Wisdom-math commited on
Commit
39c25f1
·
verified ·
1 Parent(s): 7656711

Add files using upload-large-folder tool

Browse files
.gitattributes CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ examples/image2.jpg filter=lfs diff=lfs merge=lfs -text
37
+ examples/red-panda.mp4 filter=lfs diff=lfs merge=lfs -text
NGC-DL-CONTAINER-LICENSE ADDED
@@ -0,0 +1,285 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ NVIDIA DEEP LEARNING CONTAINER LICENSE
2
+
3
+ This license is a legal agreement between you and NVIDIA Corporation ("NVIDIA")
4
+ and governs the use of the NVIDIA container and all its contents (“CONTAINER”).
5
+
6
+ This license can be accepted only by an adult of legal age of majority in the
7
+ country in which the CONTAINER is used. If you are under the legal age of
8
+ majority, you must ask your parent or legal guardian to consent to this license.
9
+ If you are entering this license on behalf of a company or other legal entity,
10
+ you represent that you have legal authority and “you” will mean the entity you
11
+ represent.
12
+
13
+ By using the CONTAINER, you affirm that you have reached the legal age of
14
+ majority, you accept the terms of this license, and you take legal and financial
15
+ responsibility for the actions of your permitted users.
16
+
17
+ You agree to use the CONTAINER only for purposes that are permitted by (a) this
18
+ license, and (b) any applicable law, regulation or generally accepted practices
19
+ or guidelines in the relevant jurisdictions.
20
+
21
+ 1. LICENSE. Subject to the terms of this license, NVIDIA hereby grants you a
22
+ non-exclusive, non-transferable license, without the right to sublicense (except
23
+ as expressly provided in this license) to:
24
+
25
+ a. Install and use copies of the CONTAINER, and modify and create derivative
26
+ works of samples or example source code delivered in the CONTAINER (if
27
+ applicable), to develop and test services and applications,
28
+
29
+ b. Deploy the CONTAINER on infrastructure you own or lease to offer a service to
30
+ third parties, without distributing the CONTAINER or exposing the NVIDIA APIs in
31
+ the CONTAINER directly to such service users, and
32
+
33
+ c. Develop and extend the CONTAINER to create a Compatible (as defined below)
34
+ derived CONTAINER that includes the entire CONTAINER plus other software with
35
+ primary functionality, to develop and compile applications, and distribute such
36
+ derived CONTAINER to run applications, subject to the distribution requirements
37
+ indicated in this license. As used in this section, “Compatible” means that
38
+ extensions to the CONTAINER must not adversely affect the functionality of the
39
+ other components in the CONTAINER.
40
+
41
+ 2. DISTRIBUTION REQUIREMENTS. For purposes of this Section 2, the term
42
+ “distribution” also means the deployment of CONTAINERS in a service or an
43
+ application for third parties to access over the internet. These are the
44
+ distribution requirements for you to exercise the grants above:
45
+
46
+ a. A service or an application must have material additional functionality,
47
+ beyond the included portions of the CONTAINER.
48
+
49
+ b. The following notice shall be included in modifications and derivative works
50
+ of source code distributed: “This software contains source code provided by
51
+ NVIDIA Corporation.”
52
+
53
+ c. You agree to distribute the CONTAINER subject to the terms at least as
54
+ protective as the terms of this license, including (without limitation) terms
55
+ relating to the license grant, license restrictions and protection of NVIDIA’s
56
+ intellectual property rights. Additionally, you agree that you will protect the
57
+ privacy, security and legal rights of your application users.
58
+
59
+ d. You agree to notify NVIDIA in writing of any known or suspected distribution
60
+ or use of the CONTAINER not in compliance with the requirements of this license,
61
+ and to enforce the terms of your agreements with respect to the distributed
62
+ CONTAINER.
63
+
64
+ 3. AUTHORIZED USERS. You may allow employees and contractors of your entity or
65
+ of your subsidiary(ies) to access and use the CONTAINER from your secure network
66
+ to perform work on your behalf. If you are an academic institution you may allow
67
+ users enrolled or employed by the academic institution to access and use the
68
+ CONTAINER from your secure network. You are responsible for the compliance with
69
+ the terms of this license by your authorized users.
70
+
71
+ 4. LIMITATIONS. Your license to use the CONTAINER is restricted as follows:
72
+
73
+ a. The CONTAINER may run on any computing system with or without NVIDIA GPUs,
74
+ except for the NVIDIA proprietary software (such as CUDA and TensorRT software)
75
+ in the CONTAINER which is licensed only to run on systems with NVIDIA GPUs. The
76
+ NVIDIA proprietary software in the CONTAINER may be present on systems without
77
+ NVIDIA GPUs, as long as it is not running on such systems. For components
78
+ governed by open source software licenses, see the information in the
79
+ “Components Under Other Licenses” section below.
80
+
81
+ b. You may not reverse engineer, decompile or disassemble, or remove copyright
82
+ or other proprietary notices from any portion of the CONTAINER or copies of the
83
+ CONTAINER.
84
+
85
+ c. Except as expressly provided in this license, you may not copy, sell, rent,
86
+ sublicense, transfer, distribute, modify, or create derivative works of any
87
+ portion of the CONTAINER. For clarity, you may not distribute or sublicense the
88
+ CONTAINER as a stand-alone product.
89
+
90
+ d. Unless you have an agreement with NVIDIA for this purpose, you may not
91
+ indicate that a service or an application created with the CONTAINER is
92
+ sponsored or endorsed by NVIDIA.
93
+
94
+ e. You may not bypass, disable, or circumvent any technical limitation,
95
+ encryption, security, digital rights management or authentication mechanism in
96
+ the CONTAINER.
97
+
98
+ f. You may not replace any NVIDIA software components in the CONTAINER that are
99
+ governed by this license with other software that implements NVIDIA APIs.
100
+
101
+ g. You may not use the CONTAINER in any manner that would cause it to become
102
+ subject to an open source software license. As examples, licenses that require
103
+ as a condition of use, modification, and/or distribution that the CONTAINER be:
104
+ (i) disclosed or distributed in source code form; (ii) licensed for the purpose
105
+ of making derivative works; or (iii) redistributable at no charge.
106
+
107
+ h. You acknowledge that the CONTAINER as delivered is not tested or certified by
108
+ NVIDIA for use in connection with the design, construction, maintenance, and/or
109
+ operation of any system where the use or failure of such system could result in
110
+ a situation that threatens the safety of human life or results in catastrophic
111
+ damages (each, a “Critical Application”). Examples of Critical Applications
112
+ include use in avionics, navigation, autonomous vehicle applications, ai
113
+ solutions for automotive products, military, medical, life support or other life
114
+ critical applications. NVIDIA shall not be liable to you or any third party, in
115
+ whole or in part, for any claims or damages arising from such uses. You are
116
+ solely responsible for ensuring that any product or service developed with the
117
+ CONTAINER as a whole includes sufficient features to comply with all applicable
118
+ legal and regulatory standards and requirements.
119
+
120
+ i. You agree to defend, indemnify and hold harmless NVIDIA and its affiliates,
121
+ and their respective employees, contractors, agents, officers and directors,
122
+ from and against any and all claims, damages, obligations, losses, liabilities,
123
+ costs or debt, fines, restitutions and expenses (including but not limited to
124
+ attorney’s fees and costs incident to establishing the right of indemnification)
125
+ arising out of or related to products or services that use the CONTAINER in or
126
+ for Critical Applications, and for use of the CONTAINER outside of the scope of
127
+ this license or not in compliance with its terms.
128
+
129
+ j. You may not reverse engineer, decompile or disassemble any portion of the
130
+ output generated using the NVIDIA proprietary software (such as CUDA and
131
+ TensorRT software) in the CONTAINER for the purpose of translating such output
132
+ artifacts to target a non-NVIDIA platform.
133
+
134
+ 5. UPDATES. NVIDIA may, at its option, make available patches, workarounds or
135
+ other updates to this CONTAINER. Unless the updates are provided with their
136
+ separate governing terms, they are deemed part of the CONTAINER licensed to you
137
+ as provided in this license. You agree that the form and content of the
138
+ CONTAINER that NVIDIA provides may change without prior notice to you. While
139
+ NVIDIA generally maintains compatibility between versions, NVIDIA may in some
140
+ cases make changes that introduce incompatibilities in future versions of the
141
+ CONTAINER.
142
+
143
+ 6. PRE-RELEASE VERSIONS. CONTAINER versions identified as alpha, beta, preview,
144
+ early access or otherwise as pre-release may not be fully functional, may
145
+ contain errors or design flaws, and may have reduced or different security,
146
+ privacy, availability, and reliability standards relative to commercial versions
147
+ of NVIDIA software and materials. You may use a pre- release CONTAINER version
148
+ at your own risk, understanding that these versions are not intended for use in
149
+ production or business-critical systems. NVIDIA may choose not to make available
150
+ a commercial version of any pre-release CONTAINER. NVIDIA may also choose to
151
+ abandon development and terminate the availability of a pre-release CONTAINER at
152
+ any time without liability.
153
+
154
+ 7. COMPONENTS UNDER OTHER LICENSES. The CONTAINER may include NVIDIA or
155
+ third-party components with separate legal notices or terms as may be described
156
+ in proprietary notices accompanying the CONTAINER. If and to the extent there is
157
+ a conflict between the terms in this license and the license terms associated
158
+ with the component, the license terms associated with the components control
159
+ only to the extent necessary to resolve the conflict. For example, some Triton
160
+ components (such as the Triton Inference Server) are governed by open source
161
+ software licenses.
162
+
163
+ You acknowledge and agree that it is your sole responsibility to obtain any
164
+ additional third-party licenses required to make, have made, use, have used,
165
+ sell, import, and offer for sale your products or services that include or
166
+ incorporate any third- party software and content relating to audio and/or video
167
+ encoders and decoders from, including but not limited to, Microsoft, Thomson,
168
+ Fraunhofer IIS, Sisvel S.p.A., MPEG-LA, and Coding Technologies. NVIDIA does not
169
+ grant to you under this license any necessary patent or other rights with
170
+ respect to any audio and/or video encoders and decoders. Subject to the other
171
+ terms of this license, you may use the CONTAINER to develop and test
172
+ applications released under Open Source Initiative (OSI) approved open source
173
+ software licenses.
174
+
175
+ 8. OWNERSHIP.
176
+
177
+ 8.1 NVIDIA reserves all rights, title and interest in and to the CONTAINER not
178
+ expressly granted to you under this license. NVIDIA and its suppliers hold all
179
+ rights, title and interest in and to the CONTAINER, including their respective
180
+ intellectual property rights. The CONTAINER is copyrighted and protected by the
181
+ laws of the United States and other countries, and international treaty
182
+ provisions.
183
+
184
+ 8.2 Subject to the rights of NVIDIA and its suppliers in the CONTAINER, you hold
185
+ all rights, title and interest in and to your services, applications and your
186
+ derivative works of the sample source code delivered in the CONTAINER including
187
+ their respective intellectual property rights.
188
+
189
+ 9. FEEDBACK. You may, but are not obligated to, provide to NVIDIA suggestions,
190
+ fixes, modifications, feature requests or other feedback regarding the CONTAINER
191
+ (“Feedback”). Feedback, even if designated as confidential by you, shall not
192
+ create any confidentiality obligation for NVIDIA. NVIDIA and its designees have
193
+ a perpetual, non-exclusive, worldwide, irrevocable license to use, reproduce,
194
+ publicly display, modify, create derivative works of, license, sublicense, and
195
+ otherwise distribute and exploit Feedback as NVIDIA sees fit without payment and
196
+ without obligation or restriction of any kind on account of intellectual
197
+ property rights or otherwise.
198
+
199
+ 10. NO WARRANTIES. THE CONTAINER IS PROVIDED AS-IS. TO THE MAXIMUM EXTENT
200
+ PERMITTED BY APPLICABLE LAW NVIDIA AND ITS AFFILIATES EXPRESSLY DISCLAIM ALL
201
+ WARRANTIES OF ANY KIND OR NATURE, WHETHER EXPRESS, IMPLIED OR STATUTORY,
202
+ INCLUDING, BUT NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT,
203
+ OR FITNESS FOR A PARTICULAR PURPOSE. NVIDIA DOES NOT WARRANT THAT THE CONTAINER
204
+ WILL MEET YOUR REQUIREMENTS OR THAT THE OPERATION THEREOF WILL BE UNINTERRUPTED
205
+ OR ERROR-FREE, OR THAT ALL ERRORS WILL BE CORRECTED.
206
+
207
+ 11. LIMITATIONS OF LIABILITY. TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW
208
+ NVIDIA AND ITS AFFILIATES SHALL NOT BE LIABLE FOR ANY SPECIAL, INCIDENTAL,
209
+ PUNITIVE OR CONSEQUENTIAL DAMAGES, OR FOR ANY LOST PROFITS, PROJECT DELAYS, LOSS
210
+ OF USE, LOSS OF DATA OR LOSS OF GOODWILL, OR THE COSTS OF PROCURING SUBSTITUTE
211
+ PRODUCTS, ARISING OUT OF OR IN CONNECTION WITH THIS LICENSE OR THE USE OR
212
+ PERFORMANCE OF THE CONTAINER, WHETHER SUCH LIABILITY ARISES FROM ANY CLAIM BASED
213
+ UPON BREACH OF CONTRACT, BREACH OF WARRANTY, TORT (INCLUDING NEGLIGENCE),
214
+ PRODUCT LIABILITY OR ANY OTHER CAUSE OF ACTION OR THEORY OF LIABILITY, EVEN IF
215
+ NVIDIA HAS PREVIOUSLY BEEN ADVISED OF, OR COULD REASONABLY HAVE FORESEEN, THE
216
+ POSSIBILITY OF SUCH DAMAGES. IN NO EVENT WILL NVIDIA’S AND ITS AFFILIATES TOTAL
217
+ CUMULATIVE LIABILITY UNDER OR ARISING OUT OF THIS LICENSE EXCEED US$10.00. THE
218
+ NATURE OF THE LIABILITY OR THE NUMBER OF CLAIMS OR SUITS SHALL NOT ENLARGE OR
219
+ EXTEND THIS LIMIT.
220
+
221
+ 12. TERMINATION. Your rights under this license will terminate automatically
222
+ without notice from NVIDIA if you fail to comply with any term and condition of
223
+ this license or if you commence or participate in any legal proceeding against
224
+ NVIDIA with respect to the CONTAINER. NVIDIA may terminate this license with
225
+ advance written notice to you, if NVIDIA decides to no longer provide the
226
+ CONTAINER in a country or, in NVIDIA’s sole discretion, the continued use of it
227
+ is no longer commercially viable. Upon any termination of this license, you
228
+ agree to promptly discontinue use of the CONTAINER and destroy all copies in
229
+ your possession or control. Your prior distributions in accordance with this
230
+ license are not affected by the termination of this license. All provisions of
231
+ this license will survive termination, except for the license granted to you.
232
+
233
+ 13. APPLICABLE LAW. This license will be governed in all respects by the laws of
234
+ the United States and of the State of Delaware, without regard to the conflicts
235
+ of laws principles. The United Nations Convention on Contracts for the
236
+ International Sale of Goods is specifically disclaimed. You agree to all terms
237
+ of this license in the English language. The state or federal courts residing in
238
+ Santa Clara County, California shall have exclusive jurisdiction over any
239
+ dispute or claim arising out of this license. Notwithstanding this, you agree
240
+ that NVIDIA shall still be allowed to apply for injunctive remedies or urgent
241
+ legal relief in any jurisdiction.
242
+
243
+ 14. NO ASSIGNMENT. This license and your rights and obligations thereunder may
244
+ not be assigned by you by any means or operation of law without NVIDIA’s
245
+ permission. Any attempted assignment not approved by NVIDIA in writing shall be
246
+ void and of no effect. NVIDIA may assign, delegate or transfer this license and
247
+ its rights and obligations, and if to a non-affiliate you will be notified.
248
+
249
+ 15. EXPORT. The CONTAINER is subject to United States export laws and
250
+ regulations. You agree to comply with all applicable U.S. and international
251
+ export laws, including the Export Administration Regulations (EAR) administered
252
+ by the U.S. Department of Commerce and economic sanctions administered by the
253
+ U.S. Department of Treasury’s Office of Foreign Assets Control (OFAC). These
254
+ laws include restrictions on destinations, end-users and end-use. By accepting
255
+ this license, you confirm that you are not currently residing in a country or
256
+ region currently embargoed by the U.S. and that you are not otherwise prohibited
257
+ from receiving the CONTAINER.
258
+
259
+ 16. GOVERNMENT USE. The CONTAINER is, and shall be treated as being, “Commercial
260
+ Items” as that term is defined at 48 CFR § 2.101, consisting of “commercial
261
+ computer software” and “commercial computer software documentation”,
262
+ respectively, as such terms are used in, respectively, 48 CFR § 12.212 and 48
263
+ CFR §§ 227.7202 & 252.227-7014(a)(1). Use, duplication or disclosure by the U.S.
264
+ Government or a U.S. Government subcontractor is subject to the restrictions in
265
+ this license pursuant to 48 CFR § 12.212 or 48 CFR § 227.7202. In no event shall
266
+ the US Government user acquire rights in the CONTAINER beyond those specified in
267
+ 48 C.F.R. 52.227-19(b)(1)-(2).
268
+
269
+ 17. NOTICES. Please direct your legal notices or other correspondence to NVIDIA
270
+ Corporation, 2788 San Tomas Expressway, Santa Clara, California 95051, United
271
+ States of America, Attention: Legal Department. 18. ENTIRE AGREEMENT. This
272
+ license is the final, complete and exclusive agreement between the parties
273
+ relating to the subject matter of this license and supersedes all prior or
274
+ contemporaneous understandings and agreements relating to this subject matter,
275
+ whether oral or written. If any court of competent jurisdiction determines that
276
+ any provision of this license is illegal, invalid or unenforceable, the
277
+ remaining provisions will remain in full force and effect. Any amendment or
278
+ waiver under this license shall be in writing and signed by representatives of
279
+ both parties.
280
+
281
+ 19. LICENSING. If the distribution terms in this license are not suitable for
282
+ your organization, or for any questions regarding this license, please contact
283
+ NVIDIA at [email protected].
284
+
285
+ (v. September 14, 2021)
README.md ADDED
@@ -0,0 +1,703 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ license_name: qwen
4
+ license_link: https://huggingface.co/Qwen/Qwen2.5-72B-Instruct/blob/main/LICENSE
5
+ pipeline_tag: image-text-to-text
6
+ library_name: transformers
7
+ base_model:
8
+ - OpenGVLab/InternVL3-14B-Instruct
9
+ base_model_relation: finetune
10
+ datasets:
11
+ - OpenGVLab/MMPR-v1.2
12
+ language:
13
+ - multilingual
14
+ tags:
15
+ - internvl
16
+ - custom_code
17
+ ---
18
+
19
+ # InternVL3-14B
20
+
21
+ [\[📂 GitHub\]](https://github.com/OpenGVLab/InternVL) [\[📜 InternVL 1.0\]](https://huggingface.co/papers/2312.14238) [\[📜 InternVL 1.5\]](https://huggingface.co/papers/2404.16821) [\[📜 InternVL 2.5\]](https://huggingface.co/papers/2412.05271) [\[📜 InternVL2.5-MPO\]](https://huggingface.co/papers/2411.10442) [\[📜 InternVL3\]](https://huggingface.co/papers/2504.10479)
22
+
23
+ [\[🆕 Blog\]](https://internvl.github.io/blog/) [\[🗨️ Chat Demo\]](https://internvl.opengvlab.com/) [\[🤗 HF Demo\]](https://huggingface.co/spaces/OpenGVLab/InternVL) [\[🚀 Quick Start\]](#quick-start) [\[📖 Documents\]](https://internvl.readthedocs.io/en/latest/)
24
+
25
+ <div align="center">
26
+ <img width="500" alt="image" src="https://cdn-uploads.huggingface.co/production/uploads/64006c09330a45b03605bba3/zJsd2hqd3EevgXo6fNgC-.png">
27
+ </div>
28
+
29
+ ## Introduction
30
+
31
+ We introduce InternVL3, an advanced multimodal large language model (MLLM) series that demonstrates superior overall performance.
32
+ Compared to InternVL 2.5, InternVL3 exhibits superior multimodal perception and reasoning capabilities, while further extending its multimodal capabilities to encompass tool usage, GUI agents, industrial image analysis, 3D vision perception, and more.
33
+ Additionally, we compare InternVL3 with Qwen2.5 Chat models, whose corresponding pre-trained base models are employed as the initialization of the langauge component in InternVL3. Benefitting from Native Multimodal Pre-Training, the InternVL3 series achieves even better overall text performance than the Qwen2.5 series.
34
+
35
+ ![image/png](https://huggingface.co/datasets/Weiyun1025/InternVL-Performance/resolve/main/internvl3/overall.png)
36
+
37
+ ## InternVL3 Family
38
+
39
+ In the following table, we provide an overview of the InternVL3 series.
