--- library_name: transformers license: apache-2.0 base_model: mistralai/Mistral-7B-vp0.3 language: en datasets: - Word2Li/MiddOptimized tags: - llama-factory - full pipeline_tag: text-generation model-index: - name: Mistral-7B-v0.3-Middo-Alpaca-4o-mini results: - task: type: text-generation dataset: name: MMLU type: MMLU metrics: - name: weighted accuracy type: weighted accuracy value: 43.26 verified: true - task: type: text-generation dataset: name: IFEval type: IFEval metrics: - name: overall accuracy type: overall accuracy value: 49.80 verified: true - task: type: text-generation dataset: name: GSM8K type: GSM8K metrics: - name: accuracy type: accuracy value: 41.09 verified: true - task: type: text-generation dataset: name: MATH type: MATH metrics: - name: accuracy type: accuracy value: 10.02 verified: true - task: type: text-generation dataset: name: HumanEval type: HumanEval metrics: - name: humaneval_pass@1 type: humaneval_pass@1 value: 41.46 verified: true - task: type: text-generation dataset: name: MBPP type: MBPP metrics: - name: score type: score value: 34.60 verified: true - task: type: text-generation dataset: name: Hellaswag type: Hellaswag metrics: - name: accuracy type: accuracy value: 66.02 verified: true - task: type: text-generation dataset: name: GPQA type: GPQA metrics: - name: accuracy type: accuracy value: 22.22 verified: true metrics: - accuracy --- # Mistral-7B-v0.3-Middo-WizardLM Paper: [Middo: Model-Informed Dynamic Data Optimization for Enhanced LLM Fine-Tuning via Closed-Loop Learning](https://arxiv.org/abs/2508.21589) Code: https://github.com/Word2VecT/Middo ## Model description This model is a fine-tuned version of [mistralai/Mistral-7B-v0.3](https://huggingface.co/mistralai/Mistral-7B-v0.3) on the [MiddOptimzed/mistral_wizard](https://huggingface.co/datasets/Word2Li/MiddOptimized/viewer/default/mistral_wizard) dataset. ## Training and evaluation data ### Training data Middo optimized [WizardLMTeam/WizardLM_evol_instruct_70k](https://huggingface.co/datasets/WizardLMTeam/WizardLM_evol_instruct_70k) on [mistralai/Mistral-7B-v0.3](https://huggingface.co/mistralai/Mistral-7B-v0.3). ### Evaluation data - General - MMLU - IFEval - Math - GSM8K - MATH - Code - HumanEval - MBPP - Reasoning - Hellaswag - GPQA ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 8 - total_train_batch_size: 256 - total_eval_batch_size: 64 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.03 - num_epochs: 1.0 ### Training results - epoch: 1.0 - total_flos: 4.871785990877872e+18 - train_loss: 0.6260631282554998 - train_runtime: 6928.3413 - train_samples_per_second: 12.871 - train_steps_per_second: 0.05 ### Framework versions - Transformers 4.55.0 - Pytorch 2.6.0+cu124 - Datasets 3.6.0 - Tokenizers 0.21.1