nuojohnchen commited on
Commit
7273222
·
verified ·
1 Parent(s): 3e95cde

Add files using upload-large-folder tool

Browse files
config.json ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/shared/ssd/models/phi-4",
3
+ "architectures": [
4
+ "Phi3ForCausalLM"
5
+ ],
6
+ "attention_bias": false,
7
+ "attention_dropout": 0.0,
8
+ "auto_map": {},
9
+ "bos_token_id": 100257,
10
+ "embd_pdrop": 0.0,
11
+ "eos_token_id": 100265,
12
+ "hidden_act": "silu",
13
+ "hidden_size": 5120,
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 17920,
16
+ "max_position_embeddings": 16384,
17
+ "model_type": "phi3",
18
+ "num_attention_heads": 40,
19
+ "num_hidden_layers": 40,
20
+ "num_key_value_heads": 10,
21
+ "original_max_position_embeddings": 16384,
22
+ "pad_token_id": 100349,
23
+ "resid_pdrop": 0.0,
24
+ "rms_norm_eps": 1e-05,
25
+ "rope_scaling": null,
26
+ "rope_theta": 250000,
27
+ "sliding_window": null,
28
+ "tie_word_embeddings": false,
29
+ "torch_dtype": "bfloat16",
30
+ "transformers_version": "4.48.3",
31
+ "use_cache": false,
32
+ "vocab_size": 100352
33
+ }
generation_config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 100257,
4
+ "eos_token_id": 100265,
5
+ "pad_token_id": 100349,
6
+ "transformers_version": "4.48.3"
7
+ }
global_step5000/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:85f92bf4b4fe0d32f13bebcf24372dbedb5b8a3e8eeeb5f665ec919a0a81159c
3
+ size 43978528138
global_step5000/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b3d2dbb7e0478052d1f0c9dacb0f37c045a62117b36fad19ca267cf254e53eb3
3
+ size 43978528138
global_step5000/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:712bde7ed0eaa90ce7cd2841a4df5fcf8bbbeb2f62533d7b32a818b52388dce3
3
+ size 43978528138
global_step5000/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9c6e9d5dc092f6f7e2edbb08facd4e92bc1eced0da78ce4c45e132f3a3a2eb81
3
+ size 43978528138
global_step5000/zero_pp_rank_0_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9795ed7d3df5a5fdfca558e5e37d290d6eb465c802969d194c2c62e52abe0e77
3
+ size 133173
global_step5000/zero_pp_rank_1_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6a5ad970458c3ce360ac37d5d8f8db7a6307417aad8c8ecdb1f790b5b876a69c
3
+ size 133173
global_step5000/zero_pp_rank_2_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b02780979d77a4fea17e63846d0643a13bb886802e5fe3ec3959ecd4995ad440
3
+ size 133173
global_step5000/zero_pp_rank_3_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d743be8067bf14ddf3040b22d7e0f35c25bf6ed0692c24d62e852bac13d91e4f
3
+ size 133173
latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step5000
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
pytorch_model-00001-of-00013.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:55194ca302696ec5b5057a5ea8bf2fd7c7e1ce351c3c8c308a79a990b96f16cb
3
+ size 4886451590
pytorch_model-00002-of-00013.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:05a8eb5e93acbc5ad857abd12cb6441fd6fd3d8cb6bd5ed4286c209079404535
3
+ size 4980866314
pytorch_model-00003-of-00013.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:daa423e7701ce2d456a5cd4a0d2fadccb5af939497aea72531dfb26434165f4c
3
+ size 4718764172
pytorch_model-00004-of-00013.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1b6990eb45e7cd872a0a149889d9286c7bb6de1c6f773134a093f33f944e76fb
3
+ size 4823579588
pytorch_model-00005-of-00013.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:73591444fea6824ddfb5c0e7e5a5e3ccab48ae3910b9e93cf877ca80a58f12e6
3
+ size 4718764236
pytorch_model-00006-of-00013.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d94035b8024be5a5290b3015d735d87c44a7af746eb13fafb4465f8b7ae354ab
3
+ size 4823579588
pytorch_model-00007-of-00013.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:051181fcede6a0a133f5605dfd9d7c135880aa251d6f20a2b8b91bd9fde80127