40
+
41
+ | Model Name | Vision Part | Language Part | HF Link |
42
+ | :-----------: | :-------------------------------------------------------------------------------------: | :----------------------------------------------------------------------------: | :------------------------------------------------------: |
43
+ | InternVL3-1B | [InternViT-300M-448px-V2_5](https://huggingface.co/OpenGVLab/InternViT-300M-448px-V2_5) | [Qwen2.5-0.5B](https://huggingface.co/Qwen/Qwen2.5-0.5B) | [🤗 link](https://huggingface.co/OpenGVLab/InternVL3-1B) |
44
+ | InternVL3-2B | [InternViT-300M-448px-V2_5](https://huggingface.co/OpenGVLab/InternViT-300M-448px-V2_5) | [Qwen2.5-1.5B](https://huggingface.co/Qwen/Qwen2.5-1.5B) | [🤗 link](https://huggingface.co/OpenGVLab/InternVL3-2B) |
45
+ | InternVL3-8B | [InternViT-300M-448px-V2_5](https://huggingface.co/OpenGVLab/InternViT-300M-448px-V2_5) | [Qwen2.5-7B](https://huggingface.co/Qwen/Qwen2.5-7B) | [🤗 link](https://huggingface.co/OpenGVLab/InternVL3-8B) |
46
+ | InternVL3-9B | [InternViT-300M-448px-V2_5](https://huggingface.co/OpenGVLab/InternViT-300M-448px-V2_5) | [internlm3-8b-instruct](https://huggingface.co/internlm/internlm3-8b-instruct) | [🤗 link](https://huggingface.co/OpenGVLab/InternVL3-9B) |
47
+ | InternVL3-14B | [InternViT-300M-448px-V2_5](https://huggingface.co/OpenGVLab/InternViT-300M-448px-V2_5) | [Qwen2.5-14B](https://huggingface.co/Qwen/Qwen2.5-14B) | [🤗 link](https://huggingface.co/OpenGVLab/InternVL3-14B) |
48
+ | InternVL3-38B | [InternViT-6B-448px-V2_5](https://huggingface.co/OpenGVLab/InternViT-6B-448px-V2_5) | [Qwen2.5-32B](https://huggingface.co/Qwen/Qwen2.5-32B) | [🤗 link](https://huggingface.co/OpenGVLab/InternVL3-38B) |
49
+ | InternVL3-78B | [InternViT-6B-448px-V2_5](https://huggingface.co/OpenGVLab/InternViT-6B-448px-V2_5) | [Qwen2.5-72B](https://huggingface.co/Qwen/Qwen2.5-72B) | [🤗 link](https://huggingface.co/OpenGVLab/InternVL3-78B) |
50
+
51
+ ![image/png](https://huggingface.co/datasets/Weiyun1025/InternVL-Performance/resolve/main/internvl3/overall-table.png)
52
+
53
+ ## Model Architecture
54
+
55
+ As shown in the following figure, [InternVL3](https://internvl.github.io/blog/2025-04-11-InternVL-3/) retains the same model architecture as [InternVL 2.5](https://internvl.github.io/blog/2024-12-05-InternVL-2.5/) and its predecessors, InternVL 1.5 and 2.0, following the "ViT-MLP-LLM" paradigm. In this new version, we integrate a newly incrementally pre-trained InternViT with various pre-trained LLMs, including InternLM 3 and Qwen 2.5, using a randomly initialized MLP projector.
56
+
57
+
58
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64119264f0f81eb569e0d569/BiiyXN6NOk0p-3rl3ueyL.png)
59
+
60
+ As in the previous version, we applied a pixel unshuffle operation, reducing the number of visual tokens to one-quarter of the original. Besides, we adopted a similar dynamic resolution strategy as InternVL 1.5, dividing images into tiles of 448×448 pixels. The key difference, starting from InternVL 2.0, is that we additionally introduced support for multi-image and video data.
61
+
62
+ Notably, in InternVL3, we integrate the [Variable Visual Position Encoding (V2PE)](https://arxiv.org/abs/2412.09616), which utilizes smaller, more flexible position increments for visual tokens. Benefiting from V2PE, InternVL3 exhibits better long context understanding capabilities compared to its predecessors.
63
+
64
+ ## Training Strategy
65
+
66
+ ### Native Multimodal Pre-Training
67
+
68
+ We propose a [Native Multimodal Pre-Training](https://huggingface.co/papers/2504.10479) approach that consolidates language and vision learning into a single pre-training stage.
69
+ In contrast to standard paradigms that first train a language-only model and subsequently adapt it to handle additional modalities, our method interleaves multimodal data (e.g., image-text, video-text, or image-text interleaved sequences) with large-scale textual corpora. This unified training scheme allows the model to learn both linguistic and multimodal representations simultaneously, ultimately enhancing its capability to handle vision-language tasks without the need for separate alignment or bridging modules.
70
+ Please see [our paper](https://huggingface.co/papers/2504.10479) for more details.
71
+
72
+ ### Supervised Fine-Tuning
73
+
74
+ In this phase, the techniques of random JPEG compression, square loss re-weighting, and multimodal data packing proposed in [InternVL2.5](https://arxiv.org/abs/2412.05271) are also employed in the InternVL3 series.
75
+ The main advancement of the SFT phase in InternVL3 compared to InternVL2.5 lies in the use of higher-quality and more diverse training data.
76
+ Specifically, we further extend training samples for tool use, 3D scene understanding, GUI operations, long context tasks, video understanding, scientific diagrams, creative writing, and multimodal reasoning.
77
+
78
+ ### Mixed Preference Optimization
79
+
80
+ During Pre-training and SFT, the model is trained to predict the next token conditioned on previous ground-truth tokens.
81
+ However, during inference, the model predicts each token based on its own prior outputs.
82
+ This discrepancy between ground-truth tokens and model-predicted tokens introduces a distribution shift, which can impair the model’s Chain-of-Thought (CoT) reasoning capabilities.
83
+ To mitigate this issue, we employ [MPO](https://arxiv.org/abs/2411.10442), which introduces additional supervision from both positive and negative samples to align the model response distribution with the ground-truth distribution, thereby improving reasoning performance.
84
+ Specifically, the training objective of MPO is a combination of
85
+ preference loss \\(\mathcal{L}_{\text{p}}\\),
86
+ quality loss \\(\mathcal{L}_{\text{q}}\\),
87
+ and generation loss \\(\mathcal{L}_{\text{g}}\\),
88
+ which can be formulated as follows:
89
+
90
+
91
+ $$
92
+ \mathcal{L}=w_{p}\cdot\mathcal{L}_{\text{p}} + w_{q}\cdot\mathcal{L}_{\text{q}} + w_{g}\cdot\mathcal{L}_{\text{g}},
93
+ $$
94
+
95
+
96
+ where \\(w_{*}\\) represents the weight assigned to each loss component. Please see [our paper](https://arxiv.org/abs/2411.10442) for more details about MPO.
97
+
98
+
99
+ ### Test-Time Scaling
100
+
101
+ Test-Time Scaling has been shown to be an effective method to enhance the reasoning abilities of LLMs and MLLMs.
102
+ In this work, we use the Best-of-N evaluation strategy and employ [VisualPRM-8B](https://huggingface.co/OpenGVLab/VisualPRM-8B) as the critic model to select the best response for reasoning and mathematics evaluation.
103
+
104
+ ## Evaluation on Multimodal Capability
105
+
106
+ ### Multimodal Reasoning and Mathematics
107
+
108
+ ![image/png](https://huggingface.co/OpenGVLab/VisualPRM-8B-v1_1/resolve/main/visualprm-performance.png)
109
+
110
+ ### OCR, Chart, and Document Understanding
111
+
112
+ ![image/png](https://huggingface.co/datasets/Weiyun1025/InternVL-Performance/resolve/main/internvl3/ocr.png)
113
+
114
+ ### Multi-Image & Real-World Comprehension
115
+
116
+ ![image/png](https://huggingface.co/datasets/Weiyun1025/InternVL-Performance/resolve/main/internvl3/multi-images.png)
117
+
118
+ ### Comprehensive Multimodal & Hallucination Evaluation
119
+
120
+ ![image/png](https://huggingface.co/datasets/Weiyun1025/InternVL-Performance/resolve/main/internvl3/comprehensive.png)
121
+
122
+ ### Visual Grounding
123
+
124
+ ![image/png](https://huggingface.co/datasets/Weiyun1025/InternVL-Performance/resolve/main/internvl3/grounding.png)
125
+
126
+ ### Multimodal Multilingual Understanding
127
+
128
+ ![image/png](https://huggingface.co/datasets/Weiyun1025/InternVL-Performance/resolve/main/internvl3/multilingual.png)
129
+
130
+ ### Video Understanding
131
+
132
+ ![image/png](https://huggingface.co/datasets/Weiyun1025/InternVL-Performance/resolve/main/internvl3/video.png)
133
+
134
+ ### GUI Grounding
135
+
136
+ ![image/png](https://huggingface.co/datasets/Weiyun1025/InternVL-Performance/resolve/main/internvl3/gui.png)
137
+
138
+ ### Spatial Reasoning
139
+
140
+ ![image/png](https://huggingface.co/datasets/Weiyun1025/InternVL-Performance/resolve/main/internvl3/vsi.png)
141
+
142
+ ## Evaluation on Language Capability
143
+
144
+ We compare InternVL3 with Qwen2.5 Chat models, whose corresponding pre-trained base models are employed as the initialization of the langauge component in InternVL3.
145
+ Benefitting from Native Multimodal Pre-Training, the InternVL3 series achieves even better overall text performance than the Qwen2.5 series.
146
+ Please note that the evaluation scores of Qwen2.5 series may differ from those officially reported, as we have adopted the prompt versions provided in the table across all datasets for OpenCompass evaluation.
147
+
148
+ ![image/png](https://huggingface.co/datasets/Weiyun1025/InternVL-Performance/resolve/main/internvl3/text.png)
149
+
150
+ ## Ablation Study
151
+
152
+ ### Native Multimodal Pre-Training
153
+
154
+ We conduct experiments on the InternVL2-8B model while keeping its architecture, initialization parameters, and training data entirely unchanged. Traditionally, InternVL2-8B employs a training pipeline that begins with an MLP warmup phase for feature alignment followed by an Instruction Tuning stage. In our experiments, we substitute the conventional MLP warmup phase with a native multimodal pre-training process. This modification isolates the contribution of native multimodal pre-training to the overall multimodal capability of the model.
155
+
156
+ The evaluation results in the Figure below shows that the model with native multimodal pre-training exhibits performance on most benchmarks that is comparable to the fully multi-stage-trained InternVL2-8B baseline. Furthermore, when followed by instruction tuning on higher-quality data, the model demonstrates further performance gains across evaluated multimodal tasks. These findings underscore the efficiency of native multimodal pre-training in imparting powerful multimodal capabilities to MLLMs.
157
+
158
+ ![image/png](https://huggingface.co/datasets/Weiyun1025/InternVL-Performance/resolve/main/internvl3/ablation-native.png)
159
+
160
+ ### Mixed Preference Optimization
161
+
162
+ As shown in the table below, models fine-tuned with MPO demonstrate superior reasoning performance across seven multimodal reasoning benchmarks compared to their counterparts without MPO. Specifically, InternVL3-78B and InternVL3-38B outperform their counterparts by 4.1 and 4.5 points, respectively. Notably, the training data used for MPO is a subset of that used for SFT, indicating that the performance improvements primarily stem from the training algorithm rather than the training data.
163
+
164
+ ![image/png](https://huggingface.co/datasets/OpenGVLab/MMPR-v1.2-prompts/resolve/main/ablation-mpo.png)
165
+
166
+ ### Variable Visual Position Encoding
167
+
168
+ As reported in the table below, the introduction of V2PE leads to significant performance gains across most evaluation metrics. In addition, our ablation studies—by varying the positional increment \\( \delta \\)—reveal that even for tasks primarily involving conventional contexts, relatively small \\( \delta \\) values can achieve optimal performance. These findings provide important insights for future efforts aimed at refining position encoding strategies for visual tokens in MLLMs.
169
+
170
+ ![image/png](https://huggingface.co/datasets/Weiyun1025/InternVL-Performance/resolve/main/internvl3/ablation-v2pe.png)
171
+
172
+ ## Quick Start
173
+
174
+ We provide an example code to run `InternVL3-14B` using `transformers`.
175
+
176
+ > Please use transformers>=4.37.2 to ensure the model works normally.
177
+
178
+ ### Model Loading
179
+
180
+ #### 16-bit (bf16 / fp16)
181
+
182
+ ```python
183
+ import torch
184
+ from transformers import AutoTokenizer, AutoModel
185
+ path = "OpenGVLab/InternVL3-14B"
186
+ model = AutoModel.from_pretrained(
187
+ path,
188
+ torch_dtype=torch.bfloat16,
189
+ low_cpu_mem_usage=True,
190
+ use_flash_attn=True,
191
+ trust_remote_code=True).eval().cuda()
192
+ ```
193
+
194
+ #### BNB 8-bit Quantization
195
+
196
+ ```python
197
+ import torch
198
+ from transformers import AutoTokenizer, AutoModel
199
+ path = "OpenGVLab/InternVL3-14B"
200
+ model = AutoModel.from_pretrained(
201
+ path,
202
+ torch_dtype=torch.bfloat16,
203
+ load_in_8bit=True,
204
+ low_cpu_mem_usage=True,
205
+ use_flash_attn=True,
206
+ trust_remote_code=True).eval()
207
+ ```
208
+
209
+ #### Multiple GPUs
210
+
211
+ The reason for writing the code this way is to avoid errors that occur during multi-GPU inference due to tensors not being on the same device. By ensuring that the first and last layers of the large language model (LLM) are on the same device, we prevent such errors.
212
+
213
+ ```python
214
+ import math
215
+ import torch
216
+ from transformers import AutoTokenizer, AutoModel
217
+
218
+ def split_model(model_name):
219
+ device_map = {}
220
+ world_size = torch.cuda.device_count()
221
+ config = AutoConfig.from_pretrained(model_path, trust_remote_code=True)
222
+ num_layers = config.llm_config.num_hidden_layers
223
+ # Since the first GPU will be used for ViT, treat it as half a GPU.
224
+ num_layers_per_gpu = math.ceil(num_layers / (world_size - 0.5))
225
+ num_layers_per_gpu = [num_layers_per_gpu] * world_size
226
+ num_layers_per_gpu[0] = math.ceil(num_layers_per_gpu[0] * 0.5)
227
+ layer_cnt = 0
228
+ for i, num_layer in enumerate(num_layers_per_gpu):
229
+ for j in range(num_layer):
230
+ device_map[f'language_model.model.layers.{layer_cnt}'] = i
231
+ layer_cnt += 1
232
+ device_map['vision_model'] = 0
233
+ device_map['mlp1'] = 0
234
+ device_map['language_model.model.tok_embeddings'] = 0
235
+ device_map['language_model.model.embed_tokens'] = 0
236
+ device_map['language_model.output'] = 0
237
+ device_map['language_model.model.norm'] = 0
238
+ device_map['language_model.model.rotary_emb'] = 0
239
+ device_map['language_model.lm_head'] = 0
240
+ device_map[f'language_model.model.layers.{num_layers - 1}'] = 0
241
+
242
+ return device_map
243
+
244
+ path = "OpenGVLab/InternVL3-14B"
245
+ device_map = split_model('InternVL3-14B')
246
+ model = AutoModel.from_pretrained(
247
+ path,
248
+ torch_dtype=torch.bfloat16,
249
+ low_cpu_mem_usage=True,
250
+ use_flash_attn=True,
251
+ trust_remote_code=True,
252
+ device_map=device_map).eval()
253
+ ```
254
+
255
+ ### Inference with Transformers
256
+
257
+ ```python
258
+ import math
259
+ import numpy as np
260
+ import torch
261
+ import torchvision.transforms as T
262
+ from decord import VideoReader, cpu
263
+ from PIL import Image
264
+ from torchvision.transforms.functional import InterpolationMode
265
+ from transformers import AutoModel, AutoTokenizer
266
+
267
+ IMAGENET_MEAN = (0.485, 0.456, 0.406)
268
+ IMAGENET_STD = (0.229, 0.224, 0.225)
269
+
270
+ def build_transform(input_size):
271
+ MEAN, STD = IMAGENET_MEAN, IMAGENET_STD
272
+ transform = T.Compose([
273
+ T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
274
+ T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
275
+ T.ToTensor(),
276
+ T.Normalize(mean=MEAN, std=STD)
277
+ ])
278
+ return transform
279
+
280
+ def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
281
+ best_ratio_diff = float('inf')
282
+ best_ratio = (1, 1)
283
+ area = width * height
284
+ for ratio in target_ratios:
285
+ target_aspect_ratio = ratio[0] / ratio[1]
286
+ ratio_diff = abs(aspect_ratio - target_aspect_ratio)
287
+ if ratio_diff < best_ratio_diff:
288
+ best_ratio_diff = ratio_diff
289
+ best_ratio = ratio
290
+ elif ratio_diff == best_ratio_diff:
291
+ if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
292
+ best_ratio = ratio
293
+ return best_ratio
294
+
295
+ def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbnail=False):
296
+ orig_width, orig_height = image.size
297
+ aspect_ratio = orig_width / orig_height
298
+
299
+ # calculate the existing image aspect ratio
300
+ target_ratios = set(
301
+ (i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
302
+ i * j <= max_num and i * j >= min_num)
303
+ target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
304
+
305
+ # find the closest aspect ratio to the target
306
+ target_aspect_ratio = find_closest_aspect_ratio(
307
+ aspect_ratio, target_ratios, orig_width, orig_height, image_size)
308
+
309
+ # calculate the target width and height
310
+ target_width = image_size * target_aspect_ratio[0]
311
+ target_height = image_size * target_aspect_ratio[1]
312
+ blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
313
+
314
+ # resize the image
315
+ resized_img = image.resize((target_width, target_height))
316
+ processed_images = []
317
+ for i in range(blocks):
318
+ box = (
319
+ (i % (target_width // image_size)) * image_size,
320
+ (i // (target_width // image_size)) * image_size,
321
+ ((i % (target_width // image_size)) + 1) * image_size,
322
+ ((i // (target_width // image_size)) + 1) * image_size
323
+ )
324
+ # split the image
325
+ split_img = resized_img.crop(box)
326
+ processed_images.append(split_img)
327
+ assert len(processed_images) == blocks
328
+ if use_thumbnail and len(processed_images) != 1:
329
+ thumbnail_img = image.resize((image_size, image_size))
330
+ processed_images.append(thumbnail_img)
331
+ return processed_images
332
+
333
+ def load_image(image_file, input_size=448, max_num=12):
334
+ image = Image.open(image_file).convert('RGB')
335
+ transform = build_transform(input_size=input_size)
336
+ images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num)
337
+ pixel_values = [transform(image) for image in images]
338
+ pixel_values = torch.stack(pixel_values)
339
+ return pixel_values
340
+
341
+ def split_model(model_name):
342
+ device_map = {}
343
+ world_size = torch.cuda.device_count()
344
+ config = AutoConfig.from_pretrained(model_path, trust_remote_code=True)
345
+ num_layers = config.llm_config.num_hidden_layers
346
+ # Since the first GPU will be used for ViT, treat it as half a GPU.
347
+ num_layers_per_gpu = math.ceil(num_layers / (world_size - 0.5))
348
+ num_layers_per_gpu = [num_layers_per_gpu] * world_size
349
+ num_layers_per_gpu[0] = math.ceil(num_layers_per_gpu[0] * 0.5)
350
+ layer_cnt = 0
351
+ for i, num_layer in enumerate(num_layers_per_gpu):
352
+ for j in range(num_layer):
353
+ device_map[f'language_model.model.layers.{layer_cnt}'] = i
354
+ layer_cnt += 1
355
+ device_map['vision_model'] = 0
356
+ device_map['mlp1'] = 0
357
+ device_map['language_model.model.tok_embeddings'] = 0
358
+ device_map['language_model.model.embed_tokens'] = 0
359
+ device_map['language_model.output'] = 0
360
+ device_map['language_model.model.norm'] = 0
361
+ device_map['language_model.model.rotary_emb'] = 0
362
+ device_map['language_model.lm_head'] = 0
363
+ device_map[f'language_model.model.layers.{num_layers - 1}'] = 0
364
+
365
+ return device_map
366
+
367
+ # If you set `load_in_8bit=True`, you will need two 80GB GPUs.
368
+ # If you set `load_in_8bit=False`, you will need at least three 80GB GPUs.
369
+ path = 'OpenGVLab/InternVL3-14B'
370
+ device_map = split_model('InternVL3-14B')
371
+ model = AutoModel.from_pretrained(
372
+ path,
373
+ torch_dtype=torch.bfloat16,
374
+ load_in_8bit=False,
375
+ low_cpu_mem_usage=True,
376
+ use_flash_attn=True,
377
+ trust_remote_code=True,
378
+ device_map=device_map).eval()
379
+ tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True, use_fast=False)
380
+
381
+ # set the max number of tiles in `max_num`
382
+ pixel_values = load_image('./examples/image1.jpg', max_num=12).to(torch.bfloat16).cuda()
383
+ generation_config = dict(max_new_tokens=1024, do_sample=True)
384
+
385
+ # pure-text conversation (纯文本对话)
386
+ question = 'Hello, who are you?'
387
+ response, history = model.chat(tokenizer, None, question, generation_config, history=None, return_history=True)
388
+ print(f'User: {question}\nAssistant: {response}')
389
+
390
+ question = 'Can you tell me a story?'
391
+ response, history = model.chat(tokenizer, None, question, generation_config, history=history, return_history=True)
392
+ print(f'User: {question}\nAssistant: {response}')
393
+
394
+ # single-image single-round conversation (单图单轮对话)
395
+ question = '<image>\nPlease describe the image shortly.'
396
+ response = model.chat(tokenizer, pixel_values, question, generation_config)
397
+ print(f'User: {question}\nAssistant: {response}')
398
+
399
+ # single-image multi-round conversation (单图多轮对话)
400
+ question = '<image>\nPlease describe the image in detail.'
401
+ response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=None, return_history=True)
402
+ print(f'User: {question}\nAssistant: {response}')
403
+
404
+ question = 'Please write a poem according to the image.'
