ | 1246/1621 [34:16<09:00, 1.44s/it]
77%|ββββββββ | 1247/1621 [34:18<08:57, 1.44s/it]
77%|ββββββββ | 1248/1621 [34:19<08:55, 1.44s/it]
77%|ββββββββ | 1249/1621 [34:21<09:18, 1.50s/it]
77%|ββββββββ | 1250/1621 [34:22<09:23, 1.52s/it]
77%|ββββββββ | 1250/1621 [34:22<09:23, 1.52s/it]
77%|ββββββββ | 1251/1621 [34:24<09:28, 1.54s/it]
77%|ββββββββ | 1252/1621 [34:25<09:19, 1.52s/it]
77%|ββββββββ | 1253/1621 [34:27<09:18, 1.52s/it]
77%|ββββββββ | 1254/1621 [34:28<09:18, 1.52s/it]
77%|ββββββββ | 1255/1621 [34:30<09:34, 1.57s/it]
77%|ββββββββ | 1256/1621 [34:31<09:15, 1.52s/it]
78%|ββββββββ | 1257/1621 [34:33<09:02, 1.49s/it]
78%|ββββββββ | 1258/1621
0: {'loss': 0.2585, 'grad_norm': 0.3250021337489215, 'learning_rate': 5e-06, 'memory/max_mem_active(gib)': 35.94, 'memory/max_mem_allocated(gib)': 35.16, 'memory/device_mem_reserved(gib)': 43.51, 'epoch': 0.78}
0: {'loss': 0.2579, 'grad_norm': 0.31493837801792507, 'learning_rate': 5e-06, 'memory/max_mem_active(gib)': 35.94, 'memory/max_mem_allocated(gib)': 35.16, 'memory/device_mem_reserved(gib)': 43.51, 'epoch': 0.78}
0: [34:34<08:57, 1.48s/it]
78%|ββββββββ | 1259/1621 [34:36<08:49, 1.46s/it]
78%|ββββββββ | 1260/1621 [34:37<08:46, 1.46s/it]
78%|ββββββββ | 1260/1621 [34:37<08:46, 1.46s/it]
78%|ββββββββ | 1261/1621 [34:39<08:44, 1.46s/it]
78%|ββββββββ | 1262/1621 [34:40<09:09, 1.53s/it]
78%|ββββββββ | 1263/1621 [34:42<08:57, 1.50s/it]
78%|ββββββββ | 1264/1621 [34:43<08:50, 1.48s/it]
78%|ββββββββ | 1265/1621 [34:45<08:45, 1.48s/it]
78%|ββββββββ | 1266/1621 [34:46<08:37, 1.46s/it]
78%|ββββββββ | 1267/1621 [34:47<08:30, 1.44s/it]
78%|ββββββββ | 1268/1621 [34:49<08:48, 1.50s/it]
78%|ββββββββ | 1269/1621 [34:50<08:37, 1.47s/it]
78%|ββββββββ | 1270/1621 [34:52<08:29, 1.45s/it]
78%|βοΏ½
0: {'loss': 0.252, 'grad_norm': 0.30830369578361677, 'learning_rate': 5e-06, 'memory/max_mem_active(gib)': 35.94, 'memory/max_mem_allocated(gib)': 35.16, 'memory/device_mem_reserved(gib)': 43.51, 'epoch': 0.79}
0: οΏ½οΏ½ββββββ | 1270/1621 [34:52<08:29, 1.45s/it]
78%|ββββββββ | 1271/1621 [34:53<08:42, 1.49s/it]
78%|ββββββββ | 1272/1621 [34:55<08:33, 1.47s/it]
79%|ββββββββ | 1273/1621 [34:56<08:28, 1.46s/it]
79%|ββββββββ | 1274/1621 [34:58<08:40, 1.50s/it]
79%|ββββββββ | 1275/1621 [34:59<08:33, 1.48s/it]
79%|ββββββββ | 1276/1621 [35:01<08:26, 1.47s/it]
79%|ββββββββ | 1277/1621 [35:02<08:35, 1.50s/it]
79%|ββββββββ | 1278/1621 [35:04<08:26, 1.48s/it]
79%|ββββββββ | 1279/1621 [35:05<08:23, 1.47s/it]
79%|ββββββββ | 1280/1621 [35:07<08:24, 1.48s/it]
79%|ββββββββ | 1280/1621 [35:07<08:24, 1.48s/it]
79%|ββββββββ | 1281/1621 [35:08<08:18, 1.47s/it]
79%|ββββββββ | 1282/1621 [35:10<08:12, 1.45s/it]
79%|βββββββοΏ½
0: {'loss': 0.2576, 'grad_norm': 0.3198839807651436, 'learning_rate': 5e-06, 'memory/max_mem_active(gib)': 35.94, 'memory/max_mem_allocated(gib)': 35.16, 'memory/device_mem_reserved(gib)': 43.51, 'epoch': 0.8}
0: οΏ½ | 1283/1621 [35:11<08:07, 1.44s/it]
79%|ββββββββ | 1284/1621 [35:13<08:10, 1.46s/it]
79%|ββββββββ | 1285/1621 [35:14<08:06, 1.45s/it]
79%|ββββββββ | 1286/1621 [35:15<08:08, 1.46s/it]
79%|ββββββββ | 1287/1621 [35:17<08:23, 1.51s/it]
79%|ββββββββ | 1288/1621 [35:18<08:13, 1.48s/it]
80%|ββββββββ | 1289/1621 [35:20<08:10, 1.48s/it]
80%|ββββββββ | 1290/1621 [35:21<08:06, 1.47s/it]
80%|ββββββββ | 1290/1621 [35:21<08:06, 1.47s/it]
80%|ββββββββ | 1291/1621 [35:23<08:00, 1.46s/it]
80%|ββββββββ | 1292/1621 [35:24<07:56, 1.45s/it]
80%|ββββββββ | 1293/1621 [35:26<07:56, 1.45s/it]
80%|ββββββββ | 1294/1621 [35:27<07:51, 1.44s/it]
80%|ββββββββ | 1295/1621 [35:29<07:52, 1.45s/it]
80%|ββββββββ | 1296/1621 [35:
0: {'loss': 0.2577, 'grad_norm': 0.3200484579932923, 'learning_rate': 5e-06, 'memory/max_mem_active(gib)': 35.94, 'memory/max_mem_allocated(gib)': 35.16, 'memory/device_mem_reserved(gib)': 43.51, 'epoch': 0.8}