3
+ size 4718764236
pytorch_model-00008-of-00013.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9bf524678963363d46561225ac6805e7033b1aa52969ff4efcefcf80d6935b0e
3
+ size 4823579588
pytorch_model-00009-of-00013.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5dba6d7724865f2b64bfd08dc8dd145d5f20f8080742da43c76fb0481f36310c
3
+ size 4718764236
pytorch_model-00010-of-00013.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a5cc4fa9e87caaa69db7d5aaffb59a0f4e3d1d78ced4f34658c75727c80ff328
3
+ size 4823579588
pytorch_model-00011-of-00013.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c1529fa1e6ebc49262ab9c63cef3c25bcc6d55d79f7de4373e30719cc9cbada8
3
+ size 4718764236
pytorch_model-00012-of-00013.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b2369fe70eeb96be659b69dd45e6a282c2299a91d9e3cc01a2f0e3678d922185
3
+ size 3827452188
pytorch_model-00013-of-00013.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:71bfa50e2b7259cf02cd641ae3dc71bf0c43b3bd03c805079c34af3b6f1e1594
3
+ size 2055210373
pytorch_model.bin.index.json ADDED
@@ -0,0 +1,250 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 58638028800
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "pytorch_model-00013-of-00013.bin",
7
+ "model.embed_tokens.weight": "pytorch_model-00001-of-00013.bin",
8
+ "model.layers.0.input_layernorm.weight": "pytorch_model-00001-of-00013.bin",
9
+ "model.layers.0.mlp.down_proj.weight": "pytorch_model-00001-of-00013.bin",
10
+ "model.layers.0.mlp.gate_up_proj.weight": "pytorch_model-00001-of-00013.bin",
11
+ "model.layers.0.post_attention_layernorm.weight": "pytorch_model-00001-of-00013.bin",
12
+ "model.layers.0.self_attn.o_proj.weight": "pytorch_model-00001-of-00013.bin",
13
+ "model.layers.0.self_attn.qkv_proj.weight": "pytorch_model-00001-of-00013.bin",
14
+ "model.layers.1.input_layernorm.weight": "pytorch_model-00001-of-00013.bin",
15
+ "model.layers.1.mlp.down_proj.weight": "pytorch_model-00001-of-00013.bin",
16
+ "model.layers.1.mlp.gate_up_proj.weight": "pytorch_model-00001-of-00013.bin",
17
+ "model.layers.1.post_attention_layernorm.weight": "pytorch_model-00001-of-00013.bin",
18
+ "model.layers.1.self_attn.o_proj.weight": "pytorch_model-00001-of-00013.bin",
19
+ "model.layers.1.self_attn.qkv_proj.weight": "pytorch_model-00001-of-00013.bin",
20
+ "model.layers.10.input_layernorm.weight": "pytorch_model-00004-of-00013.bin",
21
+ "model.layers.10.mlp.down_proj.weight": "pytorch_model-00004-of-00013.bin",
22
+ "model.layers.10.mlp.gate_up_proj.weight": "pytorch_model-00004-of-00013.bin",
23
+ "model.layers.10.post_attention_layernorm.weight": "pytorch_model-00004-of-00013.bin",
24
+ "model.layers.10.self_attn.o_proj.weight": "pytorch_model-00004-of-00013.bin",
25
+ "model.layers.10.self_attn.qkv_proj.weight": "pytorch_model-00004-of-00013.bin",
26
+ "model.layers.11.input_layernorm.weight": "pytorch_model-00004-of-00013.bin",
27
+ "model.layers.11.mlp.down_proj.weight": "pytorch_model-00004-of-00013.bin",
28
+ "model.layers.11.mlp.gate_up_proj.weight": "pytorch_model-00004-of-00013.bin",
29
+ "model.layers.11.post_attention_layernorm.weight": "pytorch_model-00004-of-00013.bin",
30
+ "model.layers.11.self_attn.o_proj.weight": "pytorch_model-00004-of-00013.bin",
31
+ "model.layers.11.self_attn.qkv_proj.weight": "pytorch_model-00004-of-00013.bin",
32
+ "model.layers.12.input_layernorm.weight": "pytorch_model-00005-of-00013.bin",
33
+ "model.layers.12.mlp.down_proj.weight": "pytorch_model-00005-of-00013.bin",
34
+ "model.layers.12.mlp.gate_up_proj.weight": "pytorch_model-00004-of-00013.bin",
35
+ "model.layers.12.post_attention_layernorm.weight": "pytorch_model-00005-of-00013.bin",
36
+ "model.layers.12.self_attn.o_proj.weight": "pytorch_model-00004-of-00013.bin",