405
+ response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=history, return_history=True)
406
+ print(f'User: {question}\nAssistant: {response}')
407
+
408
+ # multi-image multi-round conversation, combined images (多图多轮对话,拼接图像)
409
+ pixel_values1 = load_image('./examples/image1.jpg', max_num=12).to(torch.bfloat16).cuda()
410
+ pixel_values2 = load_image('./examples/image2.jpg', max_num=12).to(torch.bfloat16).cuda()
411
+ pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)
412
+
413
+ question = '<image>\nDescribe the two images in detail.'
414
+ response, history = model.chat(tokenizer, pixel_values, question, generation_config,
415
+ history=None, return_history=True)
416
+ print(f'User: {question}\nAssistant: {response}')
417
+
418
+ question = 'What are the similarities and differences between these two images.'
419
+ response, history = model.chat(tokenizer, pixel_values, question, generation_config,
420
+ history=history, return_history=True)
421
+ print(f'User: {question}\nAssistant: {response}')
422
+
423
+ # multi-image multi-round conversation, separate images (多图多轮对话,独立图像)
424
+ pixel_values1 = load_image('./examples/image1.jpg', max_num=12).to(torch.bfloat16).cuda()
425
+ pixel_values2 = load_image('./examples/image2.jpg', max_num=12).to(torch.bfloat16).cuda()
426
+ pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)
427
+ num_patches_list = [pixel_values1.size(0), pixel_values2.size(0)]
428
+
429
+ question = 'Image-1: <image>\nImage-2: <image>\nDescribe the two images in detail.'
430
+ response, history = model.chat(tokenizer, pixel_values, question, generation_config,
431
+ num_patches_list=num_patches_list,
432
+ history=None, return_history=True)
433
+ print(f'User: {question}\nAssistant: {response}')
434
+
435
+ question = 'What are the similarities and differences between these two images.'
436
+ response, history = model.chat(tokenizer, pixel_values, question, generation_config,
437
+ num_patches_list=num_patches_list,
438
+ history=history, return_history=True)
439
+ print(f'User: {question}\nAssistant: {response}')
440
+
441
+ # batch inference, single image per sample (单图批处理)
442
+ pixel_values1 = load_image('./examples/image1.jpg', max_num=12).to(torch.bfloat16).cuda()
443
+ pixel_values2 = load_image('./examples/image2.jpg', max_num=12).to(torch.bfloat16).cuda()
444
+ num_patches_list = [pixel_values1.size(0), pixel_values2.size(0)]
445
+ pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)
446
+
447
+ questions = ['<image>\nDescribe the image in detail.'] * len(num_patches_list)
448
+ responses = model.batch_chat(tokenizer, pixel_values,
449
+ num_patches_list=num_patches_list,
450
+ questions=questions,
451
+ generation_config=generation_config)
452
+ for question, response in zip(questions, responses):
453
+ print(f'User: {question}\nAssistant: {response}')
454
+
455
+ # video multi-round conversation (视频多轮对话)
456
+ def get_index(bound, fps, max_frame, first_idx=0, num_segments=32):
457
+ if bound:
458
+ start, end = bound[0], bound[1]
459
+ else:
460
+ start, end = -100000, 100000
461
+ start_idx = max(first_idx, round(start * fps))
462
+ end_idx = min(round(end * fps), max_frame)
463
+ seg_size = float(end_idx - start_idx) / num_segments
464
+ frame_indices = np.array([
465
+ int(start_idx + (seg_size / 2) + np.round(seg_size * idx))
466
+ for idx in range(num_segments)
467
+ ])
468
+ return frame_indices
469
+
470
+ def load_video(video_path, bound=None, input_size=448, max_num=1, num_segments=32):
471
+ vr = VideoReader(video_path, ctx=cpu(0), num_threads=1)
472
+ max_frame = len(vr) - 1
473
+ fps = float(vr.get_avg_fps())
474
+
475
+ pixel_values_list, num_patches_list = [], []
476
+ transform = build_transform(input_size=input_size)
477
+ frame_indices = get_index(bound, fps, max_frame, first_idx=0, num_segments=num_segments)
478
+ for frame_index in frame_indices:
479
+ img = Image.fromarray(vr[frame_index].asnumpy()).convert('RGB')
480
+ img = dynamic_preprocess(img, image_size=input_size, use_thumbnail=True, max_num=max_num)
481
+ pixel_values = [transform(tile) for tile in img]
482
+ pixel_values = torch.stack(pixel_values)
483
+ num_patches_list.append(pixel_values.shape[0])
484
+ pixel_values_list.append(pixel_values)
485
+ pixel_values = torch.cat(pixel_values_list)
486
+ return pixel_values, num_patches_list
487
+
488
+ video_path = './examples/red-panda.mp4'
489
+ pixel_values, num_patches_list = load_video(video_path, num_segments=8, max_num=1)
490
+ pixel_values = pixel_values.to(torch.bfloat16).cuda()
491
+ video_prefix = ''.join([f'Frame{i+1}: <image>\n' for i in range(len(num_patches_list))])
492
+ question = video_prefix + 'What is the red panda doing?'
493
+ # Frame1: <image>\nFrame2: <image>\n...\nFrame8: <image>\n{question}
494
+ response, history = model.chat(tokenizer, pixel_values, question, generation_config,
495
+ num_patches_list=num_patches_list, history=None, return_history=True)
496
+ print(f'User: {question}\nAssistant: {response}')
497
+
498
+ question = 'Describe this video in detail.'
499
+ response, history = model.chat(tokenizer, pixel_values, question, generation_config,
500
+ num_patches_list=num_patches_list, history=history, return_history=True)
501
+ print(f'User: {question}\nAssistant: {response}')
502
+ ```
503
+
504
+ #### Streaming Output
505
+
506
+ Besides this method, you can also use the following code to get streamed output.
507
+
508
+ ```python
509
+ from transformers import TextIteratorStreamer
510
+ from threading import Thread
511
+
512
+ # Initialize the streamer
513
+ streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True, timeout=10)
514
+ # Define the generation configuration
515
+ generation_config = dict(max_new_tokens=1024, do_sample=False, streamer=streamer)
516
+ # Start the model chat in a separate thread
517
+ thread = Thread(target=model.chat, kwargs=dict(
518
+ tokenizer=tokenizer, pixel_values=pixel_values, question=question,
519
+ history=None, return_history=False, generation_config=generation_config,
520
+ ))
521
+ thread.start()
522
+
523
+ # Initialize an empty string to store the generated text
524
+ generated_text = ''
525
+ # Loop through the streamer to get the new text as it is generated
526
+ for new_text in streamer:
527
+ if new_text == model.conv_template.sep:
528
+ break
529
+ generated_text += new_text
530
+ print(new_text, end='', flush=True) # Print each new chunk of generated text on the same line
531
+ ```
532
+
533
+ ## Finetune
534
+
535
+ Many repositories now support fine-tuning of the InternVL series models, including [InternVL](https://github.com/OpenGVLab/InternVL), [SWIFT](https://github.com/modelscope/ms-swift), [XTurner](https://github.com/InternLM/xtuner), and others. Please refer to their documentation for more details on fine-tuning.
536
+
537
+ ## Deployment
538
+
539
+ ### LMDeploy
540
+
541
+ LMDeploy is a toolkit for compressing, deploying, and serving LLMs & VLMs.
542
+
543
+ ```sh
544
+ # if lmdeploy<0.7.3, you need to explicitly set chat_template_config=ChatTemplateConfig(model_name='internvl2_5')
545
+ pip install lmdeploy>=0.7.3
546
+ ```
547
+
548
+ LMDeploy abstracts the complex inference process of multi-modal Vision-Language Models (VLM) into an easy-to-use pipeline, similar to the Large Language Model (LLM) inference pipeline.
549
+
550
+ #### A 'Hello, world' Example
551
+
552
+ ```python
553
+ from lmdeploy import pipeline, TurbomindEngineConfig, ChatTemplateConfig
554
+ from lmdeploy.vl import load_image
555
+
556
+ model = 'OpenGVLab/InternVL3-14B'
557
+ image = load_image('https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/tests/data/tiger.jpeg')
558
+ pipe = pipeline(model, backend_config=TurbomindEngineConfig(session_len=16384, tp=1), chat_template_config=ChatTemplateConfig(model_name='internvl2_5'))
559
+ response = pipe(('describe this image', image))
560
+ print(response.text)
561
+ ```
562
+
563
+ If `ImportError` occurs while executing this case, please install the required dependency packages as prompted.
564
+
565
+ #### Multi-images Inference
566
+
567
+ When dealing with multiple images, you can put them all in one list. Keep in mind that multiple images will lead to a higher number of input tokens, and as a result, the size of the context window typically needs to be increased.
568
+
569
+ ```python
570
+ from lmdeploy import pipeline, TurbomindEngineConfig, ChatTemplateConfig
571
+ from lmdeploy.vl import load_image
572
+ from lmdeploy.vl.constants import IMAGE_TOKEN
573
+
574
+ model = 'OpenGVLab/InternVL3-14B'
575
+ pipe = pipeline(model, backend_config=TurbomindEngineConfig(session_len=16384, tp=1), chat_template_config=ChatTemplateConfig(model_name='internvl2_5'))
576
+
577
+ image_urls=[
578
+ 'https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/human-pose.jpg',
579
+ 'https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/det.jpg'
580
+ ]
581
+
582
+ images = [load_image(img_url) for img_url in image_urls]
583
+ # Numbering images improves multi-image conversations
584
+ response = pipe((f'Image-1: {IMAGE_TOKEN}\nImage-2: {IMAGE_TOKEN}\ndescribe these two images', images))
585
+ print(response.text)
586
+ ```
587
+
588
+ #### Batch Prompts Inference
589
+
590
+ Conducting inference with batch prompts is quite straightforward; just place them within a list structure:
591
+
592
+ ```python
593
+ from lmdeploy import pipeline, TurbomindEngineConfig, ChatTemplateConfig
594
+ from lmdeploy.vl import load_image
595
+
596
+ model = 'OpenGVLab/InternVL3-14B'
597
+ pipe = pipeline(model, backend_config=TurbomindEngineConfig(session_len=16384, tp=1), chat_template_config=ChatTemplateConfig(model_name='internvl2_5'))
598
+
599
+ image_urls=[
600
+ "https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/human-pose.jpg",
601
+ "https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/det.jpg"
602
+ ]
603
+ prompts = [('describe this image', load_image(img_url)) for img_url in image_urls]
604
+ response = pipe(prompts)
605
+ print(response)
606
+ ```
607
+
608
+ #### Multi-turn Conversation
609
+
610
+ There are two ways to do the multi-turn conversations with the pipeline. One is to construct messages according to the format of OpenAI and use above introduced method, the other is to use the `pipeline.chat` interface.
611
+
612
+ ```python
613
+ from lmdeploy import pipeline, TurbomindEngineConfig, GenerationConfig, ChatTemplateConfig
614
+ from lmdeploy.vl import load_image
615
+
616
+ model = 'OpenGVLab/InternVL3-14B'
617
+ pipe = pipeline(model, backend_config=TurbomindEngineConfig(session_len=16384, tp=1), chat_template_config=ChatTemplateConfig(model_name='internvl2_5'))
618
+
619
+ image = load_image('https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/human-pose.jpg')
620
+ gen_config = GenerationConfig(top_k=40, top_p=0.8, temperature=0.8)
621
+ sess = pipe.chat(('describe this image', image), gen_config=gen_config)
622
+ print(sess.response.text)
623
+ sess = pipe.chat('What is the woman doing?', session=sess, gen_config=gen_config)
624
+ print(sess.response.text)
625
+ ```
626
+
627
+ #### Service
628
+
629
+ LMDeploy's `api_server` enables models to be easily packed into services with a single command. The provided RESTful APIs are compatible with OpenAI's interfaces. Below are an example of service startup:
630
+
631
+ ```shell
632
+ lmdeploy serve api_server OpenGVLab/InternVL3-14B --chat-template internvl2_5 --server-port 23333 --tp 1
633
+ ```
634
+
635
+ To use the OpenAI-style interface, you need to install OpenAI:
636
+
637
+ ```shell
638
+ pip install openai
639
+ ```
640
+
641
+ Then, use the code below to make the API call:
642
+
643
+ ```python
644
+ from openai import OpenAI
645
+
646
+ client = OpenAI(api_key='YOUR_API_KEY', base_url='http://0.0.0.0:23333/v1')
647
+ model_name = client.models.list().data[0].id
648
+ response = client.chat.completions.create(
649
+ model=model_name,
650
+ messages=[{
651
+ 'role':
652
+ 'user',
653
+ 'content': [{
654
+ 'type': 'text',
655
+ 'text': 'describe this image',
656
+ }, {
657
+ 'type': 'image_url',
658
+ 'image_url': {
659
+ 'url':
660
+ 'https://modelscope.oss-cn-beijing.aliyuncs.com/resource/tiger.jpeg',
661
+ },
662
+ }],
663
+ }],
664
+ temperature=0.8,
665
+ top_p=0.8)
666
+ print(response)
667
+ ```
668
+
669
+ ## License
670
+
671
+ This project is released under the MIT License. This project uses the pre-trained Qwen2.5 as a component, which is licensed under the Apache-2.0 License.
672
+
673
+ ## Citation
674
+
675
+ If you find this project useful in your research, please consider citing:
676
+
677
+ ```BibTeX
678
+ @article{chen2024expanding,
679
+ title={Expanding Performance Boundaries of Open-Source Multimodal Models with Model, Data, and Test-Time Scaling},
680
+ author={Chen, Zhe and Wang, Weiyun and Cao, Yue and Liu, Yangzhou and Gao, Zhangwei and Cui, Erfei and Zhu, Jinguo and Ye, Shenglong and Tian, Hao and Liu, Zhaoyang and others},
681
+ journal={arXiv preprint arXiv:2412.05271},
682
+ year={2024}
683
+ }
684
+ @article{wang2024mpo,
685
+ title={Enhancing the Reasoning Ability of Multimodal Large Language Models via Mixed Preference Optimization},
686
+ author={Wang, Weiyun and Chen, Zhe and Wang, Wenhai and Cao, Yue and Liu, Yangzhou and Gao, Zhangwei and Zhu, Jinguo and Zhu, Xizhou and Lu, Lewei and Qiao, Yu and Dai, Jifeng},
687
+ journal={arXiv preprint arXiv:2411.10442},
688
+ year={2024}
689
+ }
690
+ @article{chen2024far,
691
+ title={How Far Are We to GPT-4V? Closing the Gap to Commercial Multimodal Models with Open-Source Suites},
692
+ author={Chen, Zhe and Wang, Weiyun and Tian, Hao and Ye, Shenglong and Gao, Zhangwei and Cui, Erfei and Tong, Wenwen and Hu, Kongzhi and Luo, Jiapeng and Ma, Zheng and others},
693
+ journal={arXiv preprint arXiv:2404.16821},
694
+ year={2024}
695
+ }
696
+ @inproceedings{chen2024internvl,
697
+ title={Internvl: Scaling up vision foundation models and aligning for generic visual-linguistic tasks},
698
+ author={Chen, Zhe and Wu, Jiannan and Wang, Wenhai and Su, Weijie and Chen, Guo and Xing, Sen and Zhong, Muyan and Zhang, Qinglong and Zhu, Xizhou and Lu, Lewei and others},
699
+ booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
700
+ pages={24185--24198},
701
+ year={2024}
702
+ }
703
+ ```
added_tokens.json ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</box>": 151673,
3
+ "</img>": 151666,
4
+ "</quad>": 151669,
5
+ "</ref>": 151671,
6
+ "</tool_call>": 151658,
7
+ "<IMG_CONTEXT>": 151667,
8
+ "<box>": 151672,
9
+ "<img>": 151665,
10
+ "<quad>": 151668,
11
+ "<ref>": 151670,
12
+ "<tool_call>": 151657,
13
+ "<|box_end|>": 151649,
14
+ "<|box_start|>": 151648,
15
+ "<|endoftext|>": 151643,
16
+ "<|file_sep|>": 151664,
17
+ "<|fim_middle|>": 151660,
18
+ "<|fim_pad|>": 151662,
19
+ "<|fim_prefix|>": 151659,
20
+ "<|fim_suffix|>": 151661,
21
+ "<|im_end|>": 151645,
22
+ "<|im_start|>": 151644,
23
+ "<|image_pad|>": 151655,
24
+ "<|object_ref_end|>": 151647,
25
+ "<|object_ref_start|>": 151646,
26
+ "<|quad_end|>": 151651,
27
+ "<|quad_start|>": 151650,
28
+ "<|repo_name|>": 151663,
29
+ "<|video_pad|>": 151656,
30
+ "<|vision_end|>": 151653,
31
+ "<|vision_pad|>": 151654,
32
+ "<|vision_start|>": 151652
33
+ }
config.json ADDED
@@ -0,0 +1,224 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_commit_hash": null,
3
+ "_name_or_path": "/mnt/petrelfs/wangweiyun/workspace_wwy/open_source/InternVL/internvl_chat/work_dirs/internvl_chat_v3_0/InternVL3_0-14B-MPO-try0-2",
4
+ "architectures": [
5
+ "InternVLChatModel"
6
+ ],
7
+ "auto_map": {
8
+ "AutoConfig": "configuration_internvl_chat.InternVLChatConfig",
9
+ "AutoModel": "modeling_internvl_chat.InternVLChatModel",
10
+ "AutoModelForCausalLM": "modeling_internvl_chat.InternVLChatModel"
11
+ },
12
+ "downsample_ratio": 0.5,
13
+ "dynamic_image_size": true,
14
+ "force_image_size": 448,
15
+ "hidden_size": 5120,
16
+ "image_fold": null,
17
+ "llm_config": {
18
+ "_attn_implementation_autoset": true,
19
+ "_name_or_path": "./pretrained/Qwen2.5-32B-Instruct",
20
+ "add_cross_attention": false,
21
+ "architectures": [
22
+ "Qwen2ForCausalLM"
23
+ ],
24
+ "attention_dropout": 0.0,
25
+ "bad_words_ids": null,
26
+ "begin_suppress_tokens": null,
27
+ "bos_token_id": 151643,
28
+ "chunk_size_feed_forward": 0,
29
+ "cross_attention_hidden_size": null,
30
+ "decoder_start_token_id": null,
31
+ "diversity_penalty": 0.0,
32
+ "do_sample": false,
33
+ "early_stopping": false,
34
+ "encoder_no_repeat_ngram_size": 0,
35
+ "eos_token_id": 151643,
36
+ "exponential_decay_length_penalty": null,
37
+ "finetuning_task": null,
38
+ "forced_bos_token_id": null,
39
+ "forced_eos_token_id": null,
40
+ "hidden_act": "silu",
41
+ "hidden_size": 5120,
42
+ "id2label": {
43
+ "0": "LABEL_0",
44
+ "1": "LABEL_1"
45
+ },
46
+ "initializer_range": 0.02,
47
+ "intermediate_size": 13824,
48
+ "is_decoder": false,
49
+ "is_encoder_decoder": false,
50
+ "label2id": {
51
+ "LABEL_0": 0,
52
+ "LABEL_1": 1
53
+ },
54
+ "length_penalty": 1.0,
55
+ "max_length": 20,
56
+ "max_position_embeddings": 32768,
57
+ "max_window_layers": 70,
58
+ "min_length": 0,
59
+ "model_type": "qwen2",
60
+ "moe_config": null,
61
+ "no_repeat_ngram_size": 0,
62
+ "num_attention_heads": 40,
63
+ "num_beam_groups": 1,
64
+ "num_beams": 1,
65
+ "num_hidden_layers": 48,
66
+ "num_key_value_heads": 8,
67
+ "num_return_sequences": 1,
68
+ "output_attentions": false,
69
+ "output_hidden_states": false,
70
+ "output_scores": false,
71
+ "pad_token_id": null,
72
+ "prefix": null,
73
+ "problem_type": null,
74
+ "pruned_heads": {},
75
+ "remove_invalid_values": false,
76
+ "repetition_penalty": 1.0,
77
+ "return_dict": true,
78
+ "return_dict_in_generate": false,
79
+ "rms_norm_eps": 1e-06,
80
+ "rope_scaling": {
81
+ "factor": 2.0,
82
+ "rope_type": "dynamic",
83
+ "type": "dynamic"
84
+ },
85
+ "rope_theta": 1000000.0,
86
+ "sep_token_id": null,
87
+ "sliding_window": null,
88
+ "suppress_tokens": null,
89
+ "task_specific_params": null,
90
+ "temperature": 1.0,
91
+ "tf_legacy_loss": false,
92
+ "tie_encoder_decoder": false,
93
+ "tie_word_embeddings": false,
94
+ "tokenizer_class": null,
95
+ "top_k": 50,
96
+ "top_p": 1.0,
97
+ "torch_dtype": "bfloat16",
98
+ "torchscript": false,
99
+ "transformers_version": "4.48.3",
100
+ "typical_p": 1.0,
101
+ "use_bfloat16": true,
102
+ "use_cache": false,
103
+ "use_sliding_window": false,
104
+ "vocab_size": 151674
105
+ },
106
+ "max_dynamic_patch": 12,
107
+ "min_dynamic_patch": 1,
108
+ "model_type": "internvl_chat",
109
+ "pad2square": false,
110
+ "ps_version": "v2",
111
+ "select_layer": -1,
112
+ "system_message": null,
113
+ "template": "internvl2_5",
114
+ "tie_word_embeddings": false,
115
+ "torch_dtype": "bfloat16",
116
+ "transformers_version": null,
117
+ "use_backbone_lora": 0,
118
+ "use_llm_lora": 0,
119
+ "use_thumbnail": true,
120
+ "vision_config": {
121
+ "_attn_implementation_autoset": true,
122
+ "_name_or_path": "OpenGVLab/InternViT-6B-448px-V1-5",
123
+ "add_cross_attention": false,
124
+ "architectures": [
125
+ "InternVisionModel"
126
+ ],
127
+ "attention_dropout": 0.0,
128
+ "auto_map": {
129
+ "AutoConfig": "configuration_intern_vit.InternVisionConfig",
130
+ "AutoModel": "modeling_intern_vit.InternVisionModel"
131
+ },
132
+ "bad_words_ids": null,
133
+ "begin_suppress_tokens": null,
134
+ "bos_token_id": null,
135
+ "capacity_factor": 1.2,
136
+ "chunk_size_feed_forward": 0,
137
+ "cross_attention_hidden_size": null,
138
+ "decoder_start_token_id": null,
139
+ "diversity_penalty": 0.0,
140
+ "do_sample": false,
141
+ "drop_path_rate": 0.1,
142
+ "dropout": 0.0,
143
+ "early_stopping": false,
144
+ "encoder_no_repeat_ngram_size": 0,
145
+ "eos_token_id": null,
146
+ "eval_capacity_factor": 1.4,
147
+ "exponential_decay_length_penalty": null,
148
+ "finetuning_task": null,
149
+ "forced_bos_token_id": null,
150
+ "forced_eos_token_id": null,
151
+ "hidden_act": "gelu",
152
+ "hidden_size": 1024,
153
+ "id2label": {
154
+ "0": "LABEL_0",
155
+ "1": "LABEL_1"
156
+ },
157
+ "image_size": 448,
158
+ "initializer_factor": 0.1,
159
+ "initializer_range": 1e-10,
160
+ "intermediate_size": 4096,
161
+ "is_decoder": false,
162
+ "is_encoder_decoder": false,
163
+ "label2id": {
164
+ "LABEL_0": 0,
165
+ "LABEL_1": 1
166
+ },
167
+ "laux_allreduce": "all_nodes",
168
+ "layer_norm_eps": 1e-06,
169
+ "length_penalty": 1.0,
170
+ "max_length": 20,
171
+ "min_length": 0,
172
+ "model_type": "intern_vit_6b",
173
+ "moe_coeff_ratio": 0.5,
174
+ "moe_intermediate_size": 768,
175
+ "moe_output_scale": 4.0,
176
+ "no_repeat_ngram_size": 0,
177
+ "noisy_gate_policy": "RSample_before",
178
+ "norm_type": "layer_norm",
179
+ "num_attention_heads": 16,
180
+ "num_beam_groups": 1,
181
+ "num_beams": 1,
182
+ "num_channels": 3,
183
+ "num_experts": 8,
184
+ "num_hidden_layers": 24,
185
+ "num_return_sequences": 1,
186
+ "num_routed_experts": 4,
187
+ "num_shared_experts": 4,
188
+ "output_attentions": false,
189
+ "output_hidden_states": false,
190
+ "output_scores": false,
191
+ "pad_token_id": null,
192
+ "patch_size": 14,
193
+ "prefix": null,
194
+ "problem_type": null,
195
+ "pruned_heads": {},
196
+ "qk_normalization": false,
197
+ "qkv_bias": true,
198
+ "remove_invalid_values": false,
199
+ "repetition_penalty": 1.0,
200
+ "return_dict": true,
201
+ "return_dict_in_generate": false,
202
+ "sep_token_id": null,
203
+ "shared_expert_intermediate_size": 3072,
204
+ "suppress_tokens": null,
205
+ "task_specific_params": null,
206
+ "temperature": 1.0,
207
+ "tf_legacy_loss": false,
208
+ "tie_encoder_decoder": false,
209
+ "tie_word_embeddings": true,
210
+ "tokenizer_class": null,
211
+ "top_k": 50,
212
+ "top_p": 1.0,
213
+ "torch_dtype": "bfloat16",
214
+ "torchscript": false,
215
+ "transformers_version": "4.48.3",
216
+ "typical_p": 1.0,
217
+ "use_bfloat16": true,
218
+ "use_flash_attn": true,
219
+ "use_moe": false,
220
+ "use_residual": true,
221
+ "use_rts": false,
222
+ "use_weighted_residual": false
223
+ }
224
+ }
configuration_intern_vit.py ADDED
@@ -0,0 +1,120 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # --------------------------------------------------------
2
+ # InternVL
3
+ # Copyright (c) 2024 OpenGVLab
4
+ # Licensed under The MIT License [see LICENSE for details]
5
+ # --------------------------------------------------------
6
+
7
+ import os
8
+ from typing import Union
9
+
10
+ from transformers.configuration_utils import PretrainedConfig
11
+ from transformers.utils import logging
12
+
13
+ logger = logging.get_logger(__name__)
14
+
15
+
16
+ class InternVisionConfig(PretrainedConfig):
17
+ r"""
18
+ This is the configuration class to store the configuration of a [`InternVisionModel`]. It is used to
19
+ instantiate a vision encoder according to the specified arguments, defining the model architecture.
