--- library_name: transformers license: mit base_model: deepset/gbert-large tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: results_flausch_classification_gbert-large_span_classifier results: [] --- # results_flausch_classification_gbert-large_span_classifier This model is a fine-tuned version of [deepset/gbert-large](https://huggingface.co/deepset/gbert-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3241 - Accuracy: 0.9305 - F1: 0.9287 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:------:|:----:|:---------------:|:--------:|:------:| | 0.5824 | 0.6588 | 500 | 0.3772 | 0.8941 | 0.8920 | | 0.3311 | 1.3175 | 1000 | 0.3267 | 0.9137 | 0.9124 | | 0.2542 | 1.9763 | 1500 | 0.2943 | 0.9249 | 0.9231 | | 0.1611 | 2.6350 | 2000 | 0.3241 | 0.9305 | 0.9287 | ### Framework versions - Transformers 4.52.4 - Pytorch 2.6.0+cu124 - Datasets 2.14.4 - Tokenizers 0.21.1