37
+ "model.layers.12.self_attn.qkv_proj.weight": "pytorch_model-00004-of-00013.bin",
38
+ "model.layers.13.input_layernorm.weight": "pytorch_model-00005-of-00013.bin",
39
+ "model.layers.13.mlp.down_proj.weight": "pytorch_model-00005-of-00013.bin",
40
+ "model.layers.13.mlp.gate_up_proj.weight": "pytorch_model-00005-of-00013.bin",
41
+ "model.layers.13.post_attention_layernorm.weight": "pytorch_model-00005-of-00013.bin",
42
+ "model.layers.13.self_attn.o_proj.weight": "pytorch_model-00005-of-00013.bin",
43
+ "model.layers.13.self_attn.qkv_proj.weight": "pytorch_model-00005-of-00013.bin",
44
+ "model.layers.14.input_layernorm.weight": "pytorch_model-00005-of-00013.bin",
45
+ "model.layers.14.mlp.down_proj.weight": "pytorch_model-00005-of-00013.bin",
46
+ "model.layers.14.mlp.gate_up_proj.weight": "pytorch_model-00005-of-00013.bin",
47
+ "model.layers.14.post_attention_layernorm.weight": "pytorch_model-00005-of-00013.bin",
48
+ "model.layers.14.self_attn.o_proj.weight": "pytorch_model-00005-of-00013.bin",
49
+ "model.layers.14.self_attn.qkv_proj.weight": "pytorch_model-00005-of-00013.bin",
50
+ "model.layers.15.input_layernorm.weight": "pytorch_model-00005-of-00013.bin",
51
+ "model.layers.15.mlp.down_proj.weight": "pytorch_model-00005-of-00013.bin",
52
+ "model.layers.15.mlp.gate_up_proj.weight": "pytorch_model-00005-of-00013.bin",
53
+ "model.layers.15.post_attention_layernorm.weight": "pytorch_model-00005-of-00013.bin",
54
+ "model.layers.15.self_attn.o_proj.weight": "pytorch_model-00005-of-00013.bin",
55
+ "model.layers.15.self_attn.qkv_proj.weight": "pytorch_model-00005-of-00013.bin",
56
+ "model.layers.16.input_layernorm.weight": "pytorch_model-00006-of-00013.bin",
57
+ "model.layers.16.mlp.down_proj.weight": "pytorch_model-00006-of-00013.bin",
58
+ "model.layers.16.mlp.gate_up_proj.weight": "pytorch_model-00006-of-00013.bin",
59
+ "model.layers.16.post_attention_layernorm.weight": "pytorch_model-00006-of-00013.bin",
60
+ "model.layers.16.self_attn.o_proj.weight": "pytorch_model-00005-of-00013.bin",
61
+ "model.layers.16.self_attn.qkv_proj.weight": "pytorch_model-00005-of-00013.bin",
62
+ "model.layers.17.input_layernorm.weight": "pytorch_model-00006-of-00013.bin",
63
+ "model.layers.17.mlp.down_proj.weight": "pytorch_model-00006-of-00013.bin",
64
+ "model.layers.17.mlp.gate_up_proj.weight": "pytorch_model-00006-of-00013.bin",
65
+ "model.layers.17.post_attention_layernorm.weight": "pytorch_model-00006-of-00013.bin",
66
+ "model.layers.17.self_attn.o_proj.weight": "pytorch_model-00006-of-00013.bin",
67
+ "model.layers.17.self_attn.qkv_proj.weight": "pytorch_model-00006-of-00013.bin",
68
+ "model.layers.18.input_layernorm.weight": "pytorch_model-00006-of-00013.bin",
69
+ "model.layers.18.mlp.down_proj.weight": "pytorch_model-00006-of-00013.bin",
70
+ "model.layers.18.mlp.gate_up_proj.weight": "pytorch_model-00006-of-00013.bin",
71
+ "model.layers.18.post_attention_layernorm.weight": "pytorch_model-00006-of-00013.bin",
72
+ "model.layers.18.self_attn.o_proj.weight": "pytorch_model-00006-of-00013.bin",
73
+ "model.layers.18.self_attn.qkv_proj.weight": "pytorch_model-00006-of-00013.bin",
74
+ "model.layers.19.input_layernorm.weight": "pytorch_model-00007-of-00013.bin",
75
+ "model.layers.19.mlp.down_proj.weight": "pytorch_model-00007-of-00013.bin",
76
+ "model.layers.19.mlp.gate_up_proj.weight": "pytorch_model-00006-of-00013.bin",
77
+ "model.layers.19.post_attention_layernorm.weight": "pytorch_model-00007-of-00013.bin",
78
+ "model.layers.19.self_attn.o_proj.weight": "pytorch_model-00006-of-00013.bin",
79
+ "model.layers.19.self_attn.qkv_proj.weight": "pytorch_model-00006-of-00013.bin",
80
+ "model.layers.2.input_layernorm.weight": "pytorch_model-00002-of-00013.bin",
81