20
+
21
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
22
+ documentation from [`PretrainedConfig`] for more information.
23
+
24
+ Args:
25
+ num_channels (`int`, *optional*, defaults to 3):
26
+ Number of color channels in the input images (e.g., 3 for RGB).
27
+ patch_size (`int`, *optional*, defaults to 14):
28
+ The size (resolution) of each patch.
29
+ image_size (`int`, *optional*, defaults to 224):
30
+ The size (resolution) of each image.
31
+ qkv_bias (`bool`, *optional*, defaults to `False`):
32
+ Whether to add a bias to the queries and values in the self-attention layers.
33
+ hidden_size (`int`, *optional*, defaults to 3200):
34
+ Dimensionality of the encoder layers and the pooler layer.
35
+ num_attention_heads (`int`, *optional*, defaults to 25):
36
+ Number of attention heads for each attention layer in the Transformer encoder.
37
+ intermediate_size (`int`, *optional*, defaults to 12800):
38
+ Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
39
+ qk_normalization (`bool`, *optional*, defaults to `True`):
40
+ Whether to normalize the queries and keys in the self-attention layers.
41
+ num_hidden_layers (`int`, *optional*, defaults to 48):
42
+ Number of hidden layers in the Transformer encoder.
43
+ use_flash_attn (`bool`, *optional*, defaults to `True`):
44
+ Whether to use flash attention mechanism.
45
+ hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
46
+ The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
47
+ `"relu"`, `"selu"` and `"gelu_new"` ``"gelu"` are supported.
48
+ layer_norm_eps (`float`, *optional*, defaults to 1e-6):
49
+ The epsilon used by the layer normalization layers.
50
+ dropout (`float`, *optional*, defaults to 0.0):
51
+ The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
52
+ drop_path_rate (`float`, *optional*, defaults to 0.0):
53
+ Dropout rate for stochastic depth.
54
+ attention_dropout (`float`, *optional*, defaults to 0.0):
55
+ The dropout ratio for the attention probabilities.
56
+ initializer_range (`float`, *optional*, defaults to 0.02):
57
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
58
+ initializer_factor (`float`, *optional*, defaults to 0.1):
59
+ A factor for layer scale.
60
+ """
61
+
62
+ model_type = 'intern_vit_6b'
63
+
64
+ def __init__(
65
+ self,
66
+ num_channels=3,
67
+ patch_size=14,
68
+ image_size=224,
69
+ qkv_bias=False,
70
+ hidden_size=3200,
71
+ num_attention_heads=25,
72
+ intermediate_size=12800,
73
+ qk_normalization=True,
74
+ num_hidden_layers=48,
75
+ use_flash_attn=True,
76
+ hidden_act='gelu',
77
+ norm_type='rms_norm',
78
+ layer_norm_eps=1e-6,
79
+ dropout=0.0,
80
+ drop_path_rate=0.0,
81
+ attention_dropout=0.0,
82
+ initializer_range=0.02,
83
+ initializer_factor=0.1,
84
+ **kwargs,
85
+ ):
86
+ super().__init__(**kwargs)
87
+
88
+ self.hidden_size = hidden_size
89
+ self.intermediate_size = intermediate_size
90
+ self.dropout = dropout
91
+ self.drop_path_rate = drop_path_rate
92
+ self.num_hidden_layers = num_hidden_layers
93
+ self.num_attention_heads = num_attention_heads
94
+ self.num_channels = num_channels
95
+ self.patch_size = patch_size
96
+ self.image_size = image_size
97
+ self.initializer_range = initializer_range
98
+ self.initializer_factor = initializer_factor
99
+ self.attention_dropout = attention_dropout
100
+ self.layer_norm_eps = layer_norm_eps
101
+ self.hidden_act = hidden_act
102
+ self.norm_type = norm_type
103
+ self.qkv_bias = qkv_bias
104
+ self.qk_normalization = qk_normalization
105
+ self.use_flash_attn = use_flash_attn
106
+
107
+ @classmethod
108
+ def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> 'PretrainedConfig':
109
+ config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
110
+
111
+ if 'vision_config' in config_dict:
112
+ config_dict = config_dict['vision_config']
113
+
114
+ if 'model_type' in config_dict and hasattr(cls, 'model_type') and config_dict['model_type'] != cls.model_type:
115
+ logger.warning(
116
+ f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
117
+ f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.'
118
+ )
119
+
120
+ return cls.from_dict(config_dict, **kwargs)
configuration_internvl_chat.py ADDED
@@ -0,0 +1,97 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # --------------------------------------------------------
2
+ # InternVL
3
+ # Copyright (c) 2024 OpenGVLab
4
+ # Licensed under The MIT License [see LICENSE for details]
5
+ # --------------------------------------------------------
6
+
7
+ import copy
8
+
9
+ from transformers import AutoConfig, LlamaConfig, Qwen2Config
10
+ from transformers.configuration_utils import PretrainedConfig
11
+ from transformers.utils import logging
12
+
13
+ from .configuration_intern_vit import InternVisionConfig
14
+
15
+ logger = logging.get_logger(__name__)
16
+
17
+
18
+ class InternVLChatConfig(PretrainedConfig):
19
+ model_type = 'internvl_chat'
20
+ is_composition = True
21
+
22
+ def __init__(
23
+ self,
24
+ vision_config=None,
25
+ llm_config=None,
26
+ use_backbone_lora=0,
27
+ use_llm_lora=0,
28
+ select_layer=-1,
29
+ force_image_size=None,
30
+ downsample_ratio=0.5,
31
+ template=None,
32
+ dynamic_image_size=False,
33
+ use_thumbnail=False,
34
+ ps_version='v1',
35
+ min_dynamic_patch=1,
36
+ max_dynamic_patch=6,
37
+ **kwargs):
38
+ super().__init__(**kwargs)
39
+
40
+ if vision_config is None:
41
+ vision_config = {'architectures': ['InternVisionModel']}
42
+ logger.info('vision_config is None. Initializing the InternVisionConfig with default values.')
43
+
44
+ if llm_config is None:
45
+ llm_config = {'architectures': ['Qwen2ForCausalLM']}
46
+ logger.info('llm_config is None. Initializing the LlamaConfig config with default values (`LlamaConfig`).')
47
+
48
+ self.vision_config = InternVisionConfig(**vision_config)
49
+ if llm_config.get('architectures')[0] == 'LlamaForCausalLM':
50
+ self.llm_config = LlamaConfig(**llm_config)
51
+ elif llm_config.get('architectures')[0] == 'Qwen2ForCausalLM':
52
+ self.llm_config = Qwen2Config(**llm_config)
53
+ else:
54
+ raise ValueError('Unsupported architecture: {}'.format(llm_config.get('architectures')[0]))
55
+ self.use_backbone_lora = use_backbone_lora
56
+ self.use_llm_lora = use_llm_lora
57
+ self.select_layer = select_layer
58
+ self.force_image_size = force_image_size
59
+ self.downsample_ratio = downsample_ratio
60
+ self.template = template
61
+ self.dynamic_image_size = dynamic_image_size
62
+ self.use_thumbnail = use_thumbnail
63
+ self.ps_version = ps_version # pixel shuffle version
64
+ self.min_dynamic_patch = min_dynamic_patch
65
+ self.max_dynamic_patch = max_dynamic_patch
66
+ # By default, we use tie_word_embeddings=False for models of all sizes.
67
+ self.tie_word_embeddings = self.llm_config.tie_word_embeddings
68
+
69
+ logger.info(f'vision_select_layer: {self.select_layer}')
70
+ logger.info(f'ps_version: {self.ps_version}')
71
+ logger.info(f'min_dynamic_patch: {self.min_dynamic_patch}')
72
+ logger.info(f'max_dynamic_patch: {self.max_dynamic_patch}')
73
+
74
+ def to_dict(self):
75
+ """
76
+ Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`].
77
+
78
+ Returns:
79
+ `Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance,
80
+ """
81
+ output = copy.deepcopy(self.__dict__)
82
+ output['vision_config'] = self.vision_config.to_dict()
83
+ output['llm_config'] = self.llm_config.to_dict()
84
+ output['model_type'] = self.__class__.model_type
85
+ output['use_backbone_lora'] = self.use_backbone_lora
86
+ output['use_llm_lora'] = self.use_llm_lora
87
+ output['select_layer'] = self.select_layer
88
+ output['force_image_size'] = self.force_image_size
89
+ output['downsample_ratio'] = self.downsample_ratio
90
+ output['template'] = self.template
91
+ output['dynamic_image_size'] = self.dynamic_image_size
92
+ output['use_thumbnail'] = self.use_thumbnail
93
+ output['ps_version'] = self.ps_version
94
+ output['min_dynamic_patch'] = self.min_dynamic_patch
95
+ output['max_dynamic_patch'] = self.max_dynamic_patch
96
+
97
+ return output
conversation.py ADDED
@@ -0,0 +1,391 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Conversation prompt templates.
3
+
4
+ We kindly request that you import fastchat instead of copying this file if you wish to use it.
5
+ If you have changes in mind, please contribute back so the community can benefit collectively and continue to maintain these valuable templates.
6
+
7
+ Modified from https://github.com/lm-sys/FastChat/blob/main/fastchat/conversation.py
8
+ """
9
+
10
+ import dataclasses
11
+ from enum import IntEnum, auto
12
+ from typing import Dict, List, Tuple, Union
13
+
14
+
15
+ class SeparatorStyle(IntEnum):
16
+ """Separator styles."""
17
+
18
+ ADD_COLON_SINGLE = auto()
19
+ ADD_COLON_TWO = auto()
20
+ ADD_COLON_SPACE_SINGLE = auto()
21
+ NO_COLON_SINGLE = auto()
22
+ NO_COLON_TWO = auto()
23
+ ADD_NEW_LINE_SINGLE = auto()
24
+ LLAMA2 = auto()
25
+ CHATGLM = auto()
26
+ CHATML = auto()
27
+ CHATINTERN = auto()
28
+ DOLLY = auto()
29
+ RWKV = auto()
30
+ PHOENIX = auto()
31
+ ROBIN = auto()
32
+ FALCON_CHAT = auto()
33
+ CHATGLM3 = auto()
34
+ INTERNVL_ZH = auto()
35
+ MPT = auto()
36
+
37
+
38
+ @dataclasses.dataclass
39
+ class Conversation:
40
+ """A class that manages prompt templates and keeps all conversation history."""
41
+
42
+ # The name of this template
43
+ name: str
44
+ # The template of the system prompt
45
+ system_template: str = '{system_message}'
46
+ # The system message
47
+ system_message: str = ''
48
+ # The names of two roles
49
+ roles: Tuple[str] = ('USER', 'ASSISTANT')
50
+ # All messages. Each item is (role, message).
51
+ messages: List[List[str]] = ()
52
+ # The number of few shot examples
53
+ offset: int = 0
54
+ # The separator style and configurations
55
+ sep_style: SeparatorStyle = SeparatorStyle.ADD_COLON_SINGLE
56
+ sep: str = '\n'
57
+ sep2: str = None
58
+ # Stop criteria (the default one is EOS token)
59
+ stop_str: Union[str, List[str]] = None
60
+ # Stops generation if meeting any token in this list
61
+ stop_token_ids: List[int] = None
62
+
63
+ def get_prompt(self) -> str:
64
+ """Get the prompt for generation."""
65
+ system_prompt = self.system_template.format(system_message=self.system_message)
66
+ if self.sep_style == SeparatorStyle.ADD_COLON_SINGLE:
67
+ ret = system_prompt + self.sep
68
+ for role, message in self.messages:
69
+ if message:
70
+ ret += role + ': ' + message + self.sep
71
+ else:
72
+ ret += role + ':'
73
+ return ret
74
+ elif self.sep_style == SeparatorStyle.ADD_COLON_TWO:
75
+ seps = [self.sep, self.sep2]
76
+ ret = system_prompt + seps[0]
77
+ for i, (role, message) in enumerate(self.messages):
78
+ if message:
79
+ ret += role + ': ' + message + seps[i % 2]
80
+ else:
81
+ ret += role + ':'
82
+ return ret
83
+ elif self.sep_style == SeparatorStyle.ADD_COLON_SPACE_SINGLE:
84
+ ret = system_prompt + self.sep
85
+ for role, message in self.messages:
86
+ if message:
87
+ ret += role + ': ' + message + self.sep
88
+ else:
89
+ ret += role + ': ' # must be end with a space
90
+ return ret
91
+ elif self.sep_style == SeparatorStyle.ADD_NEW_LINE_SINGLE:
92
+ ret = '' if system_prompt == '' else system_prompt + self.sep
93
+ for role, message in self.messages:
94
+ if message:
95
+ ret += role + '\n' + message + self.sep
96
+ else:
97
+ ret += role + '\n'
98
+ return ret
99
+ elif self.sep_style == SeparatorStyle.NO_COLON_SINGLE:
100
+ ret = system_prompt
101
+ for role, message in self.messages:
102
+ if message:
103
+ ret += role + message + self.sep
104
+ else:
105
+ ret += role
106
+ return ret
107
+ elif self.sep_style == SeparatorStyle.NO_COLON_TWO:
108
+ seps = [self.sep, self.sep2]
109
+ ret = system_prompt
110
+ for i, (role, message) in enumerate(self.messages):
111
+ if message:
112
+ ret += role + message + seps[i % 2]
113
+ else:
114
+ ret += role
115
+ return ret
116
+ elif self.sep_style == SeparatorStyle.RWKV:
117
+ ret = system_prompt
118
+ for i, (role, message) in enumerate(self.messages):
119
+ if message:
120
+ ret += (
121
+ role
122
+ + ': '
123
+ + message.replace('\r\n', '\n').replace('\n\n', '\n')
124
+ )
125
+ ret += '\n\n'
126
+ else:
127
+ ret += role + ':'
128
+ return ret
129
+ elif self.sep_style == SeparatorStyle.LLAMA2:
130
+ seps = [self.sep, self.sep2]
131
+ if self.system_message:
132
+ ret = system_prompt
133
+ else:
134
+ ret = '[INST] '
135
+ for i, (role, message) in enumerate(self.messages):
136
+ tag = self.roles[i % 2]
137
+ if message:
138
+ if i == 0:
139
+ ret += message + ' '
140
+ else:
141
+ ret += tag + ' ' + message + seps[i % 2]
142
+ else:
143
+ ret += tag
144
+ return ret
145
+ elif self.sep_style == SeparatorStyle.CHATGLM:
146
+ # source: https://huggingface.co/THUDM/chatglm-6b/blob/1d240ba371910e9282298d4592532d7f0f3e9f3e/modeling_chatglm.py#L1302-L1308
147
+ # source2: https://huggingface.co/THUDM/chatglm2-6b/blob/e186c891cf64310ac66ef10a87e6635fa6c2a579/modeling_chatglm.py#L926
148
+ round_add_n = 1 if self.name == 'chatglm2' else 0
149
+ if system_prompt:
150
+ ret = system_prompt + self.sep
151
+ else:
152
+ ret = ''
153
+
154
+ for i, (role, message) in enumerate(self.messages):
155
+ if i % 2 == 0:
156
+ ret += f'[Round {i//2 + round_add_n}]{self.sep}'
157
+
158
+ if message:
159
+ ret += f'{role}:{message}{self.sep}'
160
+ else:
161
+ ret += f'{role}:'
162
+ return ret
163
+ elif self.sep_style == SeparatorStyle.CHATML:
164
+ ret = '' if system_prompt == '' else system_prompt + self.sep + '\n'
165
+ for role, message in self.messages:
166
+ if message:
167
+ ret += role + '\n' + message + self.sep + '\n'
168
+ else:
169
+ ret += role + '\n'
170
+ return ret
171
+ elif self.sep_style == SeparatorStyle.CHATGLM3:
172
+ ret = ''
173
+ if self.system_message:
174
+ ret += system_prompt
175
+ for role, message in self.messages:
176
+ if message:
177
+ ret += role + '\n' + ' ' + message
178
+ else:
179
+ ret += role
180
+ return ret
181
+ elif self.sep_style == SeparatorStyle.CHATINTERN:
182
+ # source: https://huggingface.co/internlm/internlm-chat-7b-8k/blob/bd546fa984b4b0b86958f56bf37f94aa75ab8831/modeling_internlm.py#L771
183
+ seps = [self.sep, self.sep2]
184
+ ret = system_prompt
185
+ for i, (role, message) in enumerate(self.messages):
186
+ # if i % 2 == 0:
187
+ # ret += "<s>"
188
+ if message:
189
+ ret += role + ':' + message + seps[i % 2] + '\n'
190
+ else:
191
+ ret += role + ':'
192
+ return ret
193
+ elif self.sep_style == SeparatorStyle.DOLLY:
194
+ seps = [self.sep, self.sep2]
195
+ ret = system_prompt
196
+ for i, (role, message) in enumerate(self.messages):
197
+ if message:
198
+ ret += role + ':\n' + message + seps[i % 2]
199
+ if i % 2 == 1:
200
+ ret += '\n\n'
201
+ else:
202
+ ret += role + ':\n'
203
+ return ret
204
+ elif self.sep_style == SeparatorStyle.PHOENIX:
205
+ ret = system_prompt
206
+ for role, message in self.messages:
207
+ if message:
208
+ ret += role + ': ' + '<s>' + message + '</s>'
209
+ else:
210
+ ret += role + ': ' + '<s>'
211
+ return ret
212
+ elif self.sep_style == SeparatorStyle.ROBIN:
213
+ ret = system_prompt + self.sep
214
+ for role, message in self.messages:
215
+ if message:
216
+ ret += role + ':\n' + message + self.sep
217
+ else:
218
+ ret += role + ':\n'
219
+ return ret
220
+ elif self.sep_style == SeparatorStyle.FALCON_CHAT:
221
+ ret = ''
222
+ if self.system_message:
223
+ ret += system_prompt + self.sep
224
+ for role, message in self.messages:
225
+ if message:
226
+ ret += role + ': ' + message + self.sep
227
+ else:
228
+ ret += role + ':'
229
+
230
+ return ret
231
+ elif self.sep_style == SeparatorStyle.INTERNVL_ZH:
232
+ seps = [self.sep, self.sep2]
233
+ ret = self.system_message + seps[0]
234
+ for i, (role, message) in enumerate(self.messages):
235
+ if message:
236
+ ret += role + ': ' + message + seps[i % 2]
237
+ else:
238
+ ret += role + ':'
239
+ return ret
240
+ elif self.sep_style == SeparatorStyle.MPT:
241
+ ret = system_prompt + self.sep
242
+ for role, message in self.messages:
243
+ if message:
244
+ if type(message) is tuple:
245
+ message, _, _ = message
246
+ ret += role + message + self.sep
247
+ else:
248
+ ret += role
249
+ return ret
250
+ else:
251
+ raise ValueError(f'Invalid style: {self.sep_style}')
252
+
253
+ def set_system_message(self, system_message: str):
254
+ """Set the system message."""
