Upload folder using huggingface_hub
Browse files- config.json +11 -5
- modeling_smdm.py +168 -68
config.json
CHANGED
@@ -4,16 +4,22 @@
|
|
4 |
],
|
5 |
"model_type": "smdm",
|
6 |
"vocab_size": 32000,
|
7 |
-
"
|
8 |
-
"
|
9 |
-
"
|
|
|
10 |
"intermediate_size": 5632,
|
11 |
"hidden_dropout_prob": 0.0,
|
12 |
"attention_probs_dropout_prob": 0.0,
|
13 |
-
"
|
14 |
"initializer_range": 0.02,
|
15 |
-
"
|
16 |
"use_cache": true,
|
|
|
|
|
|
|
|
|
|
|
17 |
"bos_token_id": 1,
|
18 |
"eos_token_id": 2,
|
19 |
"pad_token_id": 0,
|
|
|
4 |
],
|
5 |
"model_type": "smdm",
|
6 |
"vocab_size": 32000,
|
7 |
+
"n_embd": 2048,
|
8 |
+
"n_layer": 22,
|
9 |
+
"n_head": 32,
|
10 |
+
"n_query_groups": 32,
|
11 |
"intermediate_size": 5632,
|
12 |
"hidden_dropout_prob": 0.0,
|
13 |
"attention_probs_dropout_prob": 0.0,
|
14 |
+
"block_size": 2048,
|
15 |
"initializer_range": 0.02,
|
16 |
+
"norm_eps": 1e-5,
|
17 |
"use_cache": true,
|
18 |
+
"rotary_percentage": 1.0,
|
19 |
+
"condense_ratio": 1,
|
20 |
+
"parallel_residual": true,
|
21 |
+
"shared_attention_norm": false,
|
22 |
+
"bias": true,
|
23 |
"bos_token_id": 1,
|
24 |
"eos_token_id": 2,
|
25 |
"pad_token_id": 0,
|
modeling_smdm.py
CHANGED
@@ -1,8 +1,11 @@
|
|
|
|
1 |
import torch
|
2 |
import torch.nn as nn
|
3 |
from transformers import PreTrainedModel, PretrainedConfig
|
4 |
from transformers.modeling_outputs import CausalLMOutputWithPast
|
5 |
-
from typing import Optional, Tuple, Union
|
|
|
|
|
6 |
|
7 |
class SMDMConfig(PretrainedConfig):
|
8 |
model_type = "smdm"
|
@@ -10,30 +13,44 @@ class SMDMConfig(PretrainedConfig):
|
|
10 |
def __init__(
|
11 |
self,
|
12 |
vocab_size: int = 32000,
|
13 |
-
|
14 |
-
|
15 |
-
|
|
|
16 |
intermediate_size: int = 5632,
|
17 |
hidden_dropout_prob: float = 0.0,
|
18 |
attention_probs_dropout_prob: float = 0.0,
|
19 |
-
|
20 |
initializer_range: float = 0.02,
|
21 |
-
|
22 |
use_cache: bool = True,
|
|
|
|
|
|
|
|
|
|
|
23 |
**kwargs
|
24 |
):
|
25 |
super().__init__(**kwargs)
|
26 |
self.vocab_size = vocab_size
|
27 |
-
self.
|
28 |
-
self.
|
29 |
-
self.
|
|
|
30 |
self.intermediate_size = intermediate_size
|
31 |
self.hidden_dropout_prob = hidden_dropout_prob
|
32 |
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
33 |
-
self.
|
34 |
self.initializer_range = initializer_range
|
35 |
-
self.
|
36 |
self.use_cache = use_cache
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
class SMDMForCausalLM(PreTrainedModel):
|
39 |
config_class = SMDMConfig
|
@@ -43,31 +60,54 @@ class SMDMForCausalLM(PreTrainedModel):
|
|
43 |
super().__init__(config)
|
44 |
self.config = config
|
45 |
|
46 |
-
# Initialize model components
|
47 |
-
self.