+ "model.layers.2.mlp.down_proj.weight": "pytorch_model-00002-of-00013.bin",
82
+ "model.layers.2.mlp.gate_up_proj.weight": "pytorch_model-00002-of-00013.bin",
83
+ "model.layers.2.post_attention_layernorm.weight": "pytorch_model-00002-of-00013.bin",
84
+ "model.layers.2.self_attn.o_proj.weight": "pytorch_model-00001-of-00013.bin",
85
+ "model.layers.2.self_attn.qkv_proj.weight": "pytorch_model-00002-of-00013.bin",
86
+ "model.layers.20.input_layernorm.weight": "pytorch_model-00007-of-00013.bin",
87
+ "model.layers.20.mlp.down_proj.weight": "pytorch_model-00007-of-00013.bin",
88
+ "model.layers.20.mlp.gate_up_proj.weight": "pytorch_model-00007-of-00013.bin",
89
+ "model.layers.20.post_attention_layernorm.weight": "pytorch_model-00007-of-00013.bin",
90
+ "model.layers.20.self_attn.o_proj.weight": "pytorch_model-00007-of-00013.bin",
91
+ "model.layers.20.self_attn.qkv_proj.weight": "pytorch_model-00007-of-00013.bin",
92
+ "model.layers.21.input_layernorm.weight": "pytorch_model-00007-of-00013.bin",
93
+ "model.layers.21.mlp.down_proj.weight": "pytorch_model-00007-of-00013.bin",
94
+ "model.layers.21.mlp.gate_up_proj.weight": "pytorch_model-00007-of-00013.bin",
95
+ "model.layers.21.post_attention_layernorm.weight": "pytorch_model-00007-of-00013.bin",
96
+ "model.layers.21.self_attn.o_proj.weight": "pytorch_model-00007-of-00013.bin",
97
+ "model.layers.21.self_attn.qkv_proj.weight": "pytorch_model-00007-of-00013.bin",
98
+ "model.layers.22.input_layernorm.weight": "pytorch_model-00007-of-00013.bin",
99
+ "model.layers.22.mlp.down_proj.weight": "pytorch_model-00007-of-00013.bin",
100
+ "model.layers.22.mlp.gate_up_proj.weight": "pytorch_model-00007-of-00013.bin",
101
+ "model.layers.22.post_attention_layernorm.weight": "pytorch_model-00007-of-00013.bin",
102
+ "model.layers.22.self_attn.o_proj.weight": "pytorch_model-00007-of-00013.bin",
103
+ "model.layers.22.self_attn.qkv_proj.weight": "pytorch_model-00007-of-00013.bin",
104
+ "model.layers.23.input_layernorm.weight": "pytorch_model-00008-of-00013.bin",
105
+ "model.layers.23.mlp.down_proj.weight": "pytorch_model-00008-of-00013.bin",
106
+ "model.layers.23.mlp.gate_up_proj.weight": "pytorch_model-00008-of-00013.bin",
107
+ "model.layers.23.post_attention_layernorm.weight": "pytorch_model-00008-of-00013.bin",
108
+ "model.layers.23.self_attn.o_proj.weight": "pytorch_model-00007-of-00013.bin",
109
+ "model.layers.23.self_attn.qkv_proj.weight": "pytorch_model-00007-of-00013.bin",
110
+ "model.layers.24.input_layernorm.weight": "pytorch_model-00008-of-00013.bin",
111
+ "model.layers.24.mlp.down_proj.weight": "pytorch_model-00008-of-00013.bin",
112
+ "model.layers.24.mlp.gate_up_proj.weight": "pytorch_model-00008-of-00013.bin",
113
+ "model.layers.24.post_attention_layernorm.weight": "pytorch_model-00008-of-00013.bin",
114
+ "model.layers.24.self_attn.o_proj.weight": "pytorch_model-00008-of-00013.bin",
115
+ "model.layers.24.self_attn.qkv_proj.weight": "pytorch_model-00008-of-00013.bin",
116
+ "model.layers.25.input_layernorm.weight": "pytorch_model-00008-of-00013.bin",
117
+ "model.layers.25.mlp.down_proj.weight": "pytorch_model-00008-of-00013.bin",
118
+ "model.layers.25.mlp.gate_up_proj.weight": "pytorch_model-00008-of-00013.bin",
119
+ "model.layers.25.post_attention_layernorm.weight": "pytorch_model-00008-of-00013.bin",
120
+ "model.layers.25.self_attn.o_proj.weight": "pytorch_model-00008-of-00013.bin",
121
+ "model.layers.25.self_attn.qkv_proj.weight": "pytorch_model-00008-of-00013.bin",
122
+ "model.layers.26.input_layernorm.weight": "pytorch_model-00009-of-00013.bin",
123
+ "model.layers.26.mlp.down_proj.weight": "pytorch_model-00009-of-00013.bin",
124
+ "model.layers.26.mlp.gate_up_proj.weight": "pytorch_model-00008-of-00013.bin",
125
+ "model.layers.26.post_attention_layernorm.weight": "pytorch_model-00009-of-00013.bin",