255
+ self.system_message = system_message
256
+
257
+ def append_message(self, role: str, message: str):
258
+ """Append a new message."""
259
+ self.messages.append([role, message])
260
+
261
+ def update_last_message(self, message: str):
262
+ """Update the last output.
263
+
264
+ The last message is typically set to be None when constructing the prompt,
265
+ so we need to update it in-place after getting the response from a model.
266
+ """
267
+ self.messages[-1][1] = message
268
+
269
+ def to_gradio_chatbot(self):
270
+ """Convert the conversation to gradio chatbot format."""
271
+ ret = []
272
+ for i, (role, msg) in enumerate(self.messages[self.offset :]):
273
+ if i % 2 == 0:
274
+ ret.append([msg, None])
275
+ else:
276
+ ret[-1][-1] = msg
277
+ return ret
278
+
279
+ def to_openai_api_messages(self):
280
+ """Convert the conversation to OpenAI chat completion format."""
281
+ ret = [{'role': 'system', 'content': self.system_message}]
282
+
283
+ for i, (_, msg) in enumerate(self.messages[self.offset :]):
284
+ if i % 2 == 0:
285
+ ret.append({'role': 'user', 'content': msg})
286
+ else:
287
+ if msg is not None:
288
+ ret.append({'role': 'assistant', 'content': msg})
289
+ return ret
290
+
291
+ def copy(self):
292
+ return Conversation(
293
+ name=self.name,
294
+ system_template=self.system_template,
295
+ system_message=self.system_message,
296
+ roles=self.roles,
297
+ messages=[[x, y] for x, y in self.messages],
298
+ offset=self.offset,
299
+ sep_style=self.sep_style,
300
+ sep=self.sep,
301
+ sep2=self.sep2,
302
+ stop_str=self.stop_str,
303
+ stop_token_ids=self.stop_token_ids,
304
+ )
305
+
306
+ def dict(self):
307
+ return {
308
+ 'template_name': self.name,
309
+ 'system_message': self.system_message,
310
+ 'roles': self.roles,
311
+ 'messages': self.messages,
312
+ 'offset': self.offset,
313
+ }
314
+
315
+
316
+ # A global registry for all conversation templates
317
+ conv_templates: Dict[str, Conversation] = {}
318
+
319
+
320
+ def register_conv_template(template: Conversation, override: bool = False):
321
+ """Register a new conversation template."""
322
+ if not override:
323
+ assert (
324
+ template.name not in conv_templates
325
+ ), f'{template.name} has been registered.'
326
+
327
+ conv_templates[template.name] = template
328
+
329
+
330
+ def get_conv_template(name: str) -> Conversation:
331
+ """Get a conversation template."""
332
+ return conv_templates[name].copy()
333
+
334
+
335
+ # Both Hermes-2 and internlm2-chat are chatml-format conversation templates. The difference
336
+ # is that during training, the preprocessing function for the Hermes-2 template doesn't add
337
+ # <s> at the beginning of the tokenized sequence, while the internlm2-chat template does.
338
+ # Therefore, they are completely equivalent during inference.
339
+ register_conv_template(
340
+ Conversation(
341
+ name='Hermes-2',
342
+ system_template='<|im_start|>system\n{system_message}',
343
+ # note: The new system prompt was not used here to avoid changes in benchmark performance.
344
+ # system_message='我是书生·万象,英文名是InternVL,是由上海人工智能实验室、清华大学及多家合作单位联合开发的多模态大语言模型。',
345
+ system_message='你是由上海人工智能实验室联合商汤科技开发的书生多模态大模型,英文名叫InternVL, 是一个有用无害的人工智能助手。',
346
+ roles=('<|im_start|>user\n', '<|im_start|>assistant\n'),
347
+ sep_style=SeparatorStyle.MPT,
348
+ sep='<|im_end|>',
349
+ stop_str='<|endoftext|>',
350
+ )
351
+ )
352
+
353
+
354
+ register_conv_template(
355
+ Conversation(
356
+ name='internlm2-chat',
357
+ system_template='<|im_start|>system\n{system_message}',
358
+ # note: The new system prompt was not used here to avoid changes in benchmark performance.
359
+ # system_message='我是书生·万象,英文名是InternVL,是由上海人工智能实验室、清华大学及多家合作单位联合开发的多模态大语言模型。',
360
+ system_message='你是由上海人工智能实验室联合商汤科技开发的书生多模态大模型,英文名叫InternVL, 是一个有用无害的人工智能助手。',
361
+ roles=('<|im_start|>user\n', '<|im_start|>assistant\n'),
362
+ sep_style=SeparatorStyle.MPT,
363
+ sep='<|im_end|>',
364
+ )
365
+ )
366
+
367
+
368
+ register_conv_template(
369
+ Conversation(
370
+ name='phi3-chat',
371
+ system_template='<|system|>\n{system_message}',
372
+ # note: The new system prompt was not used here to avoid changes in benchmark performance.
373
+ # system_message='我是书生·万象,英文名是InternVL,是由上海人工智能实验室、清华大学及多家合作单位联合开发的多模态大语言模型。',
374
+ system_message='你是由上海人工智能实验室联合商汤科技开发的书生多模态大模型,英文名叫InternVL, 是一个有用无害的人工智能助手。',
375
+ roles=('<|user|>\n', '<|assistant|>\n'),
376
+ sep_style=SeparatorStyle.MPT,
377
+ sep='<|end|>',
378
+ )
379
+ )
380
+
381
+
382
+ register_conv_template(
383
+ Conversation(
384
+ name='internvl2_5',
385
+ system_template='<|im_start|>system\n{system_message}',
386
+ system_message='你是书生·万象,英文名是InternVL,是由上海人工智能实验室、清华大学及多家合作单位联合开发的多模态大语言模型。',
387
+ roles=('<|im_start|>user\n', '<|im_start|>assistant\n'),
388
+ sep_style=SeparatorStyle.MPT,
389
+ sep='<|im_end|>\n',
390
+ )
391
+ )
cuda-keyring_1.1-1_all.deb ADDED
Binary file (4.33 kB). View file
 
dev/fd/0 ADDED
File without changes
model-00001-of-00006.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:af141caa3e661d782379fe7ed38de89cdb551ba731ff38431065904138442d00
3
+ size 5308449216
model-00002-of-00006.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:be62caa795c3b56d70ce2a0288ded43756be634c911977b7e7a38ef1be8d7f18
3
+ size 5237964760
model-00003-of-00006.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f180048b33eb7f2e65a51c2c04413ed6f3c097736bce6389fbb9111187e2d464
3
+ size 5363829864
model-00004-of-00006.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a416ea8ee8c4eaf77761eba084cf59811d7ef2b960169aa21c08442c0693de44
3
+ size 5363829856
model-00005-of-00006.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3fdea041ed996827f952692a1db83426f8016e58ec24741fea06a8640843b5c9
3
+ size 5237964760
model-00006-of-00006.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5c15947acf6d3e2e2dd776b625fb4d4ea88bf38f475257fc48b492b47c09a14a
3
+ size 3722590528
model.safetensors.index.json ADDED
@@ -0,0 +1,933 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 30234513408,
4
+ "format": "pt"
5
+ },
6
+ "weight_map": {
7
+ "language_model.lm_head.weight": "model-00001-of-00006.safetensors",
8
+ "language_model.model.embed_tokens.weight": "model-00001-of-00006.safetensors",
9
+ "language_model.model.layers.0.input_layernorm.weight": "model-00001-of-00006.safetensors",
10
+ "language_model.model.layers.0.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
11
+ "language_model.model.layers.0.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
12
+ "language_model.model.layers.0.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
13
+ "language_model.model.layers.0.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
14
+ "language_model.model.layers.0.self_attn.k_proj.bias": "model-00001-of-00006.safetensors",
15
+ "language_model.model.layers.0.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
16
+ "language_model.model.layers.0.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
17
+ "language_model.model.layers.0.self_attn.q_proj.bias": "model-00001-of-00006.safetensors",
18
+ "language_model.model.layers.0.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
19
+ "language_model.model.layers.0.self_attn.v_proj.bias": "model-00001-of-00006.safetensors",
20
+ "language_model.model.layers.0.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
21
+ "language_model.model.layers.1.input_layernorm.weight": "model-00001-of-00006.safetensors",
22
+ "language_model.model.layers.1.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
23
+ "language_model.model.layers.1.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
24
+ "language_model.model.layers.1.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
25
+ "language_model.model.layers.1.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
26
+ "language_model.model.layers.1.self_attn.k_proj.bias": "model-00001-of-00006.safetensors",
27
+ "language_model.model.layers.1.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
28
+ "language_model.model.layers.1.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
29
+ "language_model.model.layers.1.self_attn.q_proj.bias": "model-00001-of-00006.safetensors",
30
+ "language_model.model.layers.1.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
31
+ "language_model.model.layers.1.self_attn.v_proj.bias": "model-00001-of-00006.safetensors",
32
+ "language_model.model.layers.1.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
33
+ "language_model.model.layers.10.input_layernorm.weight": "model-00001-of-00006.safetensors",
34
+ "language_model.model.layers.10.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
35
+ "language_model.model.layers.10.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
36
+ "language_model.model.layers.10.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
37
+ "language_model.model.layers.10.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
38
+ "language_model.model.layers.10.self_attn.k_proj.bias": "model-00001-of-00006.safetensors",
39
+ "language_model.model.layers.10.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
40
+ "language_model.model.layers.10.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
41
+ "language_model.model.layers.10.self_attn.q_proj.bias": "model-00001-of-00006.safetensors",
42
+ "language_model.model.layers.10.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
43
+ "language_model.model.layers.10.self_attn.v_proj.bias": "model-00001-of-00006.safetensors",
44
+ "language_model.model.layers.10.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
45
+ "language_model.model.layers.11.input_layernorm.weight": "model-00001-of-00006.safetensors",
46
+ "language_model.model.layers.11.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
47
+ "language_model.model.layers.11.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
48
+ "language_model.model.layers.11.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
49
+ "language_model.model.layers.11.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
50
+ "language_model.model.layers.11.self_attn.k_proj.bias": "model-00001-of-00006.safetensors",
51
+ "language_model.model.layers.11.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
52
+ "language_model.model.layers.11.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
53
+ "language_model.model.layers.11.self_attn.q_proj.bias": "model-00001-of-00006.safetensors",
54
+ "language_model.model.layers.11.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
55
+ "language_model.model.layers.11.self_attn.v_proj.bias": "model-00001-of-00006.safetensors",
56
+ "language_model.model.layers.11.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
57
+ "language_model.model.layers.12.input_layernorm.weight": "model-00001-of-00006.safetensors",
58
+ "language_model.model.layers.12.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
59
+ "language_model.model.layers.12.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
60
+ "language_model.model.layers.12.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
61
+ "language_model.model.layers.12.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
62
+ "language_model.model.layers.12.self_attn.k_proj.bias": "model-00002-of-00006.safetensors",
63
+ "language_model.model.layers.12.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
64
+ "language_model.model.layers.12.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
65
+ "language_model.model.layers.12.self_attn.q_proj.bias": "model-00002-of-00006.safetensors",
66
+ "language_model.model.layers.12.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
67
+ "language_model.model.layers.12.self_attn.v_proj.bias": "model-00002-of-00006.safetensors",
68
+ "language_model.model.layers.12.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
69
+ "language_model.model.layers.13.input_layernorm.weight": "model-00002-of-00006.safetensors",
70
+ "language_model.model.layers.13.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
71
+ "language_model.model.layers.13.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
72
+ "language_model.model.layers.13.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
73
+ "language_model.model.layers.13.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
74
+ "language_model.model.layers.13.self_attn.k_proj.bias": "model-00002-of-00006.safetensors",
75
+ "language_model.model.layers.13.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
76
+ "language_model.model.layers.13.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
77
+ "language_model.model.layers.13.self_attn.q_proj.bias": "model-00002-of-00006.safetensors",
78
+ "language_model.model.layers.13.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
79
+ "language_model.model.layers.13.self_attn.v_proj.bias": "model-00002-of-00006.safetensors",
80
+ "language_model.model.layers.13.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
81
+ "language_model.model.layers.14.input_layernorm.weight": "model-00002-of-00006.safetensors",
82
+ "language_model.model.layers.14.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
83
+ "language_model.model.layers.14.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
84
+ "language_model.model.layers.14.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
85
+ "language_model.model.layers.14.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
86
+ "language_model.model.layers.14.self_attn.k_proj.bias": "model-00002-of-00006.safetensors",
87
+ "language_model.model.layers.14.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
88
+ "language_model.model.layers.14.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
89
+ "language_model.model.layers.14.self_attn.q_proj.bias": "model-00002-of-00006.safetensors",
90
+ "language_model.model.layers.14.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
91
+ "language_model.model.layers.14.self_attn.v_proj.bias": "model-00002-of-00006.safetensors",
92
+ "language_model.model.layers.14.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
93
+ "language_model.model.layers.15.input_layernorm.weight": "model-00002-of-00006.safetensors",
94
+ "language_model.model.layers.15.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
95
+ "language_model.model.layers.15.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
96
+ "language_model.model.layers.15.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
97
+ "language_model.model.layers.15.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
98
+ "language_model.model.layers.15.self_attn.k_proj.bias": "model-00002-of-00006.safetensors",
99
+ "language_model.model.layers.15.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
100
+ "language_model.model.layers.15.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
101
+ "language_model.model.layers.15.self_attn.q_proj.bias": "model-00002-of-00006.safetensors",
102
+ "language_model.model.layers.15.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
103
+ "language_model.model.layers.15.self_attn.v_proj.bias": "model-00002-of-00006.safetensors",
104
+ "language_model.model.layers.15.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
105
+ "language_model.model.layers.16.input_layernorm.weight": "model-00002-of-00006.safetensors",
106
+ "language_model.model.layers.16.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
107
+ "language_model.model.layers.16.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
108
+ "language_model.model.layers.16.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
109
+ "language_model.model.layers.16.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
110
+ "language_model.model.layers.16.self_attn.k_proj.bias": "model-00002-of-00006.safetensors",
111
+ "language_model.model.layers.16.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
112
+ "language_model.model.layers.16.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
113
+ "language_model.model.layers.16.self_attn.q_proj.bias": "model-00002-of-00006.safetensors",
114
+ "language_model.model.layers.16.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
115
+ "language_model.model.layers.16.self_attn.v_proj.bias": "model-00002-of-00006.safetensors",
116
+ "language_model.model.layers.16.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
117
+ "language_model.model.layers.17.input_layernorm.weight": "model-00002-of-00006.safetensors",
118
+ "language_model.model.layers.17.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
119
+ "language_model.model.layers.17.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
120
+ "language_model.model.layers.17.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
121
+ "language_model.model.layers.17.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
122
+ "language_model.model.layers.17.self_attn.k_proj.bias": "model-00002-of-00006.safetensors",
123
+ "language_model.model.layers.17.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
124
+ "language_model.model.layers.17.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
125
+ "language_model.model.layers.17.self_attn.q_proj.bias": "model-00002-of-00006.safetensors",
126
+ "language_model.model.layers.17.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
127
+ "language_model.model.layers.17.self_attn.v_proj.bias": "model-00002-of-00006.safetensors",
128
+ "language_model.model.layers.17.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
129
+ "language_model.model.layers.18.input_layernorm.weight": "model-00002-of-00006.safetensors",
130
+ "language_model.model.layers.18.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
131
+ "language_model.model.layers.18.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
132
+ "language_model.model.layers.18.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
133
+ "language_model.model.layers.18.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
134
+ "language_model.model.layers.18.self_attn.k_proj.bias": "model-00002-of-00006.safetensors",
135
+ "language_model.model.layers.18.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
136
+ "language_model.model.layers.18.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
137
+ "language_model.model.layers.18.self_attn.q_proj.bias": "model-00002-of-00006.safetensors",
138
+ "language_model.model.layers.18.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
139
+ "language_model.model.layers.18.self_attn.v_proj.bias": "model-00002-of-00006.safetensors",
140
+ "language_model.model.layers.18.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
141
+ "language_model.model.layers.19.input_layernorm.weight": "model-00002-of-00006.safetensors",
142
+ "language_model.model.layers.19.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
143
+ "language_model.model.layers.19.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
144
+ "language_model.model.layers.19.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
145
+ "language_model.model.layers.19.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
146
+ "language_model.model.layers.19.self_attn.k_proj.bias": "model-00002-of-00006.safetensors",
147
+ "language_model.model.layers.19.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
148
+ "language_model.model.layers.19.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
149
+ "language_model.model.layers.19.self_attn.q_proj.bias": "model-00002-of-00006.safetensors",
150
+ "language_model.model.layers.19.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
151
+ "language_model.model.layers.19.self_attn.v_proj.bias": "model-00002-of-00006.safetensors",
152
+ "language_model.model.layers.19.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
153
+ "language_model.model.layers.2.input_layernorm.weight": "model-00002-of-00006.safetensors",
154
+ "language_model.model.layers.2.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
155
+ "language_model.model.layers.2.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
156
+ "language_model.model.layers.2.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
157
+ "language_model.model.layers.2.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
158
+ "language_model.model.layers.2.self_attn.k_proj.bias": "model-00002-of-00006.safetensors",
159
+ "language_model.model.layers.2.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
160
+ "language_model.model.layers.2.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
161
+ "language_model.model.layers.2.self_attn.q_proj.bias": "model-00002-of-00006.safetensors",
162
+ "language_model.model.layers.2.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
163
+ "language_model.model.layers.2.self_attn.v_proj.bias": "model-00002-of-00006.safetensors",
164
+ "language_model.model.layers.2.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
165
+ "language_model.model.layers.20.input_layernorm.weight": "model-00002-of-00006.safetensors",
166
+ "language_model.model.layers.20.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
167
+ "language_model.model.layers.20.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
168
+ "language_model.model.layers.20.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
169
+ "language_model.model.layers.20.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
170
+ "language_model.model.layers.20.self_attn.k_proj.bias": "model-00003-of-00006.safetensors",
171
+ "language_model.model.layers.20.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
172
+ "language_model.model.layers.20.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
173
+ "language_model.model.layers.20.self_attn.q_proj.bias": "model-00003-of-00006.safetensors",
174
+ "language_model.model.layers.20.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
175
+ "language_model.model.layers.20.self_attn.v_proj.bias": "model-00003-of-00006.safetensors",
176
+ "language_model.model.layers.20.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
177
+ "language_model.model.layers.21.input_layernorm.weight": "model-00003-of-00006.safetensors",
178
+ "language_model.model.layers.21.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
179
+ "language_model.model.layers.21.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
180
+ "language_model.model.layers.21.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
181
+ "language_model.model.layers.21.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
182
+ "language_model.model.layers.21.self_attn.k_proj.bias": "model-00003-of-00006.safetensors",
183
+ "language_model.model.layers.21.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
184
+ "language_model.model.layers.21.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
185
