Upload 6 files
Browse files- README.md +66 -0
- config.json +25 -0
- pytorch_model.bin +3 -0
- special_tokens_map.json +7 -0
- tokenizer_config.json +58 -0
- vocab.txt +0 -0
README.md
CHANGED
@@ -1,3 +1,69 @@
|
|
1 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
license: mit
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
language: zh
|
3 |
+
tags:
|
4 |
+
- bert
|
5 |
+
- multilabel-classification
|
6 |
+
- chinese
|
7 |
+
- intent-classification
|
8 |
+
- time-lbs
|
9 |
license: mit
|
10 |
---
|
11 |
+
|
12 |
+
# 中文多标签意图识别模型(BERT)
|
13 |
+
|
14 |
+
这是一个基于 `bert-base-chinese` 微调的多标签分类模型,支持以下任务:
|
15 |
+
|
16 |
+
对中文query进行分类
|
17 |
+
- 多分类:意图识别(chat / simple question / complex question)
|
18 |
+
- 二分类:是否时间相关、是否位置(LBS)相关
|
19 |
+
|
20 |
+
## 模型结构
|
21 |
+
|
22 |
+
- 基础模型:[`bert-base-chinese`](https://huggingface.co/bert-base-chinese)
|
23 |
+
- 输出层:一个 5 维的 sigmoid 多标签输出向量
|
24 |
+
- `[意图-chat, 意图-simple, 意图-complex, 是否时间相关, 是否LBS相关]`
|
25 |
+
|
26 |
+
## 使用方法
|
27 |
+
|
28 |
+
```python
|
29 |
+
import torch
|
30 |
+
from transformers import BertTokenizer
|
31 |
+
from bert_classifier_3 import BertMultiLabelClassifier
|
32 |
+
|
33 |
+
# 加载 tokenizer 和模型
|
34 |
+
tokenizer = BertTokenizer.from_pretrained("your-username/bert-multilabel-chinese")
|
35 |
+
model = BertMultiLabelClassifier(pretrained_model_path="your-username/bert-multilabel-chinese")
|
36 |
+
model.load_state_dict(torch.load("pytorch_model.bin", map_location="cpu"))
|
37 |
+
model.eval()
|
38 |
+
|
39 |
+
# 定义标签
|
40 |
+
intent_labels = ["chat", "simple question", "complex question"]
|
41 |
+
yesno_labels = ["否", "是"]
|
42 |
+
|
43 |
+
# 定义预测函数
|
44 |
+
def predict(query):
|
45 |
+
enc = tokenizer(
|
46 |
+
query,
|
47 |
+
truncation=True,
|
48 |
+
padding="max_length",
|
49 |
+
max_length=128,
|
50 |
+
return_tensors="pt"
|
51 |
+
)
|
52 |
+
with torch.no_grad():
|
53 |
+
logits = model(enc["input_ids"], enc["attention_mask"])
|
54 |
+
probs = torch.sigmoid(logits).squeeze(0)
|
55 |
+
intent_index = torch.argmax(probs[:3]).item()
|
56 |
+
is_time = int(probs[3] > 0.5)
|
57 |
+
is_lbs = int(probs[4] > 0.5)
|
58 |
+
|
59 |
+
return {
|
60 |
+
"query": query,
|
61 |
+
"意图": intent_labels[intent_index],
|
62 |
+
"是否时间相关": yesno_labels[is_time],
|
63 |
+
"是否lbs相关": yesno_labels[is_lbs],
|
64 |
+
"原始概率": probs.tolist()
|
65 |
+
}
|
66 |
+
|
67 |
+
# 示例查询
|
68 |
+
result = predict("明天北京天气怎么样?")
|
69 |
+
print(result)
|
config.json
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"BertForMaskedLM"
|
4 |
+
],
|
5 |
+
"attention_probs_dropout_prob": 0.1,
|
6 |
+
"directionality": "bidi",
|
7 |
+
"hidden_act": "gelu",
|
8 |
+
"hidden_dropout_prob": 0.1,
|
9 |
+
"hidden_size": 768,
|
10 |
+
"initializer_range": 0.02,
|
11 |
+
"intermediate_size": 3072,
|
12 |
+
"layer_norm_eps": 1e-12,
|
13 |
+
"max_position_embeddings": 512,
|
14 |
+
"model_type": "bert",
|
15 |
+
"num_attention_heads": 12,
|
16 |
+
"num_hidden_layers": 12,
|
17 |
+
"pad_token_id": 0,
|
18 |
+
"pooler_fc_size": 768,
|
19 |
+
"pooler_num_attention_heads": 12,
|
20 |
+
"pooler_num_fc_layers": 3,
|
21 |
+
"pooler_size_per_head": 128,
|
22 |
+
"pooler_type": "first_token_transform",
|
23 |
+
"type_vocab_size": 2,
|
24 |
+
"vocab_size": 21128
|
25 |
+
}
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9b02f410dda9ca48c233a818e7626d9b23327fa53c872d499bba0a513fedf0a1
|
3 |
+
size 210660184
|
special_tokens_map.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": "[CLS]",
|
3 |
+
"mask_token": "[MASK]",
|
4 |
+
"pad_token": "[PAD]",
|
5 |
+
"sep_token": "[SEP]",
|
6 |
+
"unk_token": "[UNK]"
|
7 |
+
}
|
tokenizer_config.json
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"100": {
|
12 |
+
"content": "[UNK]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"101": {
|
20 |
+
"content": "[CLS]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"102": {
|
28 |
+
"content": "[SEP]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"103": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"clean_up_tokenization_spaces": true,
|
45 |
+
"cls_token": "[CLS]",
|
46 |
+
"do_basic_tokenize": true,
|
47 |
+
"do_lower_case": false,
|
48 |
+
"extra_special_tokens": {},
|
49 |
+
"mask_token": "[MASK]",
|
50 |
+
"model_max_length": 512,
|
51 |
+
"never_split": null,
|
52 |
+
"pad_token": "[PAD]",
|
53 |
+
"sep_token": "[SEP]",
|
54 |
+
"strip_accents": null,
|
55 |
+
"tokenize_chinese_chars": true,
|
56 |
+
"tokenizer_class": "BertTokenizer",
|
57 |
+
"unk_token": "[UNK]"
|
58 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|