126
+ "model.layers.26.self_attn.o_proj.weight": "pytorch_model-00008-of-00013.bin",
127
+ "model.layers.26.self_attn.qkv_proj.weight": "pytorch_model-00008-of-00013.bin",
128
+ "model.layers.27.input_layernorm.weight": "pytorch_model-00009-of-00013.bin",
129
+ "model.layers.27.mlp.down_proj.weight": "pytorch_model-00009-of-00013.bin",
130
+ "model.layers.27.mlp.gate_up_proj.weight": "pytorch_model-00009-of-00013.bin",
131
+ "model.layers.27.post_attention_layernorm.weight": "pytorch_model-00009-of-00013.bin",
132
+ "model.layers.27.self_attn.o_proj.weight": "pytorch_model-00009-of-00013.bin",
133
+ "model.layers.27.self_attn.qkv_proj.weight": "pytorch_model-00009-of-00013.bin",
134
+ "model.layers.28.input_layernorm.weight": "pytorch_model-00009-of-00013.bin",
135
+ "model.layers.28.mlp.down_proj.weight": "pytorch_model-00009-of-00013.bin",
136
+ "model.layers.28.mlp.gate_up_proj.weight": "pytorch_model-00009-of-00013.bin",
137
+ "model.layers.28.post_attention_layernorm.weight": "pytorch_model-00009-of-00013.bin",
138
+ "model.layers.28.self_attn.o_proj.weight": "pytorch_model-00009-of-00013.bin",
139
+ "model.layers.28.self_attn.qkv_proj.weight": "pytorch_model-00009-of-00013.bin",
140
+ "model.layers.29.input_layernorm.weight": "pytorch_model-00009-of-00013.bin",
141
+ "model.layers.29.mlp.down_proj.weight": "pytorch_model-00009-of-00013.bin",
142
+ "model.layers.29.mlp.gate_up_proj.weight": "pytorch_model-00009-of-00013.bin",
143
+ "model.layers.29.post_attention_layernorm.weight": "pytorch_model-00009-of-00013.bin",
144
+ "model.layers.29.self_attn.o_proj.weight": "pytorch_model-00009-of-00013.bin",
145
+ "model.layers.29.self_attn.qkv_proj.weight": "pytorch_model-00009-of-00013.bin",
146
+ "model.layers.3.input_layernorm.weight": "pytorch_model-00002-of-00013.bin",
147
+ "model.layers.3.mlp.down_proj.weight": "pytorch_model-00002-of-00013.bin",
148
+ "model.layers.3.mlp.gate_up_proj.weight": "pytorch_model-00002-of-00013.bin",
149
+ "model.layers.3.post_attention_layernorm.weight": "pytorch_model-00002-of-00013.bin",
150
+ "model.layers.3.self_attn.o_proj.weight": "pytorch_model-00002-of-00013.bin",
151
+ "model.layers.3.self_attn.qkv_proj.weight": "pytorch_model-00002-of-00013.bin",
152
+ "model.layers.30.input_layernorm.weight": "pytorch_model-00010-of-00013.bin",
153
+ "model.layers.30.mlp.down_proj.weight": "pytorch_model-00010-of-00013.bin",
154
+ "model.layers.30.mlp.gate_up_proj.weight": "pytorch_model-00010-of-00013.bin",
155
+ "model.layers.30.post_attention_layernorm.weight": "pytorch_model-00010-of-00013.bin",
156
+ "model.layers.30.self_attn.o_proj.weight": "pytorch_model-00009-of-00013.bin",
157
+ "model.layers.30.self_attn.qkv_proj.weight": "pytorch_model-00009-of-00013.bin",
158
+ "model.layers.31.input_layernorm.weight": "pytorch_model-00010-of-00013.bin",
159
+ "model.layers.31.mlp.down_proj.weight": "pytorch_model-00010-of-00013.bin",
160
+ "model.layers.31.mlp.gate_up_proj.weight": "pytorch_model-00010-of-00013.bin",
161
+ "model.layers.31.post_attention_layernorm.weight": "pytorch_model-00010-of-00013.bin",
162
+ "model.layers.31.self_attn.o_proj.weight": "pytorch_model-00010-of-00013.bin",
163
+ "model.layers.31.self_attn.qkv_proj.weight": "pytorch_model-00010-of-00013.bin",
164
+ "model.layers.32.input_layernorm.weight": "pytorch_model-00010-of-00013.bin",
165
+ "model.layers.32.mlp.down_proj.weight": "pytorch_model-00010-of-00013.bin",
166
+ "model.layers.32.mlp.gate_up_proj.weight": "pytorch_model-00010-of-00013.bin",
167
+ "model.layers.32.post_attention_layernorm.weight": "pytorch_model-00010-of-00013.bin",
168
+ "model.layers.32.self_attn.o_proj.weight": "pytorch_model-00010-of-00013.bin",
169
+ "model.layers.32.self_attn.qkv_proj.weight": "pytorch_model-00010-of-00013.bin",