0: [2025-09-02 19:23:26,549] [INFO] [axolotl.core.trainers.base._save:613] [PID:1478787] [RANK:0] Saving model checkpoint to /lustre/fswork/projects/rech/dgo/udv55np/math/Qwen3-235B-A22B/Qwen2.5-3B_ift/0/checkpoint-1300[39m
0: [2025-09-02 19:23:31,543] [INFO] [axolotl.core.trainers.base._save:662] [PID:1478787] [RANK:0] Saving Trainer.data_collator.tokenizer by default as Trainer.processing_class is `None`[39m
0: 30<07:53, 1.46s/it]
80%|ββββββββ | 1297/1621 [35:32<07:52, 1.46s/it]
80%|ββββββββ | 1298/1621 [35:33<07:49, 1.45s/it]
80%|ββββββββ | 1299/1621 [35:34<07:43, 1.44s/it]
80%|ββββββββ | 1300/1621 [35:36<07:42, 1.44s/it]
80%|ββββββββ | 1300/1621 [35:36<07:42, 1.44s/it]
80%|ββββββββ | 1301/1621 [35:47<22:41, 4.25s/it]
80%|ββββββββ | 1302/1621 [35:48<18:06, 3.41s/it]
80%|ββββββββ | 1303/1621 [35:49<14:53, 2.81s/it]
80%|ββββββββ | 1304/1621 [35:51<12:58, 2.46s/it]
81%|ββββββββ | 1305/1621 [35:53<11:20, 2.15s/it]
81%|ββββββββ | 1306/1621 [35:54<10:11, 1.94s/it]
81%|ββββββββ | 1307/1621 [35:55<09:20, 1.79s/it]
81%|ββββββββ | 1308/1621 [35:57<08:43, 1.67s/it]
81%|ββββββββ | 1309/1621 [35:58<08:21, 1.61s/it
0: {'loss': 0.2561, 'grad_norm': 0.32112274253173473, 'learning_rate': 5e-06, 'memory/max_mem_active(gib)': 35.94, 'memory/max_mem_allocated(gib)': 35.16, 'memory/device_mem_reserved(gib)': 43.51, 'epoch': 0.81}
0: {'loss': 0.2534, 'grad_norm': 0.3283578387479428, 'learning_rate': 5e-06, 'memory/max_mem_active(gib)': 35.94, 'memory/max_mem_allocated(gib)': 35.16, 'memory/device_mem_reserved(gib)': 43.51, 'epoch': 0.81}
0: ]
81%|ββββββββ | 1310/1621 [36:00<08:01, 1.55s/it]
81%|ββββββββ | 1310/1621 [36:00<08:01, 1.55s/it]
81%|ββββββββ | 1311/1621 [36:01<07:50, 1.52s/it]
81%|ββββββββ | 1312/1621 [36:03<07:39, 1.49s/it]
81%|ββββββββ | 1313/1621 [36:04<08:01, 1.56s/it]
81%|ββββββββ | 1314/1621 [36:06<08:18, 1.62s/it]
81%|ββββββββ | 1315/1621 [36:08<07:59, 1.57s/it]
81%|ββββββββ | 1316/1621 [36:09<07:47, 1.53s/it]
81%|ββββββββ | 1317/1621 [36:11<07:46, 1.54s/it]
81%|βββββββββ | 1318/1621 [36:12<07:35, 1.50s/it]
81%|βββββββββ | 1319/1621 [36:13<07:28, 1.49s/it]
81%|βββββββββ | 1320/1621 [36:15<07:20, 1.46s/it]
81%|βββββββββ | 1320/1621 [36:15<07:20, 1.46s/it]
81%|ββββββοΏ½
0: {'loss': 0.2488, 'grad_norm': 0.30823559386484073, 'learning_rate': 4.9921089333113855e-06, 'memory/max_mem_active(gib)': 35.94, 'memory/max_mem_allocated(gib)': 35.16, 'memory/device_mem_reserved(gib)': 43.51, 'epoch': 0.82}
0: οΏ½οΏ½ββ | 1321/1621 [36:16<07:15, 1.45s/it]
82%|βββββββββ | 1322/1621 [36:18<07:11, 1.44s/it]
82%|βββββββββ | 1323/1621 [36:19<07:12, 1.45s/it]
82%|βββββββββ | 1324/1621 [36:21<07:06, 1.44s/it]
82%|βββββββββ | 1325/1621 [36:22<07:13, 1.46s/it]
82%|βββββββββ | 1326/1621 [36:23<07:07, 1.45s/it]
82%|βββββββββ | 1327/1621 [36:25<07:01, 1.43s/it]
82%|βββββββββ | 1328/1621 [36:27<07:29, 1.53s/it]
82%|βββββββββ | 1329/1621 [36:28<07:22, 1.52s/it]
82%|βββββββββ | 1330/1621 [36:30<07:13, 1.49s/it]
82%|βββββββββ | 1330/1621 [36:30<07:13, 1.49s/it]
82%|βββββββββ | 1331/1621 [36:31<07:07, 1.47s/it]
82%|βββββββββ | 1332/1621 [36:32<07:03, 1.46s/it]
82%|βββββββββ | 1333/1621 [36:34<06:56, 1.45s/it]
82%|βββοΏ½
0: {'loss': 0.2566, 'grad_norm': 0.30367199165447895, 'learning_rate': 4.96014631413955e-06, 'memory/max_mem_active(gib)': 35.94, 'memory/max_mem_allocated(gib)': 35.16, 'memory/device_mem_reserved(gib)': 43.51, 'epoch': 0.83}
0: οΏ½οΏ½βββββ | 1334/1621 [36:35<06:53, 1.44s/it]
82%|βββββββββ | 1335/1621 [36:37<06:52, 1.44s/it]
82%|βββββββββ | 1336/1621 [36:38<06:47, 1.43s/it]
82%|βββββββββ | 1337/1621 [36:39<06:45, 1.43s/it]
83%|βββββββββ | 1338/1621 [36:41<06:43, 1.43s/it]
83%|βββββββββ | 1339/1621 [36:42<06:40, 1.42s/it]
83%|βββββββββ | 1340/1621 [36:44<06:38, 1.42s/it]
83%|βββββββββ | 1340/1621 [36:44<06:38, 1.42s/it]
83%|βββββββββ | 1341/1621 [36:45<06:48, 1.46s/it]
83%|βββββββββ | 1342/1621 [36:47<06:43, 1.45s/it]
83%|βββββββββ | 1343/1621 [36:48<06:40, 1.44s/it]
83%|βββββββββ | 1344/1621 [36:50<06:36, 1.43s/it]