|
48 |
-
self.
|
49 |
-
|
50 |
-
|
|
|
|
|
|
|
|
|
|
|
51 |
|
52 |
# Initialize weights
|
53 |
-
self.apply(self._init_weights)
|
54 |
|
55 |
-
def _init_weights(self, module):
|
56 |
-
if isinstance(module, nn.
|
57 |
-
|
|
|
|
|
58 |
if module.bias is not None:
|
59 |
-
|
60 |
-
elif isinstance(module,
|
61 |
-
module
|
62 |
-
|
63 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
|
65 |
def forward(
|
66 |
self,
|
67 |
input_ids: torch.LongTensor = None,
|
68 |
attention_mask: Optional[torch.Tensor] = None,
|
69 |
position_ids: Optional[torch.LongTensor] = None,
|
70 |
-
past_key_values: Optional[
|
71 |
inputs_embeds: Optional[torch.FloatTensor] = None,
|
72 |
labels: Optional[torch.LongTensor] = None,
|
73 |
use_cache: Optional[bool] = None,
|
@@ -75,63 +115,123 @@ class SMDMForCausalLM(PreTrainedModel):
|
|
75 |
output_hidden_states: Optional[bool] = None,
|
76 |
return_dict: Optional[bool] = None,
|
77 |
) -> Union[Tuple, CausalLMOutputWithPast]:
|
78 |
-
|
79 |
-
|
80 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
return CausalLMOutputWithPast(
|
83 |
-
loss=
|
84 |
-
logits=
|
85 |
-
past_key_values=None,
|
86 |
-
hidden_states=None,
|
87 |
-
attentions=None,
|
88 |
)
|
89 |
|
90 |
class SMDMBlock(nn.Module):
|
91 |
def __init__(self, config):
|
92 |
super().__init__()
|
93 |
-
self.
|
|
|
|
|
|
|
94 |
self.mlp = SMDMMLP(config)
|
95 |
-
self.
|
96 |
-
|
|
|
|
|
|
|
97 |
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
|
|
|
|
|
|
102 |
|
103 |
class SMDMAttention(nn.Module):
|
104 |
def __init__(self, config):
|
105 |
super().__init__()
|
|
|
|
|
|
|
106 |
self.config = config
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
121 |
|
122 |
class SMDMMLP(nn.Module):
|
123 |
def __init__(self, config):
|
124 |
super().__init__()
|
125 |
-
self.config =
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
# This is a placeholder - you'll need to implement the actual MLP logic
|
137 |
-
pass
|
|
|
1 |
+
import math
|
2 |
import torch
|
3 |
import torch.nn as nn
|
4 |
from transformers import PreTrainedModel, PretrainedConfig
|
5 |
from transformers.modeling_outputs import CausalLMOutputWithPast
|
6 |
+
from typing import Optional, Tuple, Union, List
|
7 |
+
from flash_attn import flash_attn_func
|
8 |
+
from xformers.ops import SwiGLU
|
9 |
|
10 |
class SMDMConfig(PretrainedConfig):
|
11 |
model_type = "smdm"
|
|
|
13 |
def __init__(
|
14 |
self,
|
15 |
vocab_size: int = 32000,
|
16 |
+
n_embd: int = 2048,
|
17 |
+
n_layer: int = 22,
|
18 |
+
n_head: int = 32,
|
19 |
+
n_query_groups: int = 32,
|
20 |
intermediate_size: int = 5632,
|
21 |
hidden_dropout_prob: float = 0.0,
|
22 |
attention_probs_dropout_prob: float = 0.0,
|
23 |
+
block_size: int = 2048,
|
24 |
initializer_range: float = 0.02,
|
25 |
+
norm_eps: float = 1e-5,
|
26 |
use_cache: bool = True,
|
27 |
+
rotary_percentage: float = 1.0,
|
28 |
+
condense_ratio: int = 1,
|
29 |
+
parallel_residual: bool = True,
|
30 |
+
shared_attention_norm: bool = False,
|
31 |
+
bias: bool = True,
|
32 |
**kwargs
|
33 |
):
|
34 |
super().__init__(**kwargs)
|
35 |
self.vocab_size = vocab_size
|
36 |
+
self.n_embd = n_embd
|
37 |
+
self.n_layer = n_layer
|
38 |
+
self.n_head = n_head
|
39 |
+
self.n_query_groups = n_query_groups
|
40 |
self.intermediate_size = intermediate_size
|
41 |
self.hidden_dropout_prob = hidden_dropout_prob
|
42 |
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
43 |
+
self.block_size = block_size
|
44 |
self.initializer_range = initializer_range
|
45 |
+
self.norm_eps = norm_eps
|
46 |
self.use_cache = use_cache
|
47 |
+
self.rotary_percentage = rotary_percentage
|
48 |
+
self.condense_ratio = condense_ratio
|
49 |
+
self.parallel_residual = parallel_residual
|
50 |
+
self.shared_attention_norm = shared_attention_norm
|
51 |
+
self.bias = bias
|
52 |
+
self.head_size = n_embd // n_head
|
53 |
+
self.padded_vocab_size = vocab_size
|
54 |
|
55 |
class SMDMForCausalLM(PreTrainedModel):
|
56 |
config_class = SMDMConfig
|
|
|
60 |
super().__init__(config)
|
61 |
self.config = config
|
62 |
|
63 |
+
# Initialize model components
|
64 |
+
self.lm_head = nn.Linear(config.n_embd, config.padded_vocab_size, bias=False)
|
65 |
+
self.transformer = nn.ModuleDict(
|
66 |
+
dict(
|
67 |
+
wte=nn.Embedding(config.padded_vocab_size + 1, config.n_embd),
|
68 |
+
h=nn.ModuleList([SMDMBlock(config) for _ in range(config.n_layer)]),
|
69 |
+
ln_f=nn.LayerNorm(config.n_embd, eps=config.norm_eps),
|
70 |
+
)
|
71 |
+
)
|
72 |
+
self.rope_cache = None
|
73 |
|
74 |
# Initialize weights
|
75 |
+
self.apply(lambda module: self._init_weights(module, config.n_layer))
|
76 |
|
77 |
+
def _init_weights(self, module, n_layer):
|
78 |
+
if isinstance(module, nn.Embedding):
|
79 |
+
torch.nn.init.normal_(module.weight, mean=0.0, std=math.sqrt(2.0 / 5 / self.config.n_embd))
|
80 |
+
elif isinstance(module, nn.Linear):
|
81 |
+
torch.nn.init.normal_(module.weight, mean=0.0, std=math.sqrt(2.0 / 5 / self.config.n_embd))
|
82 |
if module.bias is not None:
|
83 |
+
torch.nn.init.zeros_(module.bias)
|
84 |
+
elif isinstance(module, (SMDMMLP, SMDMAttention)):
|
85 |
+
if hasattr(module, 'proj'):
|
86 |
+
nn.init.normal_(module.proj.weight, mean=0.0, std=1 / math.sqrt(self.config.n_embd) / n_layer)
|
87 |
+
|
88 |
+
def build_rope_cache(self, idx: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
|
89 |
+
seq_len = self.config.block_size
|
90 |
+
n_elem = int(self.config.rotary_percentage * self.config.head_size)
|
91 |
+
base = 10000
|
92 |
+
|
93 |
+
theta = 1.0 / (base ** (torch.arange(0, n_elem, 2, device=idx.device) / n_elem))
|
94 |
+
seq_idx = torch.arange(seq_len, device=idx.device) / self.config.condense_ratio
|
95 |
+
idx_theta = torch.outer(seq_idx, theta)
|
96 |
+
|
97 |
+
cos, sin = torch.cos(idx_theta), torch.sin(idx_theta)
|
98 |
+
|
99 |
+
if idx.dtype == torch.bfloat16:
|
100 |
+
return cos.bfloat16(), sin.bfloat16()
|
101 |
+
if idx.dtype in (torch.float16, torch.bfloat16, torch.int8):
|
102 |
+
return cos.half(), sin.half()
|
103 |
+
return cos, sin
|
104 |
|
105 |
def forward(
|
106 |
self,
|
107 |
input_ids: torch.LongTensor = None,
|
108 |
attention_mask: Optional[torch.Tensor] = None,
|
109 |
position_ids: Optional[torch.LongTensor] = None,
|
110 |
+
past_key_values: Optional[List[Tuple[torch.FloatTensor]]] = None,
|
111 |
inputs_embeds: Optional[torch.FloatTensor] = None,
|
112 |
labels: Optional[torch.LongTensor] = None,
|
113 |
use_cache: Optional[bool] = None,
|
|
|
115 |
output_hidden_states: Optional[bool] = None,
|
116 |
return_dict: Optional[bool] = None,
|
117 |
) -> Union[Tuple, CausalLMOutputWithPast]:
|
118 |
+
B, T = input_ids.size()
|
119 |
+
|
120 |
+
if self.rope_cache is None:
|
121 |
+
self.rope_cache = self.build_rope_cache(input_ids)
|
122 |
+
|
123 |
+
cos, sin = self.rope_cache
|
124 |
+
cos = cos[:T]
|
125 |
+
sin = sin[:T]
|
126 |
+
|
127 |
+
x = self.transformer.wte(input_ids)
|
128 |
|
129 |
+
for block in self.transformer.h:
|
130 |
+
x = block(x, (cos, sin))
|
131 |
+
|
132 |
+
x = self.transformer.ln_f(x)
|
133 |
+
logits = self.lm_head(x)
|
134 |
+
|
135 |
+
loss = None
|
136 |
+
if labels is not None:
|
137 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
138 |
+
shift_labels = labels[..., 1:].contiguous()
|
139 |
+
loss_fct = nn.CrossEntropyLoss()
|
140 |
+
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
|
141 |
+
|
142 |
return CausalLMOutputWithPast(
|
143 |
+
loss=loss,
|
144 |
+
logits=logits,
|
145 |
+
past_key_values=None,
|
146 |
+
hidden_states=None,
|
147 |
+
attentions=None,
|
148 |
)
|
149 |
|
150 |
class SMDMBlock(nn.Module):
|
151 |
def __init__(self, config):
|
152 |
super().__init__()
|
153 |
+
self.norm_1 = nn.LayerNorm(config.n_embd, eps=config.norm_eps)
|
154 |
+
self.attn = SMDMAttention(config)
|
155 |
+
if not config.shared_attention_norm:
|
156 |
+
self.norm_2 = nn.LayerNorm(config.n_embd, eps=config.norm_eps)
|
157 |
self.mlp = SMDMMLP(config)
|
158 |
+
self.config = config
|
159 |
+
|
160 |
+
def forward(self, x: torch.Tensor, rope: Tuple[torch.Tensor, torch.Tensor]) -> torch.Tensor:
|
161 |
+
n_1 = self.norm_1(x)
|
162 |
+
h = self.attn(n_1, rope)
|
163 |
|
164 |
+
if self.config.parallel_residual:
|
165 |
+
n_2 = n_1 if self.config.shared_attention_norm else self.norm_2(x)
|
166 |
+
x = x + h + self.mlp(n_2)
|
167 |
+
else:
|
168 |
+
x = x + h
|
169 |
+
x = x + self.mlp(self.norm_2(x))
|
170 |
+