+ "language_model.model.layers.21.self_attn.q_proj.bias": "model-00003-of-00006.safetensors",
186
+ "language_model.model.layers.21.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
187
+ "language_model.model.layers.21.self_attn.v_proj.bias": "model-00003-of-00006.safetensors",
188
+ "language_model.model.layers.21.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
189
+ "language_model.model.layers.22.input_layernorm.weight": "model-00003-of-00006.safetensors",
190
+ "language_model.model.layers.22.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
191
+ "language_model.model.layers.22.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
192
+ "language_model.model.layers.22.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
193
+ "language_model.model.layers.22.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
194
+ "language_model.model.layers.22.self_attn.k_proj.bias": "model-00003-of-00006.safetensors",
195
+ "language_model.model.layers.22.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
196
+ "language_model.model.layers.22.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
197
+ "language_model.model.layers.22.self_attn.q_proj.bias": "model-00003-of-00006.safetensors",
198
+ "language_model.model.layers.22.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
199
+ "language_model.model.layers.22.self_attn.v_proj.bias": "model-00003-of-00006.safetensors",
200
+ "language_model.model.layers.22.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
201
+ "language_model.model.layers.23.input_layernorm.weight": "model-00003-of-00006.safetensors",
202
+ "language_model.model.layers.23.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
203
+ "language_model.model.layers.23.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
204
+ "language_model.model.layers.23.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
205
+ "language_model.model.layers.23.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
206
+ "language_model.model.layers.23.self_attn.k_proj.bias": "model-00003-of-00006.safetensors",
207
+ "language_model.model.layers.23.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
208
+ "language_model.model.layers.23.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
209
+ "language_model.model.layers.23.self_attn.q_proj.bias": "model-00003-of-00006.safetensors",
210
+ "language_model.model.layers.23.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
211
+ "language_model.model.layers.23.self_attn.v_proj.bias": "model-00003-of-00006.safetensors",
212
+ "language_model.model.layers.23.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
213
+ "language_model.model.layers.24.input_layernorm.weight": "model-00003-of-00006.safetensors",
214
+ "language_model.model.layers.24.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
215
+ "language_model.model.layers.24.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
216
+ "language_model.model.layers.24.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
217
+ "language_model.model.layers.24.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
218
+ "language_model.model.layers.24.self_attn.k_proj.bias": "model-00003-of-00006.safetensors",
219
+ "language_model.model.layers.24.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
220
+ "language_model.model.layers.24.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
221
+ "language_model.model.layers.24.self_attn.q_proj.bias": "model-00003-of-00006.safetensors",
222
+ "language_model.model.layers.24.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
223
+ "language_model.model.layers.24.self_attn.v_proj.bias": "model-00003-of-00006.safetensors",
224
+ "language_model.model.layers.24.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
225
+ "language_model.model.layers.25.input_layernorm.weight": "model-00003-of-00006.safetensors",
226
+ "language_model.model.layers.25.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
227
+ "language_model.model.layers.25.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
228
+ "language_model.model.layers.25.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
229
+ "language_model.model.layers.25.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
230
+ "language_model.model.layers.25.self_attn.k_proj.bias": "model-00003-of-00006.safetensors",
231
+ "language_model.model.layers.25.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
232
+ "language_model.model.layers.25.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
233
+ "language_model.model.layers.25.self_attn.q_proj.bias": "model-00003-of-00006.safetensors",
234
+ "language_model.model.layers.25.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
235
+ "language_model.model.layers.25.self_attn.v_proj.bias": "model-00003-of-00006.safetensors",
236
+ "language_model.model.layers.25.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
237
+ "language_model.model.layers.26.input_layernorm.weight": "model-00003-of-00006.safetensors",
238
+ "language_model.model.layers.26.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
239
+ "language_model.model.layers.26.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
240
+ "language_model.model.layers.26.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
241
+ "language_model.model.layers.26.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
242
+ "language_model.model.layers.26.self_attn.k_proj.bias": "model-00003-of-00006.safetensors",
243
+ "language_model.model.layers.26.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
244
+ "language_model.model.layers.26.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
245
+ "language_model.model.layers.26.self_attn.q_proj.bias": "model-00003-of-00006.safetensors",
246
+ "language_model.model.layers.26.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
247
+ "language_model.model.layers.26.self_attn.v_proj.bias": "model-00003-of-00006.safetensors",
248
+ "language_model.model.layers.26.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
249
+ "language_model.model.layers.27.input_layernorm.weight": "model-00003-of-00006.safetensors",
250
+ "language_model.model.layers.27.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
251
+ "language_model.model.layers.27.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
252
+ "language_model.model.layers.27.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
253
+ "language_model.model.layers.27.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
254
+ "language_model.model.layers.27.self_attn.k_proj.bias": "model-00003-of-00006.safetensors",
255
+ "language_model.model.layers.27.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
256
+ "language_model.model.layers.27.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
257
+ "language_model.model.layers.27.self_attn.q_proj.bias": "model-00003-of-00006.safetensors",
258
+ "language_model.model.layers.27.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
259
+ "language_model.model.layers.27.self_attn.v_proj.bias": "model-00003-of-00006.safetensors",
260
+ "language_model.model.layers.27.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
261
+ "language_model.model.layers.28.input_layernorm.weight": "model-00003-of-00006.safetensors",
262
+ "language_model.model.layers.28.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
263
+ "language_model.model.layers.28.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
264
+ "language_model.model.layers.28.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
265
+ "language_model.model.layers.28.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
266
+ "language_model.model.layers.28.self_attn.k_proj.bias": "model-00003-of-00006.safetensors",
267
+ "language_model.model.layers.28.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
268
+ "language_model.model.layers.28.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
269
+ "language_model.model.layers.28.self_attn.q_proj.bias": "model-00003-of-00006.safetensors",
270
+ "language_model.model.layers.28.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
271
+ "language_model.model.layers.28.self_attn.v_proj.bias": "model-00003-of-00006.safetensors",
272
+ "language_model.model.layers.28.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
273
+ "language_model.model.layers.29.input_layernorm.weight": "model-00003-of-00006.safetensors",
274
+ "language_model.model.layers.29.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
275
+ "language_model.model.layers.29.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
276
+ "language_model.model.layers.29.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
277
+ "language_model.model.layers.29.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
278
+ "language_model.model.layers.29.self_attn.k_proj.bias": "model-00003-of-00006.safetensors",
279
+ "language_model.model.layers.29.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
280
+ "language_model.model.layers.29.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
281
+ "language_model.model.layers.29.self_attn.q_proj.bias": "model-00003-of-00006.safetensors",
282
+ "language_model.model.layers.29.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
283
+ "language_model.model.layers.29.self_attn.v_proj.bias": "model-00003-of-00006.safetensors",
284
+ "language_model.model.layers.29.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
285
+ "language_model.model.layers.3.input_layernorm.weight": "model-00003-of-00006.safetensors",
286
+ "language_model.model.layers.3.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
287
+ "language_model.model.layers.3.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
288
+ "language_model.model.layers.3.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
289
+ "language_model.model.layers.3.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
290
+ "language_model.model.layers.3.self_attn.k_proj.bias": "model-00004-of-00006.safetensors",
291
+ "language_model.model.layers.3.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
292
+ "language_model.model.layers.3.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
293
+ "language_model.model.layers.3.self_attn.q_proj.bias": "model-00004-of-00006.safetensors",
294
+ "language_model.model.layers.3.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
295
+ "language_model.model.layers.3.self_attn.v_proj.bias": "model-00004-of-00006.safetensors",
296
+ "language_model.model.layers.3.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
297
+ "language_model.model.layers.30.input_layernorm.weight": "model-00004-of-00006.safetensors",
298
+ "language_model.model.layers.30.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
299
+ "language_model.model.layers.30.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
300
+ "language_model.model.layers.30.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
301
+ "language_model.model.layers.30.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
302
+ "language_model.model.layers.30.self_attn.k_proj.bias": "model-00004-of-00006.safetensors",
303
+ "language_model.model.layers.30.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
304
+ "language_model.model.layers.30.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
305
+ "language_model.model.layers.30.self_attn.q_proj.bias": "model-00004-of-00006.safetensors",
306
+ "language_model.model.layers.30.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
307
+ "language_model.model.layers.30.self_attn.v_proj.bias": "model-00004-of-00006.safetensors",
308
+ "language_model.model.layers.30.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
309
+ "language_model.model.layers.31.input_layernorm.weight": "model-00004-of-00006.safetensors",
310
+ "language_model.model.layers.31.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
311
+ "language_model.model.layers.31.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
312
+ "language_model.model.layers.31.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
313
+ "language_model.model.layers.31.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
314
+ "language_model.model.layers.31.self_attn.k_proj.bias": "model-00004-of-00006.safetensors",
315
+ "language_model.model.layers.31.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
316
+ "language_model.model.layers.31.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
317
+ "language_model.model.layers.31.self_attn.q_proj.bias": "model-00004-of-00006.safetensors",
318
+ "language_model.model.layers.31.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
319
+ "language_model.model.layers.31.self_attn.v_proj.bias": "model-00004-of-00006.safetensors",
320
+ "language_model.model.layers.31.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
321
+ "language_model.model.layers.32.input_layernorm.weight": "model-00004-of-00006.safetensors",
322
+ "language_model.model.layers.32.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
323
+ "language_model.model.layers.32.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
324
+ "language_model.model.layers.32.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
325
+ "language_model.model.layers.32.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
326
+ "language_model.model.layers.32.self_attn.k_proj.bias": "model-00004-of-00006.safetensors",
327
+ "language_model.model.layers.32.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
328
+ "language_model.model.layers.32.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
329
+ "language_model.model.layers.32.self_attn.q_proj.bias": "model-00004-of-00006.safetensors",
330
+ "language_model.model.layers.32.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
331
+ "language_model.model.layers.32.self_attn.v_proj.bias": "model-00004-of-00006.safetensors",
332
+ "language_model.model.layers.32.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
333
+ "language_model.model.layers.33.input_layernorm.weight": "model-00004-of-00006.safetensors",
334
+ "language_model.model.layers.33.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
335
+ "language_model.model.layers.33.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
336
+ "language_model.model.layers.33.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
337
+ "language_model.model.layers.33.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
338
+ "language_model.model.layers.33.self_attn.k_proj.bias": "model-00004-of-00006.safetensors",
339
+ "language_model.model.layers.33.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
340
+ "language_model.model.layers.33.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
341
+ "language_model.model.layers.33.self_attn.q_proj.bias": "model-00004-of-00006.safetensors",
342
+ "language_model.model.layers.33.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
343
+ "language_model.model.layers.33.self_attn.v_proj.bias": "model-00004-of-00006.safetensors",
344
+ "language_model.model.layers.33.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
345
+ "language_model.model.layers.34.input_layernorm.weight": "model-00004-of-00006.safetensors",
346
+ "language_model.model.layers.34.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
347
+ "language_model.model.layers.34.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
348
+ "language_model.model.layers.34.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
349
+ "language_model.model.layers.34.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
350
+ "language_model.model.layers.34.self_attn.k_proj.bias": "model-00004-of-00006.safetensors",
351
+ "language_model.model.layers.34.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
352
+ "language_model.model.layers.34.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
353
+ "language_model.model.layers.34.self_attn.q_proj.bias": "model-00004-of-00006.safetensors",
354
+ "language_model.model.layers.34.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
355
+ "language_model.model.layers.34.self_attn.v_proj.bias": "model-00004-of-00006.safetensors",
356
+ "language_model.model.layers.34.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
357
+ "language_model.model.layers.35.input_layernorm.weight": "model-00004-of-00006.safetensors",
358
+ "language_model.model.layers.35.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
359
+ "language_model.model.layers.35.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
360
+ "language_model.model.layers.35.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
361
+ "language_model.model.layers.35.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
362
+ "language_model.model.layers.35.self_attn.k_proj.bias": "model-00004-of-00006.safetensors",
363
+ "language_model.model.layers.35.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
364
+ "language_model.model.layers.35.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
365
+ "language_model.model.layers.35.self_attn.q_proj.bias": "model-00004-of-00006.safetensors",
366
+ "language_model.model.layers.35.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
367
+ "language_model.model.layers.35.self_attn.v_proj.bias": "model-00004-of-00006.safetensors",
368
+ "language_model.model.layers.35.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
369
+ "language_model.model.layers.36.input_layernorm.weight": "model-00004-of-00006.safetensors",
370
+ "language_model.model.layers.36.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
371
+ "language_model.model.layers.36.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
372
+ "language_model.model.layers.36.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
373
+ "language_model.model.layers.36.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
374
+ "language_model.model.layers.36.self_attn.k_proj.bias": "model-00004-of-00006.safetensors",
375
+ "language_model.model.layers.36.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
376
+ "language_model.model.layers.36.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
377
+ "language_model.model.layers.36.self_attn.q_proj.bias": "model-00004-of-00006.safetensors",
378
+ "language_model.model.layers.36.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
379
+ "language_model.model.layers.36.self_attn.v_proj.bias": "model-00004-of-00006.safetensors",
380
+ "language_model.model.layers.36.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
381
+ "language_model.model.layers.37.input_layernorm.weight": "model-00004-of-00006.safetensors",
382
+ "language_model.model.layers.37.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
383
+ "language_model.model.layers.37.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
384
+ "language_model.model.layers.37.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
385
+ "language_model.model.layers.37.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
386
+ "language_model.model.layers.37.self_attn.k_proj.bias": "model-00004-of-00006.safetensors",
387
+ "language_model.model.layers.37.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
388
+ "language_model.model.layers.37.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
389
+ "language_model.model.layers.37.self_attn.q_proj.bias": "model-00004-of-00006.safetensors",
390
+ "language_model.model.layers.37.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
391
+ "language_model.model.layers.37.self_attn.v_proj.bias": "model-00004-of-00006.safetensors",
392
+ "language_model.model.layers.37.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
393
+ "language_model.model.layers.38.input_layernorm.weight": "model-00004-of-00006.safetensors",
394
+ "language_model.model.layers.38.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
395
+ "language_model.model.layers.38.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
396
+ "language_model.model.layers.38.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
397
+ "language_model.model.layers.38.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
398
+ "language_model.model.layers.38.self_attn.k_proj.bias": "model-00004-of-00006.safetensors",
399
+ "language_model.model.layers.38.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
400
+ "language_model.model.layers.38.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
401
+ "language_model.model.layers.38.self_attn.q_proj.bias": "model-00004-of-00006.safetensors",
402
+ "language_model.model.layers.38.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
403
+ "language_model.model.layers.38.self_attn.v_proj.bias": "model-00004-of-00006.safetensors",
404
+ "language_model.model.layers.38.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
405
+ "language_model.model.layers.39.input_layernorm.weight": "model-00004-of-00006.safetensors",
406
+ "language_model.model.layers.39.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
407
+ "language_model.model.layers.39.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
408
+ "language_model.model.layers.39.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
409
+ "language_model.model.layers.39.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
410
+ "language_model.model.layers.39.self_attn.k_proj.bias": "model-00005-of-00006.safetensors",
411
+ "language_model.model.layers.39.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
412
+ "language_model.model.layers.39.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
413
+ "language_model.model.layers.39.self_attn.q_proj.bias": "model-00005-of-00006.safetensors",
414
+ "language_model.model.layers.39.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
415
+ "language_model.model.layers.39.self_attn.v_proj.bias": "model-00005-of-00006.safetensors",
416
+ "language_model.model.layers.39.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
417
+ "language_model.model.layers.4.input_layernorm.weight": "model-00005-of-00006.safetensors",
418
+ "language_model.model.layers.4.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
419
+ "language_model.model.layers.4.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
420
+ "language_model.model.layers.4.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
421
+ "language_model.model.layers.4.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
422
+ "language_model.model.layers.4.self_attn.k_proj.bias": "model-00005-of-00006.safetensors",
423
+ "language_model.model.layers.4.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
424
+ "language_model.model.layers.4.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
425
+ "language_model.model.layers.4.self_attn.q_proj.bias": "model-00005-of-00006.safetensors",
426
+ "language_model.model.layers.4.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
