{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f2d65d9cbc0>"}, "verbose": 1, "policy_kwargs": {":type:": "", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 100000, "_total_timesteps": 100000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1689099041258004824, "learning_rate": 0.00096, "tensorboard_log": null, "_last_obs": {":type:": "", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAaIgT/kmSHATexKwA7Scj97kfO+ROksPqNPpr86DIw+iW44P05mOD4CWWa/19Y9vnwPdD9IC0I/ztQuPq9BOL63TF0/VW9HvihR1b+2J+E9gh2DPzerSD4zi50/OvgGPrs15j6gy6w+utquPl/bWj5vY2RAXQVmPS49Cz/hbAK+N5d7PElt9z1T6++9e2oBP4AQS7+d37u8iAkPwHrZgb3EhA4+dxFYPNMvzT/Mi1s9Wp5SPyosmzyTo3Q/MZlBPTm+Lj+8tZc80YkMwH6Ppr30Vg7AeKI9wNBmO8AtuZXAix0hP3ULIL+aDps+kSAhPjrqw79hrz0+dX7Ov5HCij519HC/EhQRPrwQX7+icKi+0EH6P3fjjL7TaqQ959YhPjoyqD7HG9q+ZSm9vxpl5r0btGI/8OQYP5EYlj8KKQU+uzXmPqDLrD662q4+X9taPgG4QD/u6aC/vy+6vrAr2D1jG0a+i33pPSLIur4NKUS+rAdFP/F9ubwsMXi8lPvEveuLnb7UPgE8defBPRVa+T0m/8o9tdKkvYc1VL4++bU99To9PKvTj73C2fc+mja3vLs15j6gy6w+utquPl/bWj6UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAABAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAAM1aO2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAPVsnPQAAAACu7/y/AAAAAAsz770AAAAAMLfePwAAAADzCJO7AAAAAI+W2z8AAAAAYvV9PQAAAABWifi/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHM5HtQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgAW8ozwAAAAARcfqvwAAAAAy1p69AAAAACCw7T8AAAAAL41yvQAAAABPTfU/AAAAABbaBb4AAAAAUvzYvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADa4bLYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAGTgk+AAAAAD6E5r8AAAAA18A9PQAAAAC7bdk/AAAAAOd85r0AAAAADYb5PwAAAAD6cR69AAAAAKG43r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAVn3s2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACATk5/PQAAAABQA/W/AAAAAEJv9z0AAAAAQ98AQAAAAAA2W3Y8AAAAAE2r6D8AAAAA43e4vQAAAABb4O2/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHbECVnmJWOMAWyUTVQCjAF0lEdAkj9be2uxKXV9lChoBkdAg2QVUuL742gHTegDaAhHQJJRIT9KmKt1fZQoaAZHQIRdvxBmf5FoB03oA2gIR0CSUSIAwPAgdX2UKGgGR0CEf5rN4Z/DaAdN6ANoCEdAklEixmkFfXV9lChoBkdAhDoty5qdpmgHTegDaAhHQJJi8u7HyVh1fZQoaAZHQIMZ3CGetjloB03oA2gIR0CSb271ZkkKdX2UKGgGR0CGbI3EyckMaAdN6ANoCEdAkm9vqcEvCnV9lChoBkdAiU9dlNDc/WgHTegDaAhHQJJvcGIKtxN1fZQoaAZHQIVj4Dmr8zhoB03oA2gIR0CShu7fHggpdX2UKGgGR0CGpD9iMHbAaAdN6ANoCEdAkpXhXfZVXHV9lChoBkdAg8dVwHZ9NWgHTegDaAhHQJKV4djoZAJ1fZQoaAZHQIobnNFBppNoB03oA2gIR0CSleJ2dNFjdX2UKGgGR0CFLyJC0F8paAdN6ANoCEdAkqfxYaHbh3V9lChoBkdAhjwKkdmxuGgHTegDaAhHQJK0F3JPqLV1fZQoaAZHQIb6rgKnei1oB03oA2gIR0CStBgieNDMdX2UKGgGR0CI8wNgjQiSaAdN6ANoCEdAkrQY150KZ3V9lChoBkdAhj0xGUfPomgHTegDaAhHQJLNOm4y44J1fZQoaAZHQIZ7W6wt8NRoB03oA2gIR0CS2iCEpRXPdX2UKGgGR0CJTeWqtHQQaAdN6ANoCEdAktohYq5LAnV9lChoBkdAiPDSDqW1MWgHTegDaAhHQJLaImx+rlx1fZQoaAZHQItaqk43m3hoB03oA2gIR0CS65xQBPsSdX2UKGgGR0CKX5uDzyz5aAdN6ANoCEdAkve5+tr9EXV9lChoBkdAidYOYplSTGgHTegDaAhHQJL3upcX3xp1fZQoaAZHQIjQxYmsvIxoB03oA2gIR0CS97tj0+TvdX2UKGgGR0CI0Cb7TDwZaAdN6ANoCEdAkxIfTspobnV9lChoBkdAihY4eT3Zf2gHTegDaAhHQJMd1iH6/It1fZQoaAZHQImzZYYBNmFoB03oA2gIR0CTHddNWU8ndX2UKGgGR0CIiFakAPupaAdN6ANoCEdAkx3Yv38GcHV9lChoBkdAg/SgrH2h7GgHTegDaAhHQJMvGCFsYVJ1fZQoaAZHQIhOWM6zVtpoB03oA2gIR0CTPBPJ7sv7dX2UKGgGR0CKpqy57PY4aAdN6ANoCEdAkzwVX7tRenV9lChoBkdAiZ88+7lJYmgHTegDaAhHQJM8Fz1bqyJ1fZQoaAZHQIyUG6PKdQRoB03oA2gIR0CTVY2X9itrdX2UKGgGR0CFAbrYXfqHaAdN6ANoCEdAk2G26TW5H3V9lChoBkdAixlIUBXCCWgHTegDaAhHQJNht5iVjZt1fZQoaAZHQIid91uBMBZoB03oA2gIR0CTYbhCMPz4dX2UKGgGR0CKTaNCJGe+aAdN6ANoCEdAk3O2QSzw+nV9lChoBkdAiXSaPKdQPGgHTegDaAhHQJOCn/zasZJ1fZQoaAZHQIq69wBHTZxoB03oA2gIR0CTgqHIp6QedX2UKGgGR0CMdPs2vStvaAdN6ANoCEdAk4Kjlgc94nV9lChoBkdAhrr5J04io2gHTegDaAhHQJOZY9xIatN1fZQoaAZHQIenqlzltCRoB03oA2gIR0CTpQ0r9VFQdX2UKGgGR0CM8yUAT7EYaAdN6ANoCEdAk6UPAO8TSXV9lChoBkdAjL7LY5DJEGgHTegDaAhHQJOlENe+mFd1fZQoaAZHQIvmXbuc+aBoB03oA2gIR0CTtt6cRUWEdX2UKGgGR0CMwEcIZ62OaAdN6ANoCEdAk8axKlHjInV9lChoBkdAir//zz3AVWgHTegDaAhHQJPGsxrSE151fZQoaAZHQIxC0QbuMMtoB03oA2gIR0CTxrUwBYFJdX2UKGgGR0CLx6vIwM6SaAdN6ANoCEdAk9yYBNmDlHV9lChoBkdAioYY/eLvTmgHTegDaAhHQJPoYnPVurJ1fZQoaAZHQIXpeTmnwXtoB03oA2gIR0CT6GM2FWXDdX2UKGgGR0CIH2ZzgdfcaAdN6ANoCEdAk+hj/hl183V9lChoBkdAjeD/+KjzqmgHTegDaAhHQJP5+C6H0sh1fZQoaAZHQIwsa7Xg9/1oB03oA2gIR0CUC62NNrTIdX2UKGgGR0CGf8iyIHkcaAdN6ANoCEdAlAuv8VHnU3V9lChoBkdAi7eVGsmv4mgHTegDaAhHQJQLsfU4JeF1fZQoaAZHQI2x8t/WlM1oB03oA2gIR0CUIA6zVtoBdX2UKGgGR0CJ+mvicXnAaAdN6ANoCEdAlCuhLCemN3V9lChoBkdAi8h1GCqZMWgHTegDaAhHQJQrofPomol1fZQoaAZHQIkxZcHGCI1oB03oA2gIR0CUK6L3bmEHdX2UKGgGR0CD7VmEoOQRaAdN6ANoCEdAlD3fo/zJ63V9lChoBkdAi4sEdvKlpGgHTegDaAhHQJRQOquKXOZ1fZQoaAZHQIuJk0Ltu1poB03oA2gIR0CUUDy8jAzpdX2UKGgGR0CM+FuLJjlQaAdN6ANoCEdAlFA+uA7Pp3V9lChoBkdAi0Bxjz7MxGgHTegDaAhHQJRjIXGff411fZQoaAZHQIxIsA93bEhoB03oA2gIR0CUbuWDHwPRdX2UKGgGR0CKZ8afjCHiaAdN6ANoCEdAlG7mDDjzZ3V9lChoBkdAhezuD8LromgHTegDaAhHQJRu5si0OVh1fZQoaAZHQIgCJb+tKZloB03oA2gIR0CUgfrT6SDAdX2UKGgGR0CLGZkmQbMpaAdN6ANoCEdAlJSnxaxHG3V9lChoBkdAiMV6qS5iE2gHTegDaAhHQJSUqYqoZQ51fZQoaAZHQIVmg40dilVoB03oA2gIR0CUlKtUXHindX2UKGgGR0CMp77N0NjLaAdN6ANoCEdAlKbJM10knnV9lChoBkdAijWHMlkYoGgHTegDaAhHQJSyifHxSYR1fZQoaAZHQIpAMDbJwKloB03oA2gIR0CUsoqlxffGdX2UKGgGR0CJ3RhWHUMHaAdN6ANoCEdAlLKLXlKbrnV9lChoBkdAdEdxiXpnpWgHTa0BaAhHQJTAapyZKFt1fZQoaAZHQISqYs052hZoB03oA2gIR0CUx7mJ3xFzdX2UKGgGR0CJQileF+NMaAdN6ANoCEdAlNmfjCHh0nV9lChoBkdAjCkqoIfKZGgHTegDaAhHQJTZoGSpzcR1fZQoaAZHQInMRPoFFDxoB03oA2gIR0CU5iAlOXVtdX2UKGgGR0CG0jWNm16WaAdN6ANoCEdAlOrcOf/WD3V9lChoBkdAi9nKt5le4WgHTegDaAhHQJT2tke6qbV1fZQoaAZHQIbiXxYq5LBoB03oA2gIR0CU9rcUM5OrdX2UKGgGR0CIdR5B1LamaAdN6ANoCEdAlQTMGorFwXV9lChoBkdAhN4A4GUwBmgHTegDaAhHQJUMA6YE4ed1fZQoaAZHQIds2DL8rI5oB03oA2gIR0CVH9HCGetkdX2UKGgGR0CHfaLiMo+faAdN6ANoCEdAlR/Tj/+85HV9lChoBkdAhwwN0vGp/GgHTegDaAhHQJUyb9FWn0l1fZQoaAZHQIddnssxwhpoB03oA2gIR0CVN2HgxagVdX2UKGgGR0CKfLy/9Hc2aAdN6ANoCEdAlUNYV6/qPnV9lChoBkdAh6cOlGgBcWgHTegDaAhHQJVDWbb1yvN1fZQoaAZHQIo8MRUWEbpoB03oA2gIR0CVVwDhtLtedX2UKGgGR0CER8kTpPhyaAdN6ANoCEdAlV3GH1vl2nV9lChoBkdAgUF+tjkMkWgHTWUDaAhHQJVl0D1XeWR1fZQoaAZHQIhwCxs2vStoB03oA2gIR0CVacgIhQnAdX2UKGgGR0CLoIPMjeKsaAdN6ANoCEdAlXa+oxYaHnV9lChoBkdAhy/X5FgDzWgHTegDaAhHQJV7mrmyPdV1fZQoaAZHQIbi8OskpqhoB03oA2gIR0CVg7SJTER8dX2UKGgGR0CJqPuZ1FH8aAdN6ANoCEdAlYlEQf6oEXVlLg=="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 6250, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "", ":serialized:": "gAWVlwIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxyFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaBVLHIWUaBl0lFKUjAZfc2hhcGWUSxyFlIwDbG93lGgRKJZwAAAAAAAAAAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UaAtLHIWUaBl0lFKUjARoaWdolGgRKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBl0lFKUjAhsb3dfcmVwcpSMBC1pbmaUjAloaWdoX3JlcHKUjANpbmaUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "low_repr": "-inf", "high_repr": "inf", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWVzwEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL+UaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjAQtMS4wlIwJaGlnaF9yZXBylIwDMS4wlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}