170
+ "model.layers.33.input_layernorm.weight": "pytorch_model-00011-of-00013.bin",
171
+ "model.layers.33.mlp.down_proj.weight": "pytorch_model-00011-of-00013.bin",
172
+ "model.layers.33.mlp.gate_up_proj.weight": "pytorch_model-00010-of-00013.bin",
173
+ "model.layers.33.post_attention_layernorm.weight": "pytorch_model-00011-of-00013.bin",
174
+ "model.layers.33.self_attn.o_proj.weight": "pytorch_model-00010-of-00013.bin",
175
+ "model.layers.33.self_attn.qkv_proj.weight": "pytorch_model-00010-of-00013.bin",
176
+ "model.layers.34.input_layernorm.weight": "pytorch_model-00011-of-00013.bin",
177
+ "model.layers.34.mlp.down_proj.weight": "pytorch_model-00011-of-00013.bin",
178
+ "model.layers.34.mlp.gate_up_proj.weight": "pytorch_model-00011-of-00013.bin",
179
+ "model.layers.34.post_attention_layernorm.weight": "pytorch_model-00011-of-00013.bin",
180
+ "model.layers.34.self_attn.o_proj.weight": "pytorch_model-00011-of-00013.bin",
181
+ "model.layers.34.self_attn.qkv_proj.weight": "pytorch_model-00011-of-00013.bin",
182
+ "model.layers.35.input_layernorm.weight": "pytorch_model-00011-of-00013.bin",
183
+ "model.layers.35.mlp.down_proj.weight": "pytorch_model-00011-of-00013.bin",
184
+ "model.layers.35.mlp.gate_up_proj.weight": "pytorch_model-00011-of-00013.bin",
185
+ "model.layers.35.post_attention_layernorm.weight": "pytorch_model-00011-of-00013.bin",
186
+ "model.layers.35.self_attn.o_proj.weight": "pytorch_model-00011-of-00013.bin",
187
+ "model.layers.35.self_attn.qkv_proj.weight": "pytorch_model-00011-of-00013.bin",
188
+ "model.layers.36.input_layernorm.weight": "pytorch_model-00011-of-00013.bin",
189
+ "model.layers.36.mlp.down_proj.weight": "pytorch_model-00011-of-00013.bin",
190
+ "model.layers.36.mlp.gate_up_proj.weight": "pytorch_model-00011-of-00013.bin",
191
+ "model.layers.36.post_attention_layernorm.weight": "pytorch_model-00011-of-00013.bin",
192
+ "model.layers.36.self_attn.o_proj.weight": "pytorch_model-00011-of-00013.bin",
193
+ "model.layers.36.self_attn.qkv_proj.weight": "pytorch_model-00011-of-00013.bin",
194
+ "model.layers.37.input_layernorm.weight": "pytorch_model-00012-of-00013.bin",
195
+ "model.layers.37.mlp.down_proj.weight": "pytorch_model-00012-of-00013.bin",
196
+ "model.layers.37.mlp.gate_up_proj.weight": "pytorch_model-00012-of-00013.bin",
197
+ "model.layers.37.post_attention_layernorm.weight": "pytorch_model-00012-of-00013.bin",
198
+ "model.layers.37.self_attn.o_proj.weight": "pytorch_model-00011-of-00013.bin",
199
+ "model.layers.37.self_attn.qkv_proj.weight": "pytorch_model-00011-of-00013.bin",
200
+ "model.layers.38.input_layernorm.weight": "pytorch_model-00012-of-00013.bin",
201
+ "model.layers.38.mlp.down_proj.weight": "pytorch_model-00012-of-00013.bin",
202
+ "model.layers.38.mlp.gate_up_proj.weight": "pytorch_model-00012-of-00013.bin",
203
+ "model.layers.38.post_attention_layernorm.weight": "pytorch_model-00012-of-00013.bin",
204
+ "model.layers.38.self_attn.o_proj.weight": "pytorch_model-00012-of-00013.bin",
205
+ "model.layers.38.self_attn.qkv_proj.weight": "pytorch_model-00012-of-00013.bin",
206
+ "model.layers.39.input_layernorm.weight": "pytorch_model-00012-of-00013.bin",
207
+ "model.layers.39.mlp.down_proj.weight": "pytorch_model-00012-of-00013.bin",
208
+ "model.layers.39.mlp.gate_up_proj.weight": "pytorch_model-00012-of-00013.bin",
209
+ "model.layers.39.post_attention_layernorm.weight": "pytorch_model-00012-of-00013.bin",
210
+ "model.layers.39.self_attn.o_proj.weight": "pytorch_model-00012-of-00013.bin",
211
+ "model.layers.39.self_attn.qkv_proj.weight": "pytorch_model-00012-of-00013.bin",
212
+ "model.layers.4.input_layernorm.weight": "pytorch_model-00002-of-00013.bin",
213