427
+ "language_model.model.layers.4.self_attn.v_proj.bias": "model-00005-of-00006.safetensors",
428
+ "language_model.model.layers.4.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
429
+ "language_model.model.layers.40.input_layernorm.weight": "model-00005-of-00006.safetensors",
430
+ "language_model.model.layers.40.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
431
+ "language_model.model.layers.40.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
432
+ "language_model.model.layers.40.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
433
+ "language_model.model.layers.40.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
434
+ "language_model.model.layers.40.self_attn.k_proj.bias": "model-00005-of-00006.safetensors",
435
+ "language_model.model.layers.40.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
436
+ "language_model.model.layers.40.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
437
+ "language_model.model.layers.40.self_attn.q_proj.bias": "model-00005-of-00006.safetensors",
438
+ "language_model.model.layers.40.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
439
+ "language_model.model.layers.40.self_attn.v_proj.bias": "model-00005-of-00006.safetensors",
440
+ "language_model.model.layers.40.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
441
+ "language_model.model.layers.41.input_layernorm.weight": "model-00005-of-00006.safetensors",
442
+ "language_model.model.layers.41.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
443
+ "language_model.model.layers.41.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
444
+ "language_model.model.layers.41.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
445
+ "language_model.model.layers.41.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
446
+ "language_model.model.layers.41.self_attn.k_proj.bias": "model-00005-of-00006.safetensors",
447
+ "language_model.model.layers.41.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
448
+ "language_model.model.layers.41.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
449
+ "language_model.model.layers.41.self_attn.q_proj.bias": "model-00005-of-00006.safetensors",
450
+ "language_model.model.layers.41.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
451
+ "language_model.model.layers.41.self_attn.v_proj.bias": "model-00005-of-00006.safetensors",
452
+ "language_model.model.layers.41.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
453
+ "language_model.model.layers.42.input_layernorm.weight": "model-00005-of-00006.safetensors",
454
+ "language_model.model.layers.42.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
455
+ "language_model.model.layers.42.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
456
+ "language_model.model.layers.42.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
457
+ "language_model.model.layers.42.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
458
+ "language_model.model.layers.42.self_attn.k_proj.bias": "model-00005-of-00006.safetensors",
459
+ "language_model.model.layers.42.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
460
+ "language_model.model.layers.42.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
461
+ "language_model.model.layers.42.self_attn.q_proj.bias": "model-00005-of-00006.safetensors",
462
+ "language_model.model.layers.42.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
463
+ "language_model.model.layers.42.self_attn.v_proj.bias": "model-00005-of-00006.safetensors",
464
+ "language_model.model.layers.42.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
465
+ "language_model.model.layers.43.input_layernorm.weight": "model-00005-of-00006.safetensors",
466
+ "language_model.model.layers.43.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
467
+ "language_model.model.layers.43.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
468
+ "language_model.model.layers.43.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
469
+ "language_model.model.layers.43.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
470
+ "language_model.model.layers.43.self_attn.k_proj.bias": "model-00005-of-00006.safetensors",
471
+ "language_model.model.layers.43.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
472
+ "language_model.model.layers.43.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
473
+ "language_model.model.layers.43.self_attn.q_proj.bias": "model-00005-of-00006.safetensors",
474
+ "language_model.model.layers.43.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
475
+ "language_model.model.layers.43.self_attn.v_proj.bias": "model-00005-of-00006.safetensors",
476
+ "language_model.model.layers.43.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
477
+ "language_model.model.layers.44.input_layernorm.weight": "model-00005-of-00006.safetensors",
478
+ "language_model.model.layers.44.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
479
+ "language_model.model.layers.44.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
480
+ "language_model.model.layers.44.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
481
+ "language_model.model.layers.44.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
482
+ "language_model.model.layers.44.self_attn.k_proj.bias": "model-00005-of-00006.safetensors",
483
+ "language_model.model.layers.44.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
484
+ "language_model.model.layers.44.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
485
+ "language_model.model.layers.44.self_attn.q_proj.bias": "model-00005-of-00006.safetensors",
486
+ "language_model.model.layers.44.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
487
+ "language_model.model.layers.44.self_attn.v_proj.bias": "model-00005-of-00006.safetensors",
488
+ "language_model.model.layers.44.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
489
+ "language_model.model.layers.45.input_layernorm.weight": "model-00005-of-00006.safetensors",
490
+ "language_model.model.layers.45.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
491
+ "language_model.model.layers.45.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
492
+ "language_model.model.layers.45.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
493
+ "language_model.model.layers.45.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
494
+ "language_model.model.layers.45.self_attn.k_proj.bias": "model-00005-of-00006.safetensors",
495
+ "language_model.model.layers.45.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
496
+ "language_model.model.layers.45.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
497
+ "language_model.model.layers.45.self_attn.q_proj.bias": "model-00005-of-00006.safetensors",
498
+ "language_model.model.layers.45.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
499
+ "language_model.model.layers.45.self_attn.v_proj.bias": "model-00005-of-00006.safetensors",
500
+ "language_model.model.layers.45.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
501
+ "language_model.model.layers.46.input_layernorm.weight": "model-00005-of-00006.safetensors",
502
+ "language_model.model.layers.46.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
503
+ "language_model.model.layers.46.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
504
+ "language_model.model.layers.46.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
505
+ "language_model.model.layers.46.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
506
+ "language_model.model.layers.46.self_attn.k_proj.bias": "model-00005-of-00006.safetensors",
507
+ "language_model.model.layers.46.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
508
+ "language_model.model.layers.46.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
509
+ "language_model.model.layers.46.self_attn.q_proj.bias": "model-00005-of-00006.safetensors",
510
+ "language_model.model.layers.46.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
511
+ "language_model.model.layers.46.self_attn.v_proj.bias": "model-00005-of-00006.safetensors",
512
+ "language_model.model.layers.46.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
513
+ "language_model.model.layers.47.input_layernorm.weight": "model-00005-of-00006.safetensors",
514
+ "language_model.model.layers.47.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
515
+ "language_model.model.layers.47.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
516
+ "language_model.model.layers.47.mlp.up_proj.weight": "model-00006-of-00006.safetensors",
517
+ "language_model.model.layers.47.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
518
+ "language_model.model.layers.47.self_attn.k_proj.bias": "model-00006-of-00006.safetensors",
519
+ "language_model.model.layers.47.self_attn.k_proj.weight": "model-00006-of-00006.safetensors",
520
+ "language_model.model.layers.47.self_attn.o_proj.weight": "model-00006-of-00006.safetensors",
521
+ "language_model.model.layers.47.self_attn.q_proj.bias": "model-00006-of-00006.safetensors",
522
+ "language_model.model.layers.47.self_attn.q_proj.weight": "model-00006-of-00006.safetensors",
523
+ "language_model.model.layers.47.self_attn.v_proj.bias": "model-00006-of-00006.safetensors",
524
+ "language_model.model.layers.47.self_attn.v_proj.weight": "model-00006-of-00006.safetensors",
525
+ "language_model.model.layers.5.input_layernorm.weight": "model-00006-of-00006.safetensors",
526
+ "language_model.model.layers.5.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
527
+ "language_model.model.layers.5.mlp.gate_proj.weight": "model-00006-of-00006.safetensors",
528
+ "language_model.model.layers.5.mlp.up_proj.weight": "model-00006-of-00006.safetensors",
529
+ "language_model.model.layers.5.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
530
+ "language_model.model.layers.5.self_attn.k_proj.bias": "model-00006-of-00006.safetensors",
531
+ "language_model.model.layers.5.self_attn.k_proj.weight": "model-00006-of-00006.safetensors",
532
+ "language_model.model.layers.5.self_attn.o_proj.weight": "model-00006-of-00006.safetensors",
533
+ "language_model.model.layers.5.self_attn.q_proj.bias": "model-00006-of-00006.safetensors",
534
+ "language_model.model.layers.5.self_attn.q_proj.weight": "model-00006-of-00006.safetensors",
535
+ "language_model.model.layers.5.self_attn.v_proj.bias": "model-00006-of-00006.safetensors",
536
+ "language_model.model.layers.5.self_attn.v_proj.weight": "model-00006-of-00006.safetensors",
537
+ "language_model.model.layers.6.input_layernorm.weight": "model-00006-of-00006.safetensors",
538
+ "language_model.model.layers.6.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
539
+ "language_model.model.layers.6.mlp.gate_proj.weight": "model-00006-of-00006.safetensors",
540
+ "language_model.model.layers.6.mlp.up_proj.weight": "model-00006-of-00006.safetensors",
541
+ "language_model.model.layers.6.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
542
+ "language_model.model.layers.6.self_attn.k_proj.bias": "model-00006-of-00006.safetensors",
543
+ "language_model.model.layers.6.self_attn.k_proj.weight": "model-00006-of-00006.safetensors",
544
+ "language_model.model.layers.6.self_attn.o_proj.weight": "model-00006-of-00006.safetensors",
545
+ "language_model.model.layers.6.self_attn.q_proj.bias": "model-00006-of-00006.safetensors",
546
+ "language_model.model.layers.6.self_attn.q_proj.weight": "model-00006-of-00006.safetensors",
547
+ "language_model.model.layers.6.self_attn.v_proj.bias": "model-00006-of-00006.safetensors",
548
+ "language_model.model.layers.6.self_attn.v_proj.weight": "model-00006-of-00006.safetensors",
549
+ "language_model.model.layers.7.input_layernorm.weight": "model-00006-of-00006.safetensors",
550
+ "language_model.model.layers.7.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
551
+ "language_model.model.layers.7.mlp.gate_proj.weight": "model-00006-of-00006.safetensors",
552
+ "language_model.model.layers.7.mlp.up_proj.weight": "model-00006-of-00006.safetensors",
553
+ "language_model.model.layers.7.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
554
+ "language_model.model.layers.7.self_attn.k_proj.bias": "model-00006-of-00006.safetensors",
555
+ "language_model.model.layers.7.self_attn.k_proj.weight": "model-00006-of-00006.safetensors",
556
+ "language_model.model.layers.7.self_attn.o_proj.weight": "model-00006-of-00006.safetensors",
557
+ "language_model.model.layers.7.self_attn.q_proj.bias": "model-00006-of-00006.safetensors",
558
+ "language_model.model.layers.7.self_attn.q_proj.weight": "model-00006-of-00006.safetensors",
559
+ "language_model.model.layers.7.self_attn.v_proj.bias": "model-00006-of-00006.safetensors",
560
+ "language_model.model.layers.7.self_attn.v_proj.weight": "model-00006-of-00006.safetensors",
561
+ "language_model.model.layers.8.input_layernorm.weight": "model-00006-of-00006.safetensors",
562
+ "language_model.model.layers.8.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
563
+ "language_model.model.layers.8.mlp.gate_proj.weight": "model-00006-of-00006.safetensors",
564
+ "language_model.model.layers.8.mlp.up_proj.weight": "model-00006-of-00006.safetensors",
565
+ "language_model.model.layers.8.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
566
+ "language_model.model.layers.8.self_attn.k_proj.bias": "model-00006-of-00006.safetensors",
567
+ "language_model.model.layers.8.self_attn.k_proj.weight": "model-00006-of-00006.safetensors",
568
+ "language_model.model.layers.8.self_attn.o_proj.weight": "model-00006-of-00006.safetensors",
569
+ "language_model.model.layers.8.self_attn.q_proj.bias": "model-00006-of-00006.safetensors",
570
+ "language_model.model.layers.8.self_attn.q_proj.weight": "model-00006-of-00006.safetensors",
571
+ "language_model.model.layers.8.self_attn.v_proj.bias": "model-00006-of-00006.safetensors",
572
+ "language_model.model.layers.8.self_attn.v_proj.weight": "model-00006-of-00006.safetensors",
573
+ "language_model.model.layers.9.input_layernorm.weight": "model-00006-of-00006.safetensors",
574
+ "language_model.model.layers.9.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
575
+ "language_model.model.layers.9.mlp.gate_proj.weight": "model-00006-of-00006.safetensors",
576
+ "language_model.model.layers.9.mlp.up_proj.weight": "model-00006-of-00006.safetensors",
577
+ "language_model.model.layers.9.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
578
+ "language_model.model.layers.9.self_attn.k_proj.bias": "model-00006-of-00006.safetensors",
579
+ "language_model.model.layers.9.self_attn.k_proj.weight": "model-00006-of-00006.safetensors",
580
+ "language_model.model.layers.9.self_attn.o_proj.weight": "model-00006-of-00006.safetensors",
581
+ "language_model.model.layers.9.self_attn.q_proj.bias": "model-00006-of-00006.safetensors",
582
+ "language_model.model.layers.9.self_attn.q_proj.weight": "model-00006-of-00006.safetensors",
583
+ "language_model.model.layers.9.self_attn.v_proj.bias": "model-00006-of-00006.safetensors",
584
+ "language_model.model.layers.9.self_attn.v_proj.weight": "model-00006-of-00006.safetensors",
585
+ "language_model.model.norm.weight": "model-00006-of-00006.safetensors",
586
+ "mlp1.0.bias": "model-00006-of-00006.safetensors",
587
+ "mlp1.0.weight": "model-00006-of-00006.safetensors",
588
+ "mlp1.1.bias": "model-00006-of-00006.safetensors",
589
+ "mlp1.1.weight": "model-00006-of-00006.safetensors",
590
+ "mlp1.3.bias": "model-00006-of-00006.safetensors",
591
+ "mlp1.3.weight": "model-00006-of-00006.safetensors",
592
+ "vision_model.embeddings.class_embedding": "model-00006-of-00006.safetensors",
593
+ "vision_model.embeddings.patch_embedding.bias": "model-00006-of-00006.safetensors",
594
+ "vision_model.embeddings.patch_embedding.weight": "model-00006-of-00006.safetensors",
595
+ "vision_model.embeddings.position_embedding": "model-00006-of-00006.safetensors",
596
+ "vision_model.encoder.layers.0.attn.proj.bias": "model-00006-of-00006.safetensors",
597
+ "vision_model.encoder.layers.0.attn.proj.weight": "model-00006-of-00006.safetensors",
598
+ "vision_model.encoder.layers.0.attn.qkv.bias": "model-00006-of-00006.safetensors",
599
+ "vision_model.encoder.layers.0.attn.qkv.weight": "model-00006-of-00006.safetensors",
600
+ "vision_model.encoder.layers.0.ls1": "model-00006-of-00006.safetensors",
601
+ "vision_model.encoder.layers.0.ls2": "model-00006-of-00006.safetensors",
602
+ "vision_model.encoder.layers.0.mlp.fc1.bias": "model-00006-of-00006.safetensors",
603
+ "vision_model.encoder.layers.0.mlp.fc1.weight": "model-00006-of-00006.safetensors",
604
+ "vision_model.encoder.layers.0.mlp.fc2.bias": "model-00006-of-00006.safetensors",
605
+ "vision_model.encoder.layers.0.mlp.fc2.weight": "model-00006-of-00006.safetensors",
606
+ "vision_model.encoder.layers.0.norm1.bias": "model-00006-of-00006.safetensors",
607
+ "vision_model.encoder.layers.0.norm1.weight": "model-00006-of-00006.safetensors",
608
+ "vision_model.encoder.layers.0.norm2.bias": "model-00006-of-00006.safetensors",
609
+ "vision_model.encoder.layers.0.norm2.weight": "model-00006-of-00006.safetensors",
610
+ "vision_model.encoder.layers.1.attn.proj.bias": "model-00006-of-00006.safetensors",
611
+ "vision_model.encoder.layers.1.attn.proj.weight": "model-00006-of-00006.safetensors",
612
+ "vision_model.encoder.layers.1.attn.qkv.bias": "model-00006-of-00006.safetensors",
613
+ "vision_model.encoder.layers.1.attn.qkv.weight": "model-00006-of-00006.safetensors",
614
+ "vision_model.encoder.layers.1.ls1": "model-00006-of-00006.safetensors",
615
+ "vision_model.encoder.layers.1.ls2": "model-00006-of-00006.safetensors",
616
+ "vision_model.encoder.layers.1.mlp.fc1.bias": "model-00006-of-00006.safetensors",
617
+ "vision_model.encoder.layers.1.mlp.fc1.weight": "model-00006-of-00006.safetensors",
618
+ "vision_model.encoder.layers.1.mlp.fc2.bias": "model-00006-of-00006.safetensors",
619
+ "vision_model.encoder.layers.1.mlp.fc2.weight": "model-00006-of-00006.safetensors",
620
+ "vision_model.encoder.layers.1.norm1.bias": "model-00006-of-00006.safetensors",
621
+ "vision_model.encoder.layers.1.norm1.weight": "model-00006-of-00006.safetensors",
622
+ "vision_model.encoder.layers.1.norm2.bias": "model-00006-of-00006.safetensors",
623
+ "vision_model.encoder.layers.1.norm2.weight": "model-00006-of-00006.safetensors",
624
+ "vision_model.encoder.layers.10.attn.proj.bias": "model-00006-of-00006.safetensors",
625
+ "vision_model.encoder.layers.10.attn.proj.weight": "model-00006-of-00006.safetensors",
626
+ "vision_model.encoder.layers.10.attn.qkv.bias": "model-00006-of-00006.safetensors",
627
+ "vision_model.encoder.layers.10.attn.qkv.weight": "model-00006-of-00006.safetensors",
628
+ "vision_model.encoder.layers.10.ls1": "model-00006-of-00006.safetensors",
629
+ "vision_model.encoder.layers.10.ls2": "model-00006-of-00006.safetensors",
630
+ "vision_model.encoder.layers.10.mlp.fc1.bias": "model-00006-of-00006.safetensors",
631
+ "vision_model.encoder.layers.10.mlp.fc1.weight": "model-00006-of-00006.safetensors",
632
+ "vision_model.encoder.layers.10.mlp.fc2.bias": "model-00006-of-00006.safetensors",
633
+ "vision_model.encoder.layers.10.mlp.fc2.weight": "model-00006-of-00006.safetensors",
634
+ "vision_model.encoder.layers.10.norm1.bias": "model-00006-of-00006.safetensors",
635
+ "vision_model.encoder.layers.10.norm1.weight": "model-00006-of-00006.safetensors",
636
+ "vision_model.encoder.layers.10.norm2.bias": "model-00006-of-00006.safetensors",
637
+ "vision_model.encoder.layers.10.norm2.weight": "model-00006-of-00006.safetensors",
638
+ "vision_model.encoder.layers.11.attn.proj.bias": "model-00006-of-00006.safetensors",
639
+ "vision_model.encoder.layers.11.attn.proj.weight": "model-00006-of-00006.safetensors",
640
+ "vision_model.encoder.layers.11.attn.qkv.bias": "model-00006-of-00006.safetensors",
641
+ "vision_model.encoder.layers.11.attn.qkv.weight": "model-00006-of-00006.safetensors",
642
+ "vision_model.encoder.layers.11.ls1": "model-00006-of-00006.safetensors",
643
+ "vision_model.encoder.layers.11.ls2": "model-00006-of-00006.safetensors",
644
+ "vision_model.encoder.layers.11.mlp.fc1.bias": "model-00006-of-00006.safetensors",
645
+ "vision_model.encoder.layers.11.mlp.fc1.weight": "model-00006-of-00006.safetensors",
646
+ "vision_model.encoder.layers.11.mlp.fc2.bias": "model-00006-of-00006.safetensors",
647
+ "vision_model.encoder.layers.11.mlp.fc2.weight": "model-00006-of-00006.safetensors",
648
+ "vision_model.encoder.layers.11.norm1.bias": "model-00006-of-00006.safetensors",
649
+ "vision_model.encoder.layers.11.norm1.weight": "model-00006-of-00006.safetensors",
650
+ "vision_model.encoder.layers.11.norm2.bias": "model-00006-of-00006.safetensors",
651
+ "vision_model.encoder.layers.11.norm2.weight": "model-00006-of-00006.safetensors",
652
+ "vision_model.encoder.layers.12.attn.proj.bias": "model-00006-of-00006.safetensors",
653
+ "vision_model.encoder.layers.12.attn.proj.weight": "model-00006-of-00006.safetensors",
654
+ "vision_model.encoder.layers.12.attn.qkv.bias": "model-00006-of-00006.safetensors",
655
+ "vision_model.encoder.layers.12.attn.qkv.weight": "model-00006-of-00006.safetensors",
656
+ "vision_model.encoder.layers.12.ls1": "model-00006-of-00006.safetensors",
657
+ "vision_model.encoder.layers.12.ls2": "model-00006-of-00006.safetensors",
658
+ "vision_model.encoder.layers.12.mlp.fc1.bias": "model-00006-of-00006.safetensors",
659
+ "vision_model.encoder.layers.12.mlp.fc1.weight": "model-00006-of-00006.safetensors",
660
+ "vision_model.encoder.layers.12.mlp.fc2.bias": "model-00006-of-00006.safetensors",
661
+ "vision_model.encoder.layers.12.mlp.fc2.weight": "model-00006-of-00006.safetensors",
662
+ "vision_model.encoder.layers.12.norm1.bias": "model-00006-of-00006.safetensors",
663
+ "vision_model.encoder.layers.12.norm1.weight": "model-00006-of-00006.safetensors",
664
+ "vision_model.encoder.layers.12.norm2.bias": "model-00006-of-00006.safetensors",
665
+ "vision_model.encoder.layers.12.norm2.weight": "model-00006-of-00006.safetensors",
666
+ "vision_model.encoder.layers.13.attn.proj.bias": "model-00006-of-00006.safetensors",
667
+ "vision_model.encoder.layers.13.attn.proj.weight": "model-00006-of-00006.safetensors",
668
+ "vision_model.encoder.layers.13.attn.qkv.bias": "model-00006-of-00006.safetensors",
669
+ "vision_model.encoder.layers.13.attn.qkv.weight": "model-00006-of-00006.safetensors",
670
+ "vision_model.encoder.layers.13.ls1": "model-00006-of-00006.safetensors",
671
+ "vision_model.encoder.layers.13.ls2": "model-00006-of-00006.safetensors",
672
+ "vision_model.encoder.layers.13.mlp.fc1.bias": "model-00006-of-00006.safetensors",
673
+ "vision_model.encoder.layers.13.mlp.fc1.weight": "model-00006-of-00006.safetensors",
674
