--- library_name: transformers license: mit base_model: deepset/gbert-large tags: - generated_from_trainer metrics: - precision - recall - f1 model-index: - name: flausch_span_gbert-large_all results: [] --- # flausch_span_gbert-large_all This model is a fine-tuned version of [deepset/gbert-large](https://huggingface.co/deepset/gbert-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2622 - Model Preparation Time: 0.0328 - Precision: 0.4348 - Recall: 0.5821 - F1: 0.4978 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Model Preparation Time | Precision | Recall | F1 | |:-------------:|:------:|:----:|:---------------:|:----------------------:|:---------:|:------:|:------:| | 0.9007 | 0.2822 | 500 | 0.7977 | 0.0328 | 0.0 | 0.0 | 0.0 | | 0.7223 | 0.5643 | 1000 | 0.6214 | 0.0328 | 0.2047 | 0.1514 | 0.1741 | | 0.5327 | 0.8465 | 1500 | 0.4041 | 0.0328 | 0.2262 | 0.3583 | 0.2773 | | 0.3691 | 1.1287 | 2000 | 0.3349 | 0.0328 | 0.2819 | 0.4330 | 0.3415 | | 0.3021 | 1.4108 | 2500 | 0.3013 | 0.0328 | 0.3222 | 0.4524 | 0.3764 | | 0.2548 | 1.6930 | 3000 | 0.2655 | 0.0328 | 0.3821 | 0.5263 | 0.4428 | | 0.2744 | 1.9752 | 3500 | 0.2666 | 0.0328 | 0.3072 | 0.4037 | 0.3489 | | 0.1874 | 2.2573 | 4000 | 0.2803 | 0.0328 | 0.4124 | 0.5461 | 0.4700 | | 0.1767 | 2.5395 | 4500 | 0.2625 | 0.0328 | 0.4421 | 0.5802 | 0.5018 | | 0.1708 | 2.8217 | 5000 | 0.2622 | 0.0328 | 0.4348 | 0.5821 | 0.4978 | ### Framework versions - Transformers 4.52.4 - Pytorch 2.6.0+cu124 - Datasets 2.14.4 - Tokenizers 0.21.1