+ "model.layers.4.mlp.down_proj.weight": "pytorch_model-00002-of-00013.bin",
214
+ "model.layers.4.mlp.gate_up_proj.weight": "pytorch_model-00002-of-00013.bin",
215
+ "model.layers.4.post_attention_layernorm.weight": "pytorch_model-00002-of-00013.bin",
216
+ "model.layers.4.self_attn.o_proj.weight": "pytorch_model-00002-of-00013.bin",
217
+ "model.layers.4.self_attn.qkv_proj.weight": "pytorch_model-00002-of-00013.bin",
218
+ "model.layers.5.input_layernorm.weight": "pytorch_model-00003-of-00013.bin",
219
+ "model.layers.5.mlp.down_proj.weight": "pytorch_model-00003-of-00013.bin",
220
+ "model.layers.5.mlp.gate_up_proj.weight": "pytorch_model-00002-of-00013.bin",
221
+ "model.layers.5.post_attention_layernorm.weight": "pytorch_model-00003-of-00013.bin",
222
+ "model.layers.5.self_attn.o_proj.weight": "pytorch_model-00002-of-00013.bin",
223
+ "model.layers.5.self_attn.qkv_proj.weight": "pytorch_model-00002-of-00013.bin",
224
+ "model.layers.6.input_layernorm.weight": "pytorch_model-00003-of-00013.bin",
225
+ "model.layers.6.mlp.down_proj.weight": "pytorch_model-00003-of-00013.bin",
226
+ "model.layers.6.mlp.gate_up_proj.weight": "pytorch_model-00003-of-00013.bin",
227
+ "model.layers.6.post_attention_layernorm.weight": "pytorch_model-00003-of-00013.bin",
228
+ "model.layers.6.self_attn.o_proj.weight": "pytorch_model-00003-of-00013.bin",
229
+ "model.layers.6.self_attn.qkv_proj.weight": "pytorch_model-00003-of-00013.bin",
230
+ "model.layers.7.input_layernorm.weight": "pytorch_model-00003-of-00013.bin",
231
+ "model.layers.7.mlp.down_proj.weight": "pytorch_model-00003-of-00013.bin",
232
+ "model.layers.7.mlp.gate_up_proj.weight": "pytorch_model-00003-of-00013.bin",
233
+ "model.layers.7.post_attention_layernorm.weight": "pytorch_model-00003-of-00013.bin",
234
+ "model.layers.7.self_attn.o_proj.weight": "pytorch_model-00003-of-00013.bin",
235
+ "model.layers.7.self_attn.qkv_proj.weight": "pytorch_model-00003-of-00013.bin",
236
+ "model.layers.8.input_layernorm.weight": "pytorch_model-00003-of-00013.bin",
237
+ "model.layers.8.mlp.down_proj.weight": "pytorch_model-00003-of-00013.bin",
238
+ "model.layers.8.mlp.gate_up_proj.weight": "pytorch_model-00003-of-00013.bin",
239
+ "model.layers.8.post_attention_layernorm.weight": "pytorch_model-00003-of-00013.bin",
240
+ "model.layers.8.self_attn.o_proj.weight": "pytorch_model-00003-of-00013.bin",
241
+ "model.layers.8.self_attn.qkv_proj.weight": "pytorch_model-00003-of-00013.bin",
242
+ "model.layers.9.input_layernorm.weight": "pytorch_model-00004-of-00013.bin",
243
+ "model.layers.9.mlp.down_proj.weight": "pytorch_model-00004-of-00013.bin",
244
+ "model.layers.9.mlp.gate_up_proj.weight": "pytorch_model-00004-of-00013.bin",
245
+ "model.layers.9.post_attention_layernorm.weight": "pytorch_model-00004-of-00013.bin",
246
+ "model.layers.9.self_attn.o_proj.weight": "pytorch_model-00003-of-00013.bin",
247
+ "model.layers.9.self_attn.qkv_proj.weight": "pytorch_model-00003-of-00013.bin",
248
+ "model.norm.weight": "pytorch_model-00012-of-00013.bin"
249
+ }
250
+ }
rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:92cc13315f24c28015d695b6cde08bb1cd6fea4cbc435998485ed6fbe4c91285
3
+ size 15024
rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f4c154b6a63e0b1f98f7d2847944398f99f1657d35e8eddf7fdf0ae2c24b0552
3
+ size 15024
rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f784c6a9507b51189f2caffbd178ea9882103b75852e31c15f47fdae6a43af1d
3
+ size 15024
rng_state_3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:34b023e05bc2d12b91dc436d4922b990d50ec8dc56d40dc3e36b3bb34fc81341
3
+ size 15024
scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1590c1c5090942d2d4d2cecd50f9e37516d1d2b965656284b2785a2acdbeeb5b
3
+ size 1064
special_tokens_map.json ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ {
4