+ "vision_model.encoder.layers.13.mlp.fc2.bias": "model-00006-of-00006.safetensors",
675
+ "vision_model.encoder.layers.13.mlp.fc2.weight": "model-00006-of-00006.safetensors",
676
+ "vision_model.encoder.layers.13.norm1.bias": "model-00006-of-00006.safetensors",
677
+ "vision_model.encoder.layers.13.norm1.weight": "model-00006-of-00006.safetensors",
678
+ "vision_model.encoder.layers.13.norm2.bias": "model-00006-of-00006.safetensors",
679
+ "vision_model.encoder.layers.13.norm2.weight": "model-00006-of-00006.safetensors",
680
+ "vision_model.encoder.layers.14.attn.proj.bias": "model-00006-of-00006.safetensors",
681
+ "vision_model.encoder.layers.14.attn.proj.weight": "model-00006-of-00006.safetensors",
682
+ "vision_model.encoder.layers.14.attn.qkv.bias": "model-00006-of-00006.safetensors",
683
+ "vision_model.encoder.layers.14.attn.qkv.weight": "model-00006-of-00006.safetensors",
684
+ "vision_model.encoder.layers.14.ls1": "model-00006-of-00006.safetensors",
685
+ "vision_model.encoder.layers.14.ls2": "model-00006-of-00006.safetensors",
686
+ "vision_model.encoder.layers.14.mlp.fc1.bias": "model-00006-of-00006.safetensors",
687
+ "vision_model.encoder.layers.14.mlp.fc1.weight": "model-00006-of-00006.safetensors",
688
+ "vision_model.encoder.layers.14.mlp.fc2.bias": "model-00006-of-00006.safetensors",
689
+ "vision_model.encoder.layers.14.mlp.fc2.weight": "model-00006-of-00006.safetensors",
690
+ "vision_model.encoder.layers.14.norm1.bias": "model-00006-of-00006.safetensors",
691
+ "vision_model.encoder.layers.14.norm1.weight": "model-00006-of-00006.safetensors",
692
+ "vision_model.encoder.layers.14.norm2.bias": "model-00006-of-00006.safetensors",
693
+ "vision_model.encoder.layers.14.norm2.weight": "model-00006-of-00006.safetensors",
694
+ "vision_model.encoder.layers.15.attn.proj.bias": "model-00006-of-00006.safetensors",
695
+ "vision_model.encoder.layers.15.attn.proj.weight": "model-00006-of-00006.safetensors",
696
+ "vision_model.encoder.layers.15.attn.qkv.bias": "model-00006-of-00006.safetensors",
697
+ "vision_model.encoder.layers.15.attn.qkv.weight": "model-00006-of-00006.safetensors",
698
+ "vision_model.encoder.layers.15.ls1": "model-00006-of-00006.safetensors",
699
+ "vision_model.encoder.layers.15.ls2": "model-00006-of-00006.safetensors",
700
+ "vision_model.encoder.layers.15.mlp.fc1.bias": "model-00006-of-00006.safetensors",
701
+ "vision_model.encoder.layers.15.mlp.fc1.weight": "model-00006-of-00006.safetensors",
702
+ "vision_model.encoder.layers.15.mlp.fc2.bias": "model-00006-of-00006.safetensors",
703
+ "vision_model.encoder.layers.15.mlp.fc2.weight": "model-00006-of-00006.safetensors",
704
+ "vision_model.encoder.layers.15.norm1.bias": "model-00006-of-00006.safetensors",
705
+ "vision_model.encoder.layers.15.norm1.weight": "model-00006-of-00006.safetensors",
706
+ "vision_model.encoder.layers.15.norm2.bias": "model-00006-of-00006.safetensors",
707
+ "vision_model.encoder.layers.15.norm2.weight": "model-00006-of-00006.safetensors",
708
+ "vision_model.encoder.layers.16.attn.proj.bias": "model-00006-of-00006.safetensors",
709
+ "vision_model.encoder.layers.16.attn.proj.weight": "model-00006-of-00006.safetensors",
710
+ "vision_model.encoder.layers.16.attn.qkv.bias": "model-00006-of-00006.safetensors",
711
+ "vision_model.encoder.layers.16.attn.qkv.weight": "model-00006-of-00006.safetensors",
712
+ "vision_model.encoder.layers.16.ls1": "model-00006-of-00006.safetensors",
713
+ "vision_model.encoder.layers.16.ls2": "model-00006-of-00006.safetensors",
714
+ "vision_model.encoder.layers.16.mlp.fc1.bias": "model-00006-of-00006.safetensors",
715
+ "vision_model.encoder.layers.16.mlp.fc1.weight": "model-00006-of-00006.safetensors",
716
+ "vision_model.encoder.layers.16.mlp.fc2.bias": "model-00006-of-00006.safetensors",
717
+ "vision_model.encoder.layers.16.mlp.fc2.weight": "model-00006-of-00006.safetensors",
718
+ "vision_model.encoder.layers.16.norm1.bias": "model-00006-of-00006.safetensors",
719
+ "vision_model.encoder.layers.16.norm1.weight": "model-00006-of-00006.safetensors",
720
+ "vision_model.encoder.layers.16.norm2.bias": "model-00006-of-00006.safetensors",
721
+ "vision_model.encoder.layers.16.norm2.weight": "model-00006-of-00006.safetensors",
722
+ "vision_model.encoder.layers.17.attn.proj.bias": "model-00006-of-00006.safetensors",
723
+ "vision_model.encoder.layers.17.attn.proj.weight": "model-00006-of-00006.safetensors",
724
+ "vision_model.encoder.layers.17.attn.qkv.bias": "model-00006-of-00006.safetensors",
725
+ "vision_model.encoder.layers.17.attn.qkv.weight": "model-00006-of-00006.safetensors",
726
+ "vision_model.encoder.layers.17.ls1": "model-00006-of-00006.safetensors",
727
+ "vision_model.encoder.layers.17.ls2": "model-00006-of-00006.safetensors",
728
+ "vision_model.encoder.layers.17.mlp.fc1.bias": "model-00006-of-00006.safetensors",
729
+ "vision_model.encoder.layers.17.mlp.fc1.weight": "model-00006-of-00006.safetensors",
730
+ "vision_model.encoder.layers.17.mlp.fc2.bias": "model-00006-of-00006.safetensors",
731
+ "vision_model.encoder.layers.17.mlp.fc2.weight": "model-00006-of-00006.safetensors",
732
+ "vision_model.encoder.layers.17.norm1.bias": "model-00006-of-00006.safetensors",
733
+ "vision_model.encoder.layers.17.norm1.weight": "model-00006-of-00006.safetensors",
734
+ "vision_model.encoder.layers.17.norm2.bias": "model-00006-of-00006.safetensors",
735
+ "vision_model.encoder.layers.17.norm2.weight": "model-00006-of-00006.safetensors",
736
+ "vision_model.encoder.layers.18.attn.proj.bias": "model-00006-of-00006.safetensors",
737
+ "vision_model.encoder.layers.18.attn.proj.weight": "model-00006-of-00006.safetensors",
738
+ "vision_model.encoder.layers.18.attn.qkv.bias": "model-00006-of-00006.safetensors",
739
+ "vision_model.encoder.layers.18.attn.qkv.weight": "model-00006-of-00006.safetensors",
740
+ "vision_model.encoder.layers.18.ls1": "model-00006-of-00006.safetensors",
741
+ "vision_model.encoder.layers.18.ls2": "model-00006-of-00006.safetensors",
742
+ "vision_model.encoder.layers.18.mlp.fc1.bias": "model-00006-of-00006.safetensors",
743
+ "vision_model.encoder.layers.18.mlp.fc1.weight": "model-00006-of-00006.safetensors",
744
+ "vision_model.encoder.layers.18.mlp.fc2.bias": "model-00006-of-00006.safetensors",
745
+ "vision_model.encoder.layers.18.mlp.fc2.weight": "model-00006-of-00006.safetensors",
746
+ "vision_model.encoder.layers.18.norm1.bias": "model-00006-of-00006.safetensors",
747
+ "vision_model.encoder.layers.18.norm1.weight": "model-00006-of-00006.safetensors",
748
+ "vision_model.encoder.layers.18.norm2.bias": "model-00006-of-00006.safetensors",
749
+ "vision_model.encoder.layers.18.norm2.weight": "model-00006-of-00006.safetensors",
750
+ "vision_model.encoder.layers.19.attn.proj.bias": "model-00006-of-00006.safetensors",
751
+ "vision_model.encoder.layers.19.attn.proj.weight": "model-00006-of-00006.safetensors",
752
+ "vision_model.encoder.layers.19.attn.qkv.bias": "model-00006-of-00006.safetensors",
753
+ "vision_model.encoder.layers.19.attn.qkv.weight": "model-00006-of-00006.safetensors",
754
+ "vision_model.encoder.layers.19.ls1": "model-00006-of-00006.safetensors",
755
+ "vision_model.encoder.layers.19.ls2": "model-00006-of-00006.safetensors",
756
+ "vision_model.encoder.layers.19.mlp.fc1.bias": "model-00006-of-00006.safetensors",
757
+ "vision_model.encoder.layers.19.mlp.fc1.weight": "model-00006-of-00006.safetensors",
758
+ "vision_model.encoder.layers.19.mlp.fc2.bias": "model-00006-of-00006.safetensors",
759
+ "vision_model.encoder.layers.19.mlp.fc2.weight": "model-00006-of-00006.safetensors",
760
+ "vision_model.encoder.layers.19.norm1.bias": "model-00006-of-00006.safetensors",
761
+ "vision_model.encoder.layers.19.norm1.weight": "model-00006-of-00006.safetensors",
762
+ "vision_model.encoder.layers.19.norm2.bias": "model-00006-of-00006.safetensors",
763
+ "vision_model.encoder.layers.19.norm2.weight": "model-00006-of-00006.safetensors",
764
+ "vision_model.encoder.layers.2.attn.proj.bias": "model-00006-of-00006.safetensors",
765
+ "vision_model.encoder.layers.2.attn.proj.weight": "model-00006-of-00006.safetensors",
766
+ "vision_model.encoder.layers.2.attn.qkv.bias": "model-00006-of-00006.safetensors",
767
+ "vision_model.encoder.layers.2.attn.qkv.weight": "model-00006-of-00006.safetensors",
768
+ "vision_model.encoder.layers.2.ls1": "model-00006-of-00006.safetensors",
769
+ "vision_model.encoder.layers.2.ls2": "model-00006-of-00006.safetensors",
770
+ "vision_model.encoder.layers.2.mlp.fc1.bias": "model-00006-of-00006.safetensors",
771
+ "vision_model.encoder.layers.2.mlp.fc1.weight": "model-00006-of-00006.safetensors",
772
+ "vision_model.encoder.layers.2.mlp.fc2.bias": "model-00006-of-00006.safetensors",
773
+ "vision_model.encoder.layers.2.mlp.fc2.weight": "model-00006-of-00006.safetensors",
774
+ "vision_model.encoder.layers.2.norm1.bias": "model-00006-of-00006.safetensors",
775
+ "vision_model.encoder.layers.2.norm1.weight": "model-00006-of-00006.safetensors",
776
+ "vision_model.encoder.layers.2.norm2.bias": "model-00006-of-00006.safetensors",
777
+ "vision_model.encoder.layers.2.norm2.weight": "model-00006-of-00006.safetensors",
778
+ "vision_model.encoder.layers.20.attn.proj.bias": "model-00006-of-00006.safetensors",
779
+ "vision_model.encoder.layers.20.attn.proj.weight": "model-00006-of-00006.safetensors",
780
+ "vision_model.encoder.layers.20.attn.qkv.bias": "model-00006-of-00006.safetensors",
781
+ "vision_model.encoder.layers.20.attn.qkv.weight": "model-00006-of-00006.safetensors",
782
+ "vision_model.encoder.layers.20.ls1": "model-00006-of-00006.safetensors",
783
+ "vision_model.encoder.layers.20.ls2": "model-00006-of-00006.safetensors",
784
+ "vision_model.encoder.layers.20.mlp.fc1.bias": "model-00006-of-00006.safetensors",
785
+ "vision_model.encoder.layers.20.mlp.fc1.weight": "model-00006-of-00006.safetensors",
786
+ "vision_model.encoder.layers.20.mlp.fc2.bias": "model-00006-of-00006.safetensors",
787
+ "vision_model.encoder.layers.20.mlp.fc2.weight": "model-00006-of-00006.safetensors",
788
+ "vision_model.encoder.layers.20.norm1.bias": "model-00006-of-00006.safetensors",
789
+ "vision_model.encoder.layers.20.norm1.weight": "model-00006-of-00006.safetensors",
790
+ "vision_model.encoder.layers.20.norm2.bias": "model-00006-of-00006.safetensors",
791
+ "vision_model.encoder.layers.20.norm2.weight": "model-00006-of-00006.safetensors",
792
+ "vision_model.encoder.layers.21.attn.proj.bias": "model-00006-of-00006.safetensors",
793
+ "vision_model.encoder.layers.21.attn.proj.weight": "model-00006-of-00006.safetensors",
794
+ "vision_model.encoder.layers.21.attn.qkv.bias": "model-00006-of-00006.safetensors",
795
+ "vision_model.encoder.layers.21.attn.qkv.weight": "model-00006-of-00006.safetensors",
796
+ "vision_model.encoder.layers.21.ls1": "model-00006-of-00006.safetensors",
797
+ "vision_model.encoder.layers.21.ls2": "model-00006-of-00006.safetensors",
798
+ "vision_model.encoder.layers.21.mlp.fc1.bias": "model-00006-of-00006.safetensors",
799
+ "vision_model.encoder.layers.21.mlp.fc1.weight": "model-00006-of-00006.safetensors",
800
+ "vision_model.encoder.layers.21.mlp.fc2.bias": "model-00006-of-00006.safetensors",
801
+ "vision_model.encoder.layers.21.mlp.fc2.weight": "model-00006-of-00006.safetensors",
802
+ "vision_model.encoder.layers.21.norm1.bias": "model-00006-of-00006.safetensors",
803
+ "vision_model.encoder.layers.21.norm1.weight": "model-00006-of-00006.safetensors",
804
+ "vision_model.encoder.layers.21.norm2.bias": "model-00006-of-00006.safetensors",
805
+ "vision_model.encoder.layers.21.norm2.weight": "model-00006-of-00006.safetensors",
806
+ "vision_model.encoder.layers.22.attn.proj.bias": "model-00006-of-00006.safetensors",
807
+ "vision_model.encoder.layers.22.attn.proj.weight": "model-00006-of-00006.safetensors",
808
+ "vision_model.encoder.layers.22.attn.qkv.bias": "model-00006-of-00006.safetensors",
809
+ "vision_model.encoder.layers.22.attn.qkv.weight": "model-00006-of-00006.safetensors",
810
+ "vision_model.encoder.layers.22.ls1": "model-00006-of-00006.safetensors",
811
+ "vision_model.encoder.layers.22.ls2": "model-00006-of-00006.safetensors",
812
+ "vision_model.encoder.layers.22.mlp.fc1.bias": "model-00006-of-00006.safetensors",
813
+ "vision_model.encoder.layers.22.mlp.fc1.weight": "model-00006-of-00006.safetensors",
814
+ "vision_model.encoder.layers.22.mlp.fc2.bias": "model-00006-of-00006.safetensors",
815
+ "vision_model.encoder.layers.22.mlp.fc2.weight": "model-00006-of-00006.safetensors",
816
+ "vision_model.encoder.layers.22.norm1.bias": "model-00006-of-00006.safetensors",
817
+ "vision_model.encoder.layers.22.norm1.weight": "model-00006-of-00006.safetensors",
818
+ "vision_model.encoder.layers.22.norm2.bias": "model-00006-of-00006.safetensors",
819
+ "vision_model.encoder.layers.22.norm2.weight": "model-00006-of-00006.safetensors",
820
+ "vision_model.encoder.layers.23.attn.proj.bias": "model-00006-of-00006.safetensors",
821
+ "vision_model.encoder.layers.23.attn.proj.weight": "model-00006-of-00006.safetensors",
822
+ "vision_model.encoder.layers.23.attn.qkv.bias": "model-00006-of-00006.safetensors",
823
+ "vision_model.encoder.layers.23.attn.qkv.weight": "model-00006-of-00006.safetensors",
824
+ "vision_model.encoder.layers.23.ls1": "model-00006-of-00006.safetensors",
825
+ "vision_model.encoder.layers.23.ls2": "model-00006-of-00006.safetensors",
826
+ "vision_model.encoder.layers.23.mlp.fc1.bias": "model-00006-of-00006.safetensors",
827
+ "vision_model.encoder.layers.23.mlp.fc1.weight": "model-00006-of-00006.safetensors",
828
+ "vision_model.encoder.layers.23.mlp.fc2.bias": "model-00006-of-00006.safetensors",
829
+ "vision_model.encoder.layers.23.mlp.fc2.weight": "model-00006-of-00006.safetensors",
830
+ "vision_model.encoder.layers.23.norm1.bias": "model-00006-of-00006.safetensors",
831
+ "vision_model.encoder.layers.23.norm1.weight": "model-00006-of-00006.safetensors",
832
+ "vision_model.encoder.layers.23.norm2.bias": "model-00006-of-00006.safetensors",
833
+ "vision_model.encoder.layers.23.norm2.weight": "model-00006-of-00006.safetensors",
834
+ "vision_model.encoder.layers.3.attn.proj.bias": "model-00006-of-00006.safetensors",
835
+ "vision_model.encoder.layers.3.attn.proj.weight": "model-00006-of-00006.safetensors",
836
+ "vision_model.encoder.layers.3.attn.qkv.bias": "model-00006-of-00006.safetensors",
837
+ "vision_model.encoder.layers.3.attn.qkv.weight": "model-00006-of-00006.safetensors",
838
+ "vision_model.encoder.layers.3.ls1": "model-00006-of-00006.safetensors",
839
+ "vision_model.encoder.layers.3.ls2": "model-00006-of-00006.safetensors",
840
+ "vision_model.encoder.layers.3.mlp.fc1.bias": "model-00006-of-00006.safetensors",
841
+ "vision_model.encoder.layers.3.mlp.fc1.weight": "model-00006-of-00006.safetensors",
842
+ "vision_model.encoder.layers.3.mlp.fc2.bias": "model-00006-of-00006.safetensors",
843
+ "vision_model.encoder.layers.3.mlp.fc2.weight": "model-00006-of-00006.safetensors",
844
+ "vision_model.encoder.layers.3.norm1.bias": "model-00006-of-00006.safetensors",
845
+ "vision_model.encoder.layers.3.norm1.weight": "model-00006-of-00006.safetensors",
846
+ "vision_model.encoder.layers.3.norm2.bias": "model-00006-of-00006.safetensors",
847
+ "vision_model.encoder.layers.3.norm2.weight": "model-00006-of-00006.safetensors",
848
+ "vision_model.encoder.layers.4.attn.proj.bias": "model-00006-of-00006.safetensors",
849
+ "vision_model.encoder.layers.4.attn.proj.weight": "model-00006-of-00006.safetensors",
850
+ "vision_model.encoder.layers.4.attn.qkv.bias": "model-00006-of-00006.safetensors",
851
+ "vision_model.encoder.layers.4.attn.qkv.weight": "model-00006-of-00006.safetensors",
852
+ "vision_model.encoder.layers.4.ls1": "model-00006-of-00006.safetensors",
853
+ "vision_model.encoder.layers.4.ls2": "model-00006-of-00006.safetensors",
854
+ "vision_model.encoder.layers.4.mlp.fc1.bias": "model-00006-of-00006.safetensors",
855
+ "vision_model.encoder.layers.4.mlp.fc1.weight": "model-00006-of-00006.safetensors",
856
+ "vision_model.encoder.layers.4.mlp.fc2.bias": "model-00006-of-00006.safetensors",
857
+ "vision_model.encoder.layers.4.mlp.fc2.weight": "model-00006-of-00006.safetensors",
858
+ "vision_model.encoder.layers.4.norm1.bias": "model-00006-of-00006.safetensors",
859
+ "vision_model.encoder.layers.4.norm1.weight": "model-00006-of-00006.safetensors",
860
+ "vision_model.encoder.layers.4.norm2.bias": "model-00006-of-00006.safetensors",
861
+ "vision_model.encoder.layers.4.norm2.weight": "model-00006-of-00006.safetensors",
862
+ "vision_model.encoder.layers.5.attn.proj.bias": "model-00006-of-00006.safetensors",
863
+ "vision_model.encoder.layers.5.attn.proj.weight": "model-00006-of-00006.safetensors",
864
+ "vision_model.encoder.layers.5.attn.qkv.bias": "model-00006-of-00006.safetensors",
865
+ "vision_model.encoder.layers.5.attn.qkv.weight": "model-00006-of-00006.safetensors",
866
+ "vision_model.encoder.layers.5.ls1": "model-00006-of-00006.safetensors",
867
+ "vision_model.encoder.layers.5.ls2": "model-00006-of-00006.safetensors",
868
+ "vision_model.encoder.layers.5.mlp.fc1.bias": "model-00006-of-00006.safetensors",
869
+ "vision_model.encoder.layers.5.mlp.fc1.weight": "model-00006-of-00006.safetensors",
870
+ "vision_model.encoder.layers.5.mlp.fc2.bias": "model-00006-of-00006.safetensors",
871
+ "vision_model.encoder.layers.5.mlp.fc2.weight": "model-00006-of-00006.safetensors",
872
+ "vision_model.encoder.layers.5.norm1.bias": "model-00006-of-00006.safetensors",
873
+ "vision_model.encoder.layers.5.norm1.weight": "model-00006-of-00006.safetensors",
874
+ "vision_model.encoder.layers.5.norm2.bias": "model-00006-of-00006.safetensors",
875
+ "vision_model.encoder.layers.5.norm2.weight": "model-00006-of-00006.safetensors",
876
+ "vision_model.encoder.layers.6.attn.proj.bias": "model-00006-of-00006.safetensors",
877
+ "vision_model.encoder.layers.6.attn.proj.weight": "model-00006-of-00006.safetensors",
878
+ "vision_model.encoder.layers.6.attn.qkv.bias": "model-00006-of-00006.safetensors",
879
+ "vision_model.encoder.layers.6.attn.qkv.weight": "model-00006-of-00006.safetensors",
880
+ "vision_model.encoder.layers.6.ls1": "model-00006-of-00006.safetensors",
881
+ "vision_model.encoder.layers.6.ls2": "model-00006-of-00006.safetensors",
882
+ "vision_model.encoder.layers.6.mlp.fc1.bias": "model-00006-of-00006.safetensors",
883
+ "vision_model.encoder.layers.6.mlp.fc1.weight": "model-00006-of-00006.safetensors",
884
+ "vision_model.encoder.layers.6.mlp.fc2.bias": "model-00006-of-00006.safetensors",
885
+ "vision_model.encoder.layers.6.mlp.fc2.weight": "model-00006-of-00006.safetensors",
886
+ "vision_model.encoder.layers.6.norm1.bias": "model-00006-of-00006.safetensors",
887
+ "vision_model.encoder.layers.6.norm1.weight": "model-00006-of-00006.safetensors",
888
+ "vision_model.encoder.layers.6.norm2.bias": "model-00006-of-00006.safetensors",
889
+ "vision_model.encoder.layers.6.norm2.weight": "model-00006-of-00006.safetensors",
890
+ "vision_model.encoder.layers.7.attn.proj.bias": "model-00006-of-00006.safetensors",
891
+ "vision_model.encoder.layers.7.attn.proj.weight": "model-00006-of-00006.safetensors",
892
+ "vision_model.encoder.layers.7.attn.qkv.bias": "model-00006-of-00006.safetensors",
893
+ "vision_model.encoder.layers.7.attn.qkv.weight": "model-00006-of-00006.safetensors",
894
+ "vision_model.encoder.layers.7.ls1": "model-00006-of-00006.safetensors",
895
+ "vision_model.encoder.layers.7.ls2": "model-00006-of-00006.safetensors",
896
+ "vision_model.encoder.layers.7.mlp.fc1.bias": "model-00006-of-00006.safetensors",
897
+ "vision_model.encoder.layers.7.mlp.fc1.weight": "model-00006-of-00006.safetensors",
898
+ "vision_model.encoder.layers.7.mlp.fc2.bias": "model-00006-of-00006.safetensors",
899
+ "vision_model.encoder.layers.7.mlp.fc2.weight": "model-00006-of-00006.safetensors",
900
+ "vision_model.encoder.layers.7.norm1.bias": "model-00006-of-00006.safetensors",
901
+ "vision_model.encoder.layers.7.norm1.weight": "model-00006-of-00006.safetensors",
902
+ "vision_model.encoder.layers.7.norm2.bias": "model-00006-of-00006.safetensors",
903
+ "vision_model.encoder.layers.7.norm2.weight": "model-00006-of-00006.safetensors",
904
+ "vision_model.encoder.layers.8.attn.proj.bias": "model-00006-of-00006.safetensors",
905
+ "vision_model.encoder.layers.8.attn.proj.weight": "model-00006-of-00006.safetensors",
906
+ "vision_model.encoder.layers.8.attn.qkv.bias": "model-00006-of-00006.safetensors",
907
+ "vision_model.encoder.layers.8.attn.qkv.weight": "model-00006-of-00006.safetensors",
908
+ "vision_model.encoder.layers.8.ls1": "model-00006-of-00006.safetensors",
909
+ "vision_model.encoder.layers.8.ls2": "model-00006-of-00006.safetensors",
910
+ "vision_model.encoder.layers.8.mlp.fc1.bias": "model-00006-of-00006.safetensors",
911
+ "vision_model.encoder.layers.8.mlp.fc1.weight": "model-00006-of-00006.safetensors",
912
+ "vision_model.encoder.layers.8.mlp.fc2.bias": "model-00006-of-00006.safetensors",
913
+ "vision_model.encoder.layers.8.mlp.fc2.weight": "model-00006-of-00006.safetensors",
914
+ "vision_model.encoder.layers.8.norm1.bias": "model-00006-of-00006.safetensors",
915
+ "vision_model.encoder.layers.8.norm1.weight": "model-00006-of-00006.safetensors",
916
+ "vision_model.encoder.layers.8.norm2.bias": "model-00006-of-00006.safetensors",
917
+ "vision_model.encoder.layers.8.norm2.weight": "model-00006-of-00006.safetensors",
918
+ "vision_model.encoder.layers.9.attn.proj.bias": "model-00006-of-00006.safetensors",
919
+ "vision_model.encoder.layers.9.attn.proj.weight": "model-00006-of-00006.safetensors",
920
+ "vision_model.encoder.layers.9.attn.qkv.bias": "model-00006-of-00006.safetensors",
921
+ "vision_model.encoder.layers.9.attn.qkv.weight": "model-00006-of-00006.safetensors",
922
+ "vision_model.encoder.layers.9.ls1": "model-00006-of-00006.safetensors",
923
+ "vision_model.encoder.layers.9.ls2": "model-00006-of-00006.safetensors",
924
+ "vision_model.encoder.layers.9.mlp.fc1.bias": "model-00006-of-00006.safetensors",
925
+ "vision_model.encoder.layers.9.mlp.fc1.weight": "model-00006-of-00006.safetensors",
926
+ "vision_model.encoder.layers.9.mlp.fc2.bias": "model-00006-of-00006.safetensors",
927
+ "vision_model.encoder.layers.9.mlp.fc2.weight": "model-00006-of-00006.safetensors",
928
+ "vision_model.encoder.layers.9.norm1.bias": "model-00006-of-00006.safetensors",
929
+ "vision_model.encoder.layers.9.norm1.weight": "model-00006-of-00006.safetensors",
930
+ "vision_model.encoder.layers.9.norm2.bias": "model-00006-of-00006.safetensors",
931
+ "vision_model.encoder.layers.9.norm2.weight": "model-00006-of-00006.safetensors"
932
+ }
933
+ }