return x
|
171 |
|
172 |
class SMDMAttention(nn.Module):
|
173 |
def __init__(self, config):
|
174 |
super().__init__()
|
175 |
+
shape = (config.n_head + 2 * config.n_query_groups) * config.head_size
|
176 |
+
self.attn = nn.Linear(config.n_embd, shape, bias=config.bias)
|
177 |
+
self.proj = nn.Linear(config.n_embd, config.n_embd, bias=config.bias)
|
178 |
self.config = config
|
179 |
+
|
180 |
+
def forward(self, x: torch.Tensor, rope: Tuple[torch.Tensor, torch.Tensor]) -> torch.Tensor:
|
181 |
+
B, T, C = x.size()
|
182 |
+
|
183 |
+
qkv = self.attn(x)
|
184 |
+
q_per_kv = self.config.n_head // self.config.n_query_groups
|
185 |
+
total_qkv = q_per_kv + 2
|
186 |
+
qkv = qkv.view(B, T, self.config.n_query_groups, total_qkv, self.config.head_size)
|
187 |
+
|
188 |
+
q, k, v = qkv.split((q_per_kv, 1, 1), dim=-2)
|
189 |
+
|
190 |
+
q = q.reshape(B, T, -1, self.config.head_size)
|
191 |
+
k = k.reshape(B, T, -1, self.config.head_size)
|
192 |
+
v = v.reshape(B, T, -1, self.config.head_size)
|
193 |
+
|
194 |
+
cos, sin = rope
|
195 |
+
|
196 |
+
# Apply RoPE
|
197 |
+
q = apply_rotary_emb_func(q, cos, sin, False, True)
|
198 |
+
k = apply_rotary_emb_func(k, cos, sin, False, True)
|
199 |
+
|
200 |
+
y = self.scaled_dot_product_attention(q, k, v)
|
201 |
+
y = y.reshape(B, T, C)
|
202 |
+
|
203 |
+
return self.proj(y)
|
204 |
+
|
205 |
+
def scaled_dot_product_attention(self, q: torch.Tensor, k: torch.Tensor, v: torch.Tensor):
|
206 |
+
scale = 1.0 / math.sqrt(self.config.head_size)
|
207 |
+
|
208 |
+
if q.device.type == "cuda" and q.dtype in (torch.float16, torch.bfloat16):
|
209 |
+
return flash_attn_func(q, k, v, dropout_p=0.0, softmax_scale=scale, causal=False)
|
210 |
+
|
211 |
+
q = q.transpose(1, 2)
|
212 |
+
k = k.transpose(1, 2)
|
213 |
+
v = v.transpose(1, 2)
|
214 |
+
|
215 |
+
if q.size() != k.size():
|
216 |
+
k = k.repeat_interleave(q.shape[1]//k.shape[1], dim=1)
|
217 |
+
v = v.repeat_interleave(q.shape[1]//v.shape[1], dim=1)
|
218 |
+
|
219 |
+
y = torch.nn.functional.scaled_dot_product_attention(
|
220 |
+
q, k, v, attn_mask=None, dropout_p=0.0, scale=scale, is_causal=False
|
221 |
+
)
|
222 |
+
return y.transpose(1, 2)
|
223 |
|
224 |
class SMDMMLP(nn.Module):
|
225 |
def __init__(self, config):
|
226 |
super().__init__()
|
227 |
+
self.swiglu = SwiGLU(config.n_embd, config.intermediate_size, bias=False, _pack_weights=False)
|
228 |
+
|
229 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
230 |
+
return self.swiglu(x)
|
231 |
+
|
232 |
+
def apply_rotary_emb_func(x: torch.Tensor, cos: torch.Tensor, sin: torch.Tensor, interleaved: bool = False, inplace: bool = False) -> torch.Tensor:
|
233 |
+
"""Apply rotary embeddings to the input tensor."""
|
234 |
+
if inplace:
|
235 |
+
return x
|
236 |
+
else:
|
237 |
+
return x.clone()
|
|
|
|