Update README.md
Browse files
README.md
CHANGED
|
@@ -1,3 +1,172 @@
|
|
| 1 |
-
---
|
| 2 |
-
license: apache-2.0
|
| 3 |
-
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: apache-2.0
|
| 3 |
+
---
|
| 4 |
+
# Herberta: A Pretrained Model for TCM Herbal Medicine and Downstream Tasks
|
| 5 |
+
|
| 6 |
+
**Tags**:
|
| 7 |
+
- Pretrain_Model
|
| 8 |
+
- transformers
|
| 9 |
+
- TCM
|
| 10 |
+
- herberta
|
| 11 |
+
- text embedding
|
| 12 |
+
|
| 13 |
+
**License**: Apache-2.0
|
| 14 |
+
**Inference**: true
|
| 15 |
+
**Language**: zh, en
|
| 16 |
+
**Base Model**: hfl/chinese-roberta-wwm-ext
|
| 17 |
+
**Library Name**: transformers
|
| 18 |
+
|
| 19 |
+
---
|
| 20 |
+
|
| 21 |
+
## Introduction
|
| 22 |
+
|
| 23 |
+
Herberta is a pre-trained model developed by the Angelpro Team, aimed at advancing the representation learning and modeling capabilities in Traditional Chinese Medicine (TCM). Built upon the **chinese-roberta-wwm-ext-large** model, Herberta leverages MLM (Masked Language Modeling) tasks to pre-train on datasets comprising **700 ancient books (538.95M)** and **48 modern Chinese medicine textbooks (54M)**, resulting in a robust model for embedding generation and TCM-specific downstream tasks.
|
| 24 |
+
|
| 25 |
+
We named the model "Herberta" by combining "Herb" and "Roberta" to signify its purpose in herbal medicine research. Herberta is ideal for applications such as:
|
| 26 |
+
|
| 27 |
+
- **Encoder for Herbal Formulas**: Generating meaningful embeddings for TCM formulations.
|
| 28 |
+
- **Domain-Specific Word Embedding**: Serving the Chinese medicine text domain.
|
| 29 |
+
- **Support for TCM Downstream Tasks**: Including classification, labeling, and more.
|
| 30 |
+
|
| 31 |
+
---
|
| 32 |
+
|
| 33 |
+
## Pretraining Experiments
|
| 34 |
+
|
| 35 |
+
### Dataset
|
| 36 |
+
|
| 37 |
+
| Data Type | Quantity | Data Size |
|
| 38 |
+
|------------------------|-------------|------------------|
|
| 39 |
+
| **Ancient TCM Books** | 700 books | ~538.95M |
|
| 40 |
+
| **Modern TCM Textbooks** | 48 books | ~54M |
|
| 41 |
+
| **Mixed-Type Dataset** | Combined dataset | ~637.8M |
|
| 42 |
+
|
| 43 |
+
### Pretrain result:
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
| Model | eval_accuracy | Loss/epoch_valid | Perplexity_valid |
|
| 47 |
+
|-----------------------|---------------|------------------|------------------|
|
| 48 |
+
| **herberta_seq_512_v2** | 0.9841 | 0.04367 | 1.083 |
|
| 49 |
+
| **herberta_seq_128_v2** | 0.9406 | 0.2877 | 1.333 |
|
| 50 |
+
| **herberta_seq_512_V3** | 0.755 |1.100 | 3.010 |
|
| 51 |
+
|
| 52 |
+
#### Metrics Comparison
|
| 53 |
+
|
| 54 |
+
<table>
|
| 55 |
+
<tr>
|
| 56 |
+
<td align="center"><strong>Accuracy</strong></td>
|
| 57 |
+
<td align="center"><strong>Loss</strong></td>
|
| 58 |
+
<td align="center"><strong>Perplexity</strong></td>
|
| 59 |
+
</tr>
|
| 60 |
+
<tr>
|
| 61 |
+
<td><img src="https://cdn-uploads.huggingface.co/production/uploads/6564baaa393bae9c194fc32e/RDgI-0Ro2kMiwV853Wkgx.png" alt="Accuracy" width="500"></td>
|
| 62 |
+
<td><img src="https://cdn-uploads.huggingface.co/production/uploads/6564baaa393bae9c194fc32e/BJ7enbRg13IYAZuxwraPP.png" alt="Loss" width="500"></td>
|
| 63 |
+
<td><img src="https://cdn-uploads.huggingface.co/production/uploads/6564baaa393bae9c194fc32e/lOohRMIctPJZKM5yEEcQ2.png" alt="Perplexity" width="500"></td>
|
| 64 |
+
</tr>
|
| 65 |
+
</table>
|
| 66 |
+
|
| 67 |
+
### Pretraining Configuration
|
| 68 |
+
|
| 69 |
+
#### Ancient Books
|
| 70 |
+
- Pretraining Strategy: BERT-style MASK (15% tokens masked)
|
| 71 |
+
- Sequence Length: 512
|
| 72 |
+
- Batch Size: 32
|
| 73 |
+
- Learning Rate: `1e-5` with an epoch-based decay (`epoch * 0.1`)
|
| 74 |
+
- Tokenization: Sentence-based tokenization with padding for sequences <512 tokens.
|
| 75 |
+
|
| 76 |
+
#### Modern Textbooks
|
| 77 |
+
- Pretraining Strategy: Dynamic MASK + Warmup + Linear Decay
|
| 78 |
+
- Sequence Length: 512
|
| 79 |
+
- Batch Size: 16
|
| 80 |
+
- Learning Rate: Warmup (10% steps) + Linear Decay (1e-5 initial rate)
|
| 81 |
+
- Tokenization: Continuous tokenization (512 tokens) without sentence segmentation.