+ "content": "<|im_end|>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false
9
+ }
10
+ ],
11
+ "bos_token": {
12
+ "content": "<|endoftext|>",
13
+ "lstrip": true,
14
+ "normalized": false,
15
+ "rstrip": true,
16
+ "single_word": false
17
+ },
18
+ "eos_token": {
19
+ "content": "<|im_end|>",
20
+ "lstrip": true,
21
+ "normalized": false,
22
+ "rstrip": true,
23
+ "single_word": false
24
+ },
25
+ "pad_token": {
26
+ "content": "<|dummy_85|>",
27
+ "lstrip": true,
28
+ "normalized": false,
29
+ "rstrip": true,
30
+ "single_word": false
31
+ },
32
+ "unk_token": "<|endoftext|>"
33
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,787 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "added_tokens_decoder": {
4
+ "100256": {
5
+ "content": "<|dummy_0|>",
6
+ "lstrip": true,
7
+ "normalized": false,
8
+ "rstrip": true,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "100257": {
13
+ "content": "<|endoftext|>",
14
+ "lstrip": true,
15
+ "normalized": false,
16
+ "rstrip": true,
17
+ "single_word": false,
18
+ "special": true
19
+ },
20
+ "100258": {
21
+ "content": "<|fim_prefix|>",
22
+ "lstrip": true,
23
+ "normalized": false,
24
+ "rstrip": true,
25
+ "single_word": false,
26
+ "special": true
27
+ },
28
+ "100259": {
29
+ "content": "<|fim_middle|>",
30
+ "lstrip": true,
31
+ "normalized": false,
32
+ "rstrip": true,
33
+ "single_word": false,
34
+ "special": true
35
+ },
36
+ "100260": {
37
+ "content": "<|fim_suffix|>",
38
+ "lstrip": true,
39
+ "normalized": false,
40
+ "rstrip": true,
41
+ "single_word": false,
42
+ "special": true
43
+ },
44
+ "100261": {
45
+ "content": "<|dummy_1|>",
46
+ "lstrip": true,
47
+ "normalized": false,
48
+ "rstrip": true,
49
+ "single_word": false,
50
+ "special": true
51
+ },
52
+ "100262": {
53
+ "content": "<|dummy_2|>",
54
+ "lstrip": true,
55
+ "normalized": false,
56
+ "rstrip": true,
57
+ "single_word": false,
58
+ "special": true
59
+ },
60
+ "100263": {
61
+ "content": "<|dummy_3|>",
62
+ "lstrip": true,
63
+ "normalized": false,
64
+ "rstrip": true,
65
+ "single_word": false,
66
+ "special": true
67
+ },
68
+ "100264": {
69
+ "content": "<|im_start|>",
70
+ "lstrip": true,
71
+ "normalized": false,
72
+ "rstrip": true,
73
+ "single_word": false,
74
+ "special": true
75
+ },
76
+ "100265": {
77
+ "content": "<|im_end|>",
78
+ "lstrip": false,
79
+ "normalized": false,
80
+ "rstrip": false,
81
+ "single_word": false,
82
+ "special": true
83
+ },
84
+ "100266": {
85
+ "content": "<|im_sep|>",
86
+ "lstrip": true,
87
+ "normalized": false,
88
+ "rstrip": true,
89
+ "single_word": false,
90
+ "special": true
91
+ },
92
+ "100267": {
93
+ "content": "<|dummy_4|>",
94
+ "lstrip": true,
95
+ "normalized": false,
96
+ "rstrip": true,
97
+ "single_word": false,
98
+ "special": true
99
+ },
100
+ "100268": {
101
+ "content": "<|dummy_5|>",
102
+ "lstrip": true,
103
+ "normalized": false,
104
+ "rstrip": true,
105
+ "single_word": false,
106
+ "special": true
107
+ },
108
+ "100269": {
109
+ "content": "<|dummy_6|>",
110
+ "lstrip": true,
111
+ "normalized": false,
112
+ "rstrip": true,
113
+ "single_word": false,
114
+ "special": true
115
+ },
116
+ "100270": {
117
+ "content": "<|dummy_7|>",
118
+ "lstrip": true,
119
+ "normalized": false,
120
+ "rstrip": true,
121
+ "single_word": false,
122
+ "special": true
123
+ },
124
+ "100271": {
125
+ "content": "<|dummy_8|>",
126
+ "lstrip": true,
127
+ "normalized": false,
128
+ "rstrip": true,
129
+ "single_word": false,
130
+ "special": true
131
+ },
132
+ "100272": {
133
+ "content": "<|dummy_9|>",
134
+ "lstrip": true,
135
+ "normalized": false,
136
+ "rstrip": true,
137
+ "single_word": false,
138
+ "special": true
139
+ },
140
+ "100273": {
141
+ "content": "<|dummy_10|>",
142
+ "lstrip": true,
143
+ "normