--- language: - en license: mit library_name: peft tags: - peft - text2text-generation - text-generation base_model: google/mt5-large --- # PTHQL_language_English This is the English (eng_Latn) Phylogenetic Tree Hierarquical QLoRAs (PTHQL) adapter from [Generating from AMRs into High and Low-Resource Languages using Phylogenetic Knowledge and Hierarchical QLoRA Training (HQL)](https://aclanthology.org/2024.inlg-main.7/) used for AMR-to-Text generation. # Use This model is the last of 4 hierarquical LoRAs. It is strongly adviseable to load all 4 LoRAs in order. The following is minimal code to generate English text from an AMR graph: ``` from transformers import MT5ForConditionalGeneration, AutoTokenizer from peft import PeftModel model = MT5ForConditionalGeneration.from_pretrained('google/mt5-large') tokennizer = AutoTokenizer.from_pretrained('google/mt5-large') model = PeftModel.from_pretrained(model, 'WilliamSotoM/PTHQL_level0_Indo_European') model = model.merge_and_unload() model = PeftModel.from_pretrained(model, 'WilliamSotoM/PTHQL_level1_Germanic') model = model.merge_and_unload() model = PeftModel.from_pretrained(model, 'WilliamSotoM/PTHQL_level2_North_Sea_Germanic') model = model.merge_and_unload() model = PeftModel.from_pretrained(model, 'WilliamSotoM/PTHQL_language_English') model = model.merge_and_unload() graph = ''' (w / want-01 :ARG0 (b / boy) :ARG1 (b2 / believe-01 :ARG0 (g / girl) :ARG1 b)) ''' tokenized_input = tokenizer(graph, return_tensors='pt') with torch.inference_mode(): prediction = model.generate(**tokenized_input) generated_text = tokenizer.batch_decode(prediction, skip_special_tokens=True)[0] print(f'Generated text:', generated_text) ``` Expected outpu: ``` The boy wants the girl to believe him. ```