--- license: apache-2.0 --- ** Model Detail * Model type: RWKV7-0.4B-wavlmLarge-ENASR-demo is an opensource English ASR Model trained using RWKV7 architecture and WavLM-Large Encoder. * Model date: Mar,2025 * Paper or resources for more information: https://github.com/JL-er/WorldRWKV * Where to send questions or comments about the model: https://github.com/JL-er/WorldRWKV/issues ** Training Time 1 hrs 4*4090 ** Inference ``` from infer.worldmodel import Worldinfer import librosa import numpy as np import soundfile as sf # 模型路径 llm_path = '/home/rwkv/model/rwkv7-0.4b-wavlmlarge-enasr-demo.pth' encoder_path = '/home/rwkv/model/facebookhubert-large-ls960-ft' encoder_type = 'speech' # 初始化模型 model = Worldinfer(model_path=llm_path, encoder_type=encoder_type, encoder_path=encoder_path) # 加载音频文件 audio_path = './test_audio.wav' audio_data, sample_rate = sf.read(audio_path) # 确保音频是单声道 if len(audio_data.shape) > 1: audio_data = audio_data[:, 0] # 检查并转换音频数据为浮点数格式 if audio_data.dtype != np.float32 and audio_data.dtype != np.float64: audio_data = audio_data.astype(np.float32) / np.iinfo(audio_data.dtype).max # 重采样到 16000 Hz resampled_audio = librosa.resample(audio_data, orig_sr=sample_rate, target_sr=16000) # 构造提示文本 text = '\x16Assistant:' # 生成结果 result, _ = model.generate(text, resampled_audio) print(result) ```