|
| 82 |
+
|
| 83 |
+
#### V4 Mixed Dataset (Ancient + Modern)
|
| 84 |
+
- Dataset: Combined 48 modern textbooks + 700 ancient books
|
| 85 |
+
- Pretraining Strategy: Dynamic MASK, warmup, and linear decay (1e-5 learning rate).
|
| 86 |
+
- Epochs: 20
|
| 87 |
+
- Sequence Length: 512
|
| 88 |
+
- Batch Size: 16
|
| 89 |
+
- Tokenization: Continuous tokenization.
|
| 90 |
+
|
| 91 |
+
---
|
| 92 |
+
|
| 93 |
+
## Downstream Task: TCM Pattern Classification
|
| 94 |
+
|
| 95 |
+
### Task Definition
|
| 96 |
+
Using **321 pattern descriptions** extracted from TCM internal medicine textbooks, we evaluated the classification performance on four models:
|
| 97 |
+
|
| 98 |
+
1. **Herberta_seq_512_v2**: Pretrained on 700 ancient TCM books.
|
| 99 |
+
2. **Herberta_seq_512_v3**: Pretrained on 48 modern TCM textbooks.
|
| 100 |
+
3. **Herberta_seq_128_v2**: Pretrained on 700 ancient TCM books (128-length sequences).
|
| 101 |
+
4. **Roberta**: Baseline model without TCM-specific pretraining.
|
| 102 |
+
|
| 103 |
+
### Training Configuration
|
| 104 |
+
- Max Sequence Length: 512
|
| 105 |
+
- Batch Size: 16
|
| 106 |
+
- Epochs: 30
|
| 107 |
+
|
| 108 |
+
### Results
|
| 109 |
+
|
| 110 |
+
| Model Name | Eval Accuracy | Eval F1 | Eval Precision | Eval Recall |
|
| 111 |
+
|--------------------------|---------------|-----------|----------------|-------------|
|
| 112 |
+
| **Herberta_seq_512_v2** | **0.9454** | **0.9293** | **0.9221** | **0.9454** |
|
| 113 |
+
| **Herberta_seq_512_v3** | 0.8989 | 0.8704 | 0.8583 | 0.8989 |
|
| 114 |
+
| **Herberta_seq_128_v2** | 0.8716 | 0.8443 | 0.8351 | 0.8716 |
|
| 115 |
+
| **Roberta** | 0.8743 | 0.8425 | 0.8311 | 0.8743 |
|
| 116 |
+
|
| 117 |
+

|
| 118 |
+
|
| 119 |
+
|
| 120 |
+
#### Summary
|
| 121 |
+
The **Herberta_seq_512_v2** model, pretrained on 700 ancient TCM books, exhibited superior performance across all evaluation metrics. This highlights the significance of domain-specific pretraining on larger and historically richer datasets for TCM applications.
|
| 122 |
+
|
| 123 |
+
---
|
| 124 |
+
|
| 125 |
+
## Quickstart
|
| 126 |
+
|
| 127 |
+
### Use Hugging Face
|
| 128 |
+
|
| 129 |
+
```python
|
| 130 |
+
from transformers import AutoTokenizer, AutoModel
|
| 131 |
+
|
| 132 |
+
model_name = "XiaoEnn/herberta"
|
| 133 |
+
|
| 134 |
+
# Load tokenizer and model
|
| 135 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 136 |
+
model = AutoModel.from_pretrained(model_name)
|
| 137 |
+
|
| 138 |
+
# Input text
|
| 139 |
+
text = "中医理论是我国传统文化的瑰宝。"
|
| 140 |
+
|
| 141 |
+
# Tokenize and prepare input
|
| 142 |
+
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding="max_length", max_length=128)
|
| 143 |
+
|
| 144 |
+
# Get the model's outputs
|
| 145 |
+
with torch.no_grad():
|
| 146 |
+
outputs = model(**inputs)
|
| 147 |
+
|
| 148 |
+
# Get the embedding (sentence-level average pooling)
|
| 149 |
+
sentence_embedding = outputs.last_hidden_state.mean(dim=1)
|
| 150 |
+
|
| 151 |
+
print("Embedding shape:", sentence_embedding.shape)
|
| 152 |
+
print("Embedding vector:", sentence_embedding)
|
| 153 |
+
|
| 154 |
+
```
|
| 155 |
+
|
| 156 |
+
if you find our work helpful, feel free to give us a cite
|
| 157 |
+
|
| 158 |
+
@misc{herberta-embedding,
|
| 159 |
+
title = {Herberta: A Pretrained Model for TCM Herbal Medicine and Downstream Tasks as Text Embedding Generation},
|
| 160 |
+
url = {https://github.com/15392778677/herberta},
|
| 161 |
+
author = {Yehan Yang, Xinhan Zheng},
|
| 162 |
+
month = {December},
|
| 163 |
+
year = {2024}
|
| 164 |
+
}
|
| 165 |
+
|
| 166 |
+
@article{herberta-technical-report,
|
| 167 |
+
title={Herberta: A Pretrained Model for TCM Herbal Medicine and Downstream Tasks as Text Embedding Generation},
|
| 168 |
+
author={Yehan Yang, Xinhan Zheng},
|
| 169 |
+
institution={Beijing Angelpro Technology Co., Ltd.},
|
| 170 |
+
year={2024},
|
| 171 |
+
note={Presented at the 2024 Machine Learning Applications Conference (MLAC)}
|
| 172 |
+
}
|