83%|βββββββββ | 1345/1621 [36:51<06:40, 1.45s/it]
83%|βββββββββ | 1346/1621 [36:53<06:42, 1.46s/it]
83%|οΏ½
0: {'loss': 0.2512, 'grad_norm': 0.2884465188753474, 'learning_rate': 4.903968869447152e-06, 'memory/max_mem_active(gib)': 35.94, 'memory/max_mem_allocated(gib)': 35.16, 'memory/device_mem_reserved(gib)': 43.51, 'epoch': 0.83}
0: οΏ½οΏ½ββββββββ | 1347/1621 [36:54<06:53, 1.51s/it]
83%|βββββββββ | 1348/1621 [36:56<06:48, 1.50s/it]
83%|βββββββββ | 1349/1621 [36:57<06:51, 1.51s/it]
83%|βββββββββ | 1350/1621 [36:59<06:45, 1.49s/it]
83%|βββββββββ | 1350/1621 [36:59<06:45, 1.49s/it]
83%|βββββββββ | 1351/1621 [37:00<06:37, 1.47s/it]
83%|βββββββββ | 1352/1621 [37:01<06:32, 1.46s/it]
83%|βββββββββ | 1353/1621 [37:03<06:27, 1.44s/it]
84%|βββββββββ | 1354/1621 [37:04<06:26, 1.45s/it]
84%|βββββββββ | 1355/1621 [37:06<06:52, 1.55s/it]
84%|βββββββββ | 1356/1621 [37:08<06:39, 1.51s/it]
84%|βββββββββ | 1357/1621 [37:09<07:04, 1.61s/it]
84%|βββββββββ | 1358/1621 [37:11<06:48, 1.55s/it]
84%|βββββββββ | 1359/1621 [37:12<06:40, 1.53s/i
0: {'loss': 0.2567, 'grad_norm': 0.32993917642338455, 'learning_rate': 4.824192091074126e-06, 'memory/max_mem_active(gib)': 35.94, 'memory/max_mem_allocated(gib)': 35.16, 'memory/device_mem_reserved(gib)': 43.51, 'epoch': 0.84}
0: {'loss': 0.2595, 'grad_norm': 0.29082902932313515, 'learning_rate': 4.721690030098693e-06, 'memory/max_mem_active(gib)': 35.94, 'memory/max_mem_allocated(gib)': 35.16, 'memory/device_mem_reserved(gib)': 43.51, 'epoch': 0.85}
0: t]
84%|βββββββββ | 1360/1621 [37:14<06:31, 1.50s/it]
84%|βββββββββ | 1360/1621 [37:14<06:31, 1.50s/it]
84%|βββββββββ | 1361/1621 [37:15<06:25, 1.48s/it]
84%|βββββββββ | 1362/1621 [37:17<06:20, 1.47s/it]
84%|βββββββββ | 1363/1621 [37:18<06:18, 1.47s/it]
84%|βββββββββ | 1364/1621 [37:19<06:14, 1.46s/it]
84%|βββββββββ | 1365/1621 [37:21<06:28, 1.52s/it]
84%|βββββββββ | 1366/1621 [37:23<06:17, 1.48s/it]
84%|βββββββββ | 1367/1621 [37:24<06:20, 1.50s/it]
84%|βββββββββ | 1368/1621 [37:26<06:17, 1.49s/it]
84%|βββββββββ | 1369/1621 [37:27<06:34, 1.56s/it]
85%|βββββββββ | 1370/1621 [37:29<06:25, 1.54s/it]
85%|βββββββββ | 1370/1621 [37:29<06:25, 1.54s/it]
85%|
0: {'loss': 0.2575, 'grad_norm': 0.30422469733818247, 'learning_rate': 4.5975857205508345e-06, 'memory/max_mem_active(gib)': 35.94, 'memory/max_mem_allocated(gib)': 35.16, 'memory/device_mem_reserved(gib)': 43.51, 'epoch': 0.85}
0: βββββββββ | 1371/1621 [37:30<06:17, 1.51s/it]
85%|βββββββββ | 1372/1621 [37:32<06:13, 1.50s/it]
85%|βββββββββ | 1373/1621 [37:33<06:14, 1.51s/it]
85%|βββββββββ | 1374/1621 [37:35<06:07, 1.49s/it]
85%|βββββββββ | 1375/1621 [37:37<06:55, 1.69s/it]
85%|βββββββββ | 1376/1621 [37:38<06:37, 1.62s/it]
85%|βββββββββ | 1377/1621 [37:40<06:24, 1.58s/it]
85%|βββββββββ | 1378/1621 [37:41<06:11, 1.53s/it]
85%|βββββββββ | 1379/1621 [37:43<06:05, 1.51s/it]
85%|βββββββββ | 1380/1621 [37:44<05:57, 1.48s/it]
85%|βββββββββ | 1380/1621 [37:44<05:57, 1.48s/it]
85%|βββββββββ | 1381/1621 [37:45<05:53, 1.47s/it]
85%|βββββββββ | 1382/1621 [37:47<05:48, 1.46s/it]
85%|βββββββββ | 1383/1621 [37:48<05:43, 1.44s/
0: {'loss': 0.2561, 'grad_norm': 0.319920303484507, 'learning_rate': 4.453238875216452e-06, 'memory/max_mem_active(gib)': 35.94, 'memory/max_mem_allocated(gib)': 35.16, 'memory/device_mem_reserved(gib)': 43.51, 'epoch': 0.86}
0: it]
85%|βββββββββ | 1384/1621 [37:50<05:39, 1.43s/it]
85%|βββββββββ | 1385/1621 [37:51<05:39, 1.44s/it]
86%|βββββββββ | 1386/1621 [37:53<05:47, 1.48s/it]
86%|βββββββββ | 1387/1621 [37:54<05:55, 1.52s/it]
86%|βββββββββ | 1388/1621 [37:56<06:00, 1.55s/it]
86%|βββββββββ | 1389/1621 [37:57<05:49, 1.51s/it]
86%|βββββββββ | 1390/1621 [37:59<05:43, 1.49s/it]
86%|βββββββββ | 1390/1621 [37:59<05:43, 1.49s/it]
86%|βββββββββ | 1391/1621 [38:00<05:43, 1.50s/it]
86%|βββββββββ | 1392/1621 [38:02<05:37, 1.48s/it]
86%|βββββββββ | 1393/1621 [38:03<05:35, 1.47s/it]
86%|βββββββββ | 1394/1621 [38:05<05:45, 1.52s/it]
86%|βββββββββ | 1395/1621 [38:07<05:57, 1.58s/it]
86%|βββββββββ | 1396/1621 [38:08<05:48
0: {'loss': 0.2553, 'grad_norm': 0.3046012760094752, 'learning_rate': 4.29023098833955e-06, 'memory/max_mem_active(gib)': 35.94, 'memory/max_mem_allocated(gib)': 35.16, 'memory/device_mem_reserved(gib)': 43.51, 'epoch': 0.86}
0: , 1.55s/it]
86%|βββββββββ | 1397/1621 [38:09<05:37, 1.51s/it]
86%|βββββββββ | 1398/1621 [38:11<05:40, 1.53s/it]
86%|βββββββββ | 1399/1621 [38:13<05:39, 1.53s/it]
86%|βββββββββ | 1400/1621 [38:14<05:32, 1.50s/it]
86%|βββββββββ | 1400/1621 [38:14<05:32, 1.50s/it]
86%|βββββββββ | 1401/1621 [38:15<05:25, 1.48s/it]
86%|βββββββββ | 1402/1621 [38:17<05:35, 1.53s/it]
87%|βββββββββ | 1403/1621 [38:19<05:26, 1.50s/it]
87%|βββββββββ | 1404/1621 [38:20<05:20, 1.48s/it]
87%|βββββββββ | 1405/1621 [38:21<05:15, 1.46s/it]
87%|βββββββββ | 1406/1621 [38:23<05:11, 1.45s/it]
87%|βββββββββ | 1407/1621 [38:24<05:07, 1.44s/it]
87%|βββββββββ | 1408/1621 [38:26<05:10, 1.46s/it]
87%|βββββββββ | 1409/1621 [38
0: {'loss': 0.2563, 'grad_norm': 0.30239637984353285, 'learning_rate': 4.110348008440344e-06, 'memory/max_mem_active(gib)': 35.94, 'memory/max_mem_allocated(gib)': 35.16, 'memory/device_mem_reserved(gib)': 43.51, 'epoch': 0.87}
0: {'loss': 0.2615, 'grad_norm': 0.30827484115318715, 'learning_rate': 3.915560771089544e-06, 'memory/max_mem_active(gib)': 35.94, 'memory/max_mem_allocated(gib)': 35.16, 'memory/device_mem_reserved(gib)': 43.51, 'epoch': 0.88}
0: :27<05:07, 1.45s/it]
87%|βββββββββ | 1410/1621 [38:29<05:06, 1.45s/it]
87%|βββββββββ | 1410/1621 [38:29<05:06, 1.45s/it]
87%|βββββββββ | 1411/1621 [38:30<05:07, 1.47s/it]
87%|βββββββββ | 1412/1621 [38:32<05:03, 1.45s/it]
87%|βββββββββ | 1413/1621 [38:33<05:00, 1.44s/it]
87%|βββββββββ | 1414/1621 [38:35<05:11, 1.51s/it]
87%|βββββββββ | 1415/1621 [38:36<05:15, 1.53s/it]
87%|βββββββββ | 1416/1621 [38:38<05:06, 1.49s/it]
87%|βββββββββ | 1417/1621 [38:39<05:02, 1.48s/it]
87%|βββββββββ | 1418/1621 [38:40<04:57, 1.46s/it]
88%|βββββββββ | 1419/1621 [38:42<04:54, 1.46s/it]
88%|βββββββββ | 1420/1621 [38:43<04:50, 1.45s/it]
88%|βββββββββ | 1420/1621 [38:43<04:5
0: {'loss': 0.2523, 'grad_norm': 0.2940110425585398, 'learning_rate': 3.7080034060214136e-06, 'memory/max_mem_active(gib)': 35.94, 'memory/max_mem_allocated(gib)': 35.16, 'memory/device_mem_reserved(gib)': 43.51, 'epoch': 0.88}
0: 0, 1.45s/it]
88%|βββββββββ | 1421/1621 [38:45<05:00, 1.50s/it]
88%|βββββββββ | 1422/1621 [38:46<04:53, 1.48s/it]
88%|βββββββββ | 1423/1621 [38:48<04:48, 1.46s/it]
88%|βββββββββ | 1424/1621 [38:49<04:45, 1.45s/it]
88%|βββββββββ | 1425/1621 [38:51<04:42, 1.44s/it]
88%|βββββββββ | 1426/1621 [38:52<04:39, 1.43s/it]
88%|βββββββββ | 1427/1621 [38:54<04:41, 1.45s/it]
88%|βββββββββ | 1428/1621 [38:55<04:39, 1.45s/it]
88%|βββββββββ | 1429/1621 [38:56<04:36, 1.44s/it]
88%|βββββββββ | 1430/1621 [38:58<04:43, 1.49s/it]
88%|βββββββββ | 1430/1621 [38:58<04:43, 1.49s/it]
88%|βββββββββ | 1431/1621 [39:00<04:41, 1.48s/it]
88%|βββββββββ | 1432/1621 [39:01<04:36, 1.46s/it]
88%|βββββββββ | 1433/1621 [3
0: {'loss': 0.2507, 'grad_norm': 0.3055514932413729, 'learning_rate': 3.489949955161813e-06, 'memory/max_mem_active(gib)': 35.94, 'memory/max_mem_allocated(gib)': 35.16, 'memory/device_mem_reserved(gib)': 43.51, 'epoch': 0.89}
0: 9:02<04:32, 1.45s/it]
88%|βββββββββ | 1434/1621 [39:04<04:30, 1.45s/it]
89%|βββββββββ | 1435/1621 [39:05<04:34, 1.47s/it]
89%|βββββββββ | 1436/1621 [39:07<04:30, 1.46s/it]
89%|βββββββββ | 1437/1621 [39:08<04:28, 1.46s/it]
89%|βββββββββ | 1438/1621 [39:10<04:28, 1.46s/it]
89%|βββββββββ | 1439/1621 [39:11<04:23, 1.45s/it]
89%|βββββββββ | 1440/1621 [39:13<04:39, 1.54s/it]
89%|βββββββββ | 1440/1621 [39:13<04:39, 1.54s/it]
89%|βββββββββ | 1441/1621 [39:14<04:32, 1.51s/it]
89%|βββββββββ | 1442/1621 [39:16<04:26, 1.49s/it]
89%|βββββββββ | 1443/1621 [39:17<04:21, 1.47s/it]
89%|βββββββββ | 1444/1621 [39:19<04:17, 1.45s/it]
89%|βββββββββ | 1445/1621 [39:20<04:14, 1.45s/it]
89%|βββββββββ | 144
0: {'loss': 0.2592, 'grad_norm': 0.308632847742623, 'learning_rate': 3.263789457748976e-06, 'memory/max_mem_active(gib)': 35.94, 'memory/max_mem_allocated(gib)': 35.16, 'memory/device_mem_reserved(gib)': 43.51, 'epoch': 0.89}
0: 6/1621 [39:21<04:12, 1.44s/it]
89%|βββββββββ | 1447/1621 [39:23<04:12, 1.45s/it]
89%|βββββββββ | 1448/1621 [39:24<04:10, 1.45s/it]
89%|βββββββββ | 1449/1621 [39:26<04:11, 1.46s/it]
89%|βββββββββ | 1450/1621 [39:27<04:14, 1.49s/it]
89%|βββββββββ | 1450/1621 [39:27<04:14, 1.49s/it]
90%|βββββββββ | 1451/1621 [39:29<04:09, 1.47s/it]
90%|βββββββββ | 1452/1621 [39:30<04:06, 1.46s/it]
90%|βββββββββ | 1453/1621 [39:32<04:14, 1.52s/it]
90%|βββββββββ | 1454/1621 [39:34<04:20, 1.56s/it]
90%|βββββββββ | 1455/1621 [39:35<04:12, 1.52s/it]
90%|βββββββββ | 1456/1621 [39:36<04:06, 1.49s/it]
90%|βββββββββ | 1457/1621 [39:38<04:02, 1.48s/it]
90%|βββββββββ | 1458/1621 [39:39<04:03, 1.49s/it]
90%|ββββββββ
0: {'loss': 0.2494, 'grad_norm': 0.2790640815194346, 'learning_rate': 3.031999775519685e-06, 'memory/max_mem_active(gib)': 35.94, 'memory/max_mem_allocated(gib)': 35.16, 'memory/device_mem_reserved(gib)': 43.51, 'epoch': 0.9}
0: {'loss': 0.2612, 'grad_norm': 0.32053738639864715, 'learning_rate': 2.7971204447375534e-06, 'memory/max_mem_active(gib)': 35.96, 'memory/max_mem_allocated(gib)': 35.16, 'memory/device_mem_reserved(gib)': 43.51, 'epoch': 0.91}
0: β | 1459/1621 [39:41<03:57, 1.47s/it]
90%|βββββββββ | 1460/1621 [39:42<03:54, 1.46s/it]
90%|βββββββββ | 1460/1621 [39:42<03:54, 1.46s/it]
90%|βββββββββ | 1461/1621 [39:44<03:52, 1.45s/it]
90%|βββββββββ | 1462/1621 [39:45<03:50, 1.45s/it]
90%|βββββββββ | 1463/1621 [39:47<03:47, 1.44s/it]
90%|βββββββββ | 1464/1621 [39:48<03:54, 1.49s/it]
90%|βββββββββ | 1465/1621 [39:50<04:03, 1.56s/it]
90%|βββββββββ | 1466/1621 [39:52<04:06, 1.59s/it]
90%|βββββββββ | 1467/1621 [39:53<03:56, 1.54s/it]
91%|βββββββββ | 1468/1621 [39:55<03:57, 1.55s/it]
91%|βββββββββ | 1469/1621 [39:56<03:50, 1.51s/it]
91%|βββββββββ | 1470/1621 [39:57<03:44, 1.48s/it]
91%|βββββββββ | 14
0: {'loss': 0.2583, 'grad_norm': 0.30047512075465854, 'learning_rate': 2.561724852502291e-06, 'memory/max_mem_active(gib)': 35.96, 'memory/max_mem_allocated(gib)': 35.16, 'memory/device_mem_reserved(gib)': 43.51, 'epoch': 0.91}
0: 70/1621 [39:57<03:44, 1.48s/it]
91%|βββββββββ | 1471/1621 [39:59<03:49, 1.53s/it]
91%|βββββββββ | 1472/1621 [40:00<03:45, 1.51s/it]
91%|βββββββββ | 1473/1621 [40:02<03:40, 1.49s/it]
91%|βββββββββ | 1474/1621 [40:03<03:35, 1.47s/it]
91%|βββββββββ | 1475/1621 [40:05<03:31, 1.45s/it]
91%|βββββββββ | 1476/1621 [40:06<03:30, 1.45s/it]
91%|βββββββββ | 1477/1621 [40:08<03:28, 1.45s/it]
91%|βββββββββ | 1478/1621 [40:09<03:25, 1.44s/it]
91%|βββββββββ | 1479/1621 [40:10<03:23, 1.43s/it]
91%|ββββββββββ| 1480/1621 [40:12<03:21, 1.43s/it]
91%|ββββββββββ| 1480/1621 [40:12<03:21, 1.43s/it]
91%|ββββββββββ| 1481/1621 [40:13<03:23, 1.45s/it]
91%|ββββββββββ| 1482/1621 [40:15<03:22, 1.45s/it]
91%|βββββ
0: {'loss': 0.2514, 'grad_norm': 0.2898197692202884, 'learning_rate': 2.3283920421821194e-06, 'memory/max_mem_active(gib)': 35.96, 'memory/max_mem_allocated(gib)': 35.16, 'memory/device_mem_reserved(gib)': 43.51, 'epoch': 0.92}
0: βββββ| 1483/1621 [40:16<03:19, 1.44s/it]
92%|ββββββββββ| 1484/1621 [40:18<03:19, 1.46s/it]
92%|ββββββββββ| 1485/1621 [40:19<03:19, 1.47s/it]
92%|ββββββββββ| 1486/1621 [40:21<03:16, 1.45s/it]
92%|ββββββββββ| 1487/1621 [40:22<03:27, 1.55s/it]
92%|ββββββββββ| 1488/1621 [40:24<03:21, 1.51s/it]
92%|ββββββββββ| 1489/1621 [40:25<03:15, 1.48s/it]
92%|ββββββββββ| 1490/1621 [40:27<03:15, 1.49s/it]
92%|ββββββββββ| 1490/1621 [40:27<03:15, 1.49s/it]
92%|ββββββββββ| 1491/1621 [40:28<03:11, 1.47s/it]
92%|ββββββββββ| 1492/1621 [40:30<03:08, 1.46s/it]
92%|ββββββββββ| 1493/1621 [40:31<03:06, 1.46s/it]
92%|ββββββββββ| 1494/1621 [40:33<03:03, 1.44s/it]
92%|ββββββββββ| 1495/1621 [40:34<0
0: {'loss': 0.2493, 'grad_norm': 0.2788921768117285, 'learning_rate': 2.099678456874939e-06, 'memory/max_mem_active(gib)': 35.96, 'memory/max_mem_allocated(gib)': 35.16, 'memory/device_mem_reserved(gib)': 43.51, 'epoch': 0.93}
0: 3:07, 1.49s/it]
92%|ββββββββββ| 1496/1621 [40:36<03:03, 1.47s/it]
92%|ββββββββββ| 1497/1621 [40:37<03:02, 1.47s/it]
92%|ββββββββββ| 1498/1621 [40:38<02:59, 1.46s/it]
92%|ββββββββββ| 1499/1621 [40:40<02:56, 1.44s/it]
93%|ββββββββββ| 1500/1621 [40:41<02:54, 1.44s/it]
93%|ββββββββββ| 1500/1621 [40:41<02:54, 1.44s/it]
93%|ββββββββββ| 1501/1621 [40:43<02:52, 1.44s/it]
93%|ββββββββββ| 1502/1621 [40:44<02:50, 1.43s/it]
93%|ββββββββββ| 1503/1621 [40:46<02:48, 1.43s/it]
93%|ββββββββββ| 1504/1621 [40:47<02:52, 1.47s/it]
93%|ββββββββββ| 1505/1621 [40:49<02:52, 1.48s/it]
93%|ββββββββββ| 1506/1621 [40:50<02:48, 1.47s/it]
93%|ββββββββββ| 1507/1621 [40:51<02:45, 1.45s/it]
93%|ββββοΏ½
0: {'loss': 0.2549, 'grad_norm': 0.292809089573132, 'learning_rate': 1.8780899304827687e-06, 'memory/max_mem_active(gib)': 35.96, 'memory/max_mem_allocated(gib)': 35.16, 'memory/device_mem_reserved(gib)': 43.51, 'epoch': 0.93}
0: οΏ½οΏ½βββββ| 1508/1621 [40:53<02:42, 1.44s/it]
93%|ββββββββββ| 1509/1621 [40:55<02:49, 1.51s/it]
93%|ββββββββββ| 1510/1621 [40:56<02:45, 1.49s/it]
93%|ββββββββββ| 1510/1621 [40:56<02:45, 1.49s/it]
93%|ββββββββββ| 1511/1621 [40:57<02:43, 1.48s/it]
93%|ββββββββββ| 1512/1621 [40:59<02:41, 1.48s/it]
93%|ββββββββββ| 1513/1621 [41:00<02:37, 1.46s/it]
93%|ββββββββββ| 1514/1621 [41:02<02:35, 1.45s/it]
93%|ββββββββββ| 1515/1621 [41:03<02:35, 1.47s/it]
94%|ββββββββββ| 1516/1621 [41:05<02:33, 1.46s/it]
94%|ββββββββββ| 1517/1621 [41:06<02:31, 1.45s/it]
94%|ββββββββββ| 1518/1621 [41:08<02:28, 1.44s/it]
94%|ββββββββββ| 1519/1621 [41:09<02:26, 1.44s/it]
94%|ββββββββββ| 1520/1621 [41:11
0: {'loss': 0.2564, 'grad_norm': 0.3019723689156526, 'learning_rate': 1.6660542332711405e-06, 'memory/max_mem_active(gib)': 35.96, 'memory/max_mem_allocated(gib)': 35.16, 'memory/device_mem_reserved(gib)': 43.51, 'epoch': 0.94}
0: {'loss': 0.2615, 'grad_norm': 0.28458470847453754, 'learning_rate': 1.465894472710029e-06, 'memory/max_mem_active(gib)': 35.96, 'memory/max_mem_allocated(gib)': 35.16, 'memory/device_mem_reserved(gib)': 43.51, 'epoch': 0.94}
0: <02:26, 1.45s/it]
94%|ββββββββββ| 1520/1621 [41:11<02:26, 1.45s/it]
94%|ββββββββββ| 1521/1621 [41:12<02:26, 1.47s/it]
94%|ββββββββββ| 1522/1621 [41:14<02:37, 1.59s/it]
94%|ββββββββββ| 1523/1621 [41:15<02:31, 1.55s/it]
94%|ββββββββββ| 1524/1621 [41:17<02:29, 1.54s/it]
94%|ββββββββββ| 1525/1621 [41:18<02:24, 1.50s/it]
94%|ββββββββββ| 1526/1621 [41:20<02:20, 1.47s/it]
94%|ββββββββββ| 1527/1621 [41:21<02:17, 1.46s/it]
94%|ββββββββββ| 1528/1621 [41:23<02:14, 1.44s/it]
94%|ββββββββββ| 1529/1621 [41:24<02:12, 1.44s/it]
94%|ββββββββββ| 1530/1621 [41:25<02:10, 1.44s/it]
94%|ββββββββββ| 1530/1621 [41:25<02:10, 1.44s/it]
94%|ββββββββββ
0: {'loss': 0.2471, 'grad_norm': 0.28628626975937854, 'learning_rate': 1.2798036410222628e-06, 'memory/max_mem_active(gib)': 35.96, 'memory/max_mem_allocated(gib)': 35.16, 'memory/device_mem_reserved(gib)': 43.51, 'epoch': 0.95}
0: | 1531/1621 [41:27<02:11, 1.46s/it]
95%|ββββββββββ| 1532/1621 [41:28<02:08, 1.45s/it]
95%|ββββββββββ| 1533/1621 [41:30<02:10, 1.49s/it]
95%|ββββββββββ| 1534/1621 [41:31<02:08, 1.47s/it]
95%|ββββββββββ| 1535/1621 [41:33<02:10, 1.51s/it]
95%|ββββββββββ| 1536/1621 [41:34<02:06, 1.48s/it]
95%|ββββββββββ| 1537/1621 [41:36<02:13, 1.59s/it]
95%|ββββββββββ| 1538/1621 [41:38<02:14, 1.62s/it]
95%|ββββββββββ| 1539/1621 [41:39<02:08, 1.56s/it]
95%|ββββββββββ| 1540/1621 [41:41<02:04, 1.53s/it]
95%|ββββββββββ| 1540/1621 [41:41<02:04, 1.53s/it]
95%|ββββββββββ| 1541/1621 [41:42<02:00, 1.51s/it]
95%|ββββββββββ| 1542/1621 [41:44<01:56, 1.48s/it]
95%|ββββββββββ| 1543/1621 [41:45<01:53, 1.46s/it
0: {'loss': 0.2498, 'grad_norm': 0.2849557358168061, 'learning_rate': 1.1098205883018246e-06, 'memory/max_mem_active(gib)': 35.96, 'memory/max_mem_allocated(gib)': 35.16, 'memory/device_mem_reserved(gib)': 43.51, 'epoch': 0.96}
0: ]
95%|ββββββββββ| 1544/1621 [41:46<01:51, 1.44s/it]
95%|ββββββββββ| 1545/1621 [41:48<01:49, 1.44s/it]
95%|ββββββββββ| 1546/1621 [41:49<01:47, 1.44s/it]
95%|ββββββββββ| 1547/1621 [41:51<01:46, 1.43s/it]
95%|ββββββββββ| 1548/1621 [41:52<01:44, 1.43s/it]
96%|ββββββββββ| 1549/1621 [41:54<01:42, 1.43s/it]
96%|ββββββββββ| 1550/1621 [41:55<01:42, 1.44s/it]
96%|ββββββββββ| 1550/1621 [41:55<01:42, 1.44s/it]
96%|ββββββββββ| 1551/1621 [41:57<01:40, 1.43s/it]
96%|ββββββββββ| 1552/1621 [41:58<01:42, 1.49s/it]
96%|ββββββββββ| 1553/1621 [42:00<01:40, 1.47s/it]
96%|ββββββββββ| 1554/1621 [42:01<01:38, 1.47s/it]
96%|ββββββββββ| 1555/1621 [42:02<01:36, 1.47s/it]
96%|βββββββββοΏ½
0: {'loss': 0.2488, 'grad_norm': 0.28016585021963597, 'learning_rate': 9.578076844455587e-07, 'memory/max_mem_active(gib)': 35.96, 'memory/max_mem_allocated(gib)': 35.16, 'memory/device_mem_reserved(gib)': 43.51, 'epoch': 0.96}
0: οΏ½οΏ½| 1556/1621 [42:04<01:34, 1.46s/it]
96%|ββββββββββ| 1557/1621 [42:05<01:32, 1.44s/it]
96%|ββββββββββ| 1558/1621 [42:07<01:30, 1.44s/it]
96%|ββββββββββ| 1559/1621 [42:08<01:31, 1.48s/it]
96%|ββββββββββ| 1560/1621 [42:10<01:30, 1.48s/it]
96%|ββββββββββ| 1560/1621 [42:10<01:30, 1.48s/it]
96%|ββββββββββ| 1561/1621 [42:11<01:27, 1.46s/it]
96%|ββββββββββ| 1562/1621 [42:13<01:25, 1.44s/it]
96%|ββββββββββ| 1563/1621 [42:14<01:24, 1.45s/it]
96%|ββββββββββ| 1564/1621 [42:16<01:22, 1.45s/it]
97%|ββββββββββ| 1565/1621 [42:17<01:20, 1.44s/it]
97%|ββββββββββ| 1566/1621 [42:18<01:19, 1.44s/it]
97%|ββββββββββ| 1567/1621 [42:20<01:17, 1.43s/it]
97%|ββββββββββ| 1568/1621 [42:21<01:16, 1.44s/
0: {'loss': 0.2597, 'grad_norm': 0.2927629804951191, 'learning_rate': 8.254304146388603e-07, 'memory/max_mem_active(gib)': 35.96, 'memory/max_mem_allocated(gib)': 35.16, 'memory/device_mem_reserved(gib)': 43.51, 'epoch': 0.97}
0: it]
97%|ββββββββββ| 1569/1621 [42:23<01:15, 1.46s/it]
97%|ββββββββββ| 1570/1621 [42:24<01:16, 1.50s/it]
97%|ββββββββββ| 1570/1621 [42:24<01:16, 1.50s/it]
97%|ββββββββββ| 1571/1621 [42:26<01:13, 1.48s/it]
97%|ββββββββββ| 1572/1621 [42:27<01:13, 1.50s/it]
97%|ββββββββββ| 1573/1621 [42:29<01:11, 1.49s/it]
97%|ββββββββββ| 1574/1621 [42:30<01:09, 1.48s/it]
97%|ββββββββββ| 1575/1621 [42:32<01:07, 1.46s/it]
97%|ββββββββββ| 1576/1621 [42:33<01:05, 1.46s/it]
97%|ββββββββββ| 1577/1621 [42:35<01:04, 1.45s/it]
97%|ββββββββββ| 1578/1621 [42:36<01:02, 1.45s/it]
97%|ββββββββββ| 1579/1621 [42:37<01:00, 1.44s/it]
97%|ββββββββββ| 1580/1621 [42:39<00:58, 1.44s/it]
0: {'loss': 0.2517, 'grad_norm': 0.2752181427419336, 'learning_rate': 7.141391319514565e-07, 'memory/max_mem_active(gib)': 35.96, 'memory/max_mem_allocated(gib)': 35.16, 'memory/device_mem_reserved(gib)': 43.51, 'epoch': 0.97}
0: {'loss': 0.2526, 'grad_norm': 0.2740685329096038, 'learning_rate': 6.251531669656679e-07, 'memory/max_mem_active(gib)': 35.96, 'memory/max_mem_allocated(gib)': 35.16, 'memory/device_mem_reserved(gib)': 43.51, 'epoch': 0.98}
0:
97%|ββββββββββ| 1580/1621 [42:39<00:58, 1.44s/it]
98%|ββββββββββ| 1581/1621 [42:40<00:58, 1.46s/it]
98%|ββββββββββ| 1582/1621 [42:42<00:56, 1.44s/it]
98%|ββββββββββ| 1583/1621 [42:43<00:54, 1.44s/it]
98%|ββββββββββ| 1584/1621 [42:45<00:53, 1.44s/it]
98%|ββββββββββ| 1585/1621 [42:46<00:51, 1.44s/it]
98%|ββββββββββ| 1586/1621 [42:48<00:50, 1.43s/it]
98%|ββββββββββ| 1587/1621 [42:49<00:49, 1.44s/it]
98%|ββββββββββ| 1588/1621 [42:51<00:48, 1.48s/it]
98%|ββββββββββ| 1589/1621 [42:52<00:46, 1.46s/it]
98%|ββββββββββ| 1590/1621 [42:53<00:44, 1.45s/it]
98%|ββββββββββ| 1590/1621 [42:53<00:44, 1.45s/it]
98%|ββββββββββ| 1591/1621 [42:55<00:43, 1.45s/it]
98%|ββοΏ½
0: {'loss': 0.2544, 'grad_norm': 0.29567761780713164, 'learning_rate': 5.594474685353894e-07, 'memory/max_mem_active(gib)': 35.96, 'memory/max_mem_allocated(gib)': 35.16, 'memory/device_mem_reserved(gib)': 43.51, 'epoch': 0.99}
0: οΏ½βββββββ| 1592/1621 [42:56<00:41, 1.44s/it]
98%|ββββββββββ| 1593/1621 [42:58<00:41, 1.47s/it]
98%|ββββββββββ| 1594/1621 [43:00<00:41, 1.55s/it]
98%|ββββββββββ| 1595/1621 [43:01<00:39, 1.50s/it]
98%|ββββββββββ| 1596/1621 [43:02<00:37, 1.50s/it]
99%|ββββββββββ| 1597/1621 [43:04<00:35, 1.48s/it]
99%|ββββββββββ| 1598/1621 [43:05<00:33, 1.46s/it]
99%|ββββββββββ| 1599/1621 [43:07<00:32, 1.46s/it]
99%|ββββββββββ| 1600/1621 [43:08<00:30, 1.45s/it]
99%|ββββββββββ| 1600/1621 [43:08<00:30, 1.45s/it]
99%|ββββββββββ| 1601/1621 [43:10<00:29, 1.47s/it]
99%|ββββββββββ| 1602/1621 [43:11<00:27, 1.45s/it]
99%|ββββββββββ| 1603/1621 [43:13<00:26, 1.48s/it]
99%|ββββββββββ| 1604/1621 [
0: {'loss': 0.2525, 'grad_norm': 0.28413860743448904, 'learning_rate': 5.177419220424251e-07, 'memory/max_mem_active(gib)': 35.96, 'memory/max_mem_allocated(gib)': 35.16, 'memory/device_mem_reserved(gib)': 43.51, 'epoch': 0.99}
0: 43:14<00:24, 1.47s/it]
99%|ββββββββββ| 1605/1621 [43:16<00:24, 1.52s/it]
99%|ββββββββββ| 1606/1621 [43:17<00:22, 1.50s/it]
99%|ββββββββββ| 1607/1621 [43:19<00:20, 1.50s/it]
99%|ββββββββββ| 1608/1621 [43:20<00:19, 1.47s/it]
99%|ββββββββββ| 1609/1621 [43:22<00:18, 1.51s/it]
99%|ββββββββββ| 1610/1621 [43:23<00:16, 1.49s/it]
99%|ββββββββββ| 1610/1621 [43:23<00:16, 1.49s/it]
99%|ββββββββββ| 1611/1621 [43:25<00:14, 1.47s/it]
99%|ββββββββββ| 1612/1621 [43:26<00:13, 1.46s/it]
100%|ββββββββββ| 1613/1621 [43:27<00:11, 1.47s/it]
100%|ββββββββββ| 1614/1621 [43:29<00:10, 1.45s/it]
100%|ββββββββββ| 1615/1621 [43:30<00:08, 1.45s/it]
100%|ββββββββββ| 1616/1621 [43:32<00:07, 1.44s/it]
100%|ββ
0: {'loss': 0.2512, 'grad_norm': 0.26094743319216807, 'learning_rate': 5.004934621815976e-07, 'memory/max_mem_active(gib)': 35.96, 'memory/max_mem_allocated(gib)': 35.16, 'memory/device_mem_reserved(gib)': 43.51, 'epoch': 1.0}
0: [2025-09-02 19:31:38,125] [INFO] [axolotl.core.trainers.base._save:613] [PID:1478787] [RANK:0] Saving model checkpoint to /lustre/fswork/projects/rech/dgo/udv55np/math/Qwen3-235B-A22B/Qwen2.5-3B_ift/0/checkpoint-1621[39m
0: [2025-09-02 19:31:42,994] [INFO] [axolotl.core.trainers.base._save:662] [PID:1478787] [RANK:0] Saving Trainer.data_collator.tokenizer by default as Trainer.processing_class is `None`[39m
0: {'train_runtime': 2637.1175, 'train_samples_per_second': 9.835, 'train_steps_per_second': 0.615, 'train_loss': 0.26498376052737016, 'memory/max_mem_active(gib)': 35.96, 'memory/max_mem_allocated(gib)': 35.16, 'memory/device_mem_reserved(gib)': 43.51, 'epoch': 1.0}
0: ββββββββ| 1617/1621 [43:33<00:05, 1.44s/it]
100%|ββββββββββ| 1618/1621 [43:35<00:04, 1.44s/it]
100%|ββββββββββ| 1619/1621 [43:36<00:02, 1.44s/it]
100%|ββββββββββ| 1620/1621 [43:38<00:01, 1.45s/it]
100%|ββββββββββ| 1620/1621 [43:38<00:01, 1.45s/it]
100%|ββββββββββ| 1621/1621 [43:48<00:00, 4.02s/it]
100%|ββββββββββ| 1621/1621 [43:57<00:00, 4.02s/it]
100%|ββββββββββ| 1621/1621 [43:57<00:00, 1.63s/it]
0: [2025-09-02 19:31:45,684] [INFO] [axolotl.train.save_trained_model:228] [PID:1478787] [RANK:0] Training completed! Saving trained model to /lustre/fswork/projects/rech/dgo/udv55np/math/Qwen3-235B-A22B/Qwen2.5-3B_ift/0.[39m
0: [2025-09-02 19:31:47,159] [INFO] [axolotl.core.trainers.base._save:613] [PID:1478787] [RANK:0] Saving model checkpoint to /lustre/fswork/projects/rech/dgo/udv55np/math/Qwen3-235B-A22B/Qwen2.5-3B_ift/0[39m
0: [2025-09-02 19:31:51,888] [INFO] [axolotl.core.trainers.base._save:662] [PID:1478787] [RANK:0] Saving Trainer.data_collator.tokenizer by default as Trainer.processing_class is `None`[39m
0: [2025-09-02 19:31:52,303] [INFO] [axolotl.train.save_trained_model:350] [PID:1478787] [RANK:0] Model successfully saved to /lustre/fswork/projects/rech/dgo/udv55np/math/Qwen3-235B-A22B/Qwen2.5-3B_ift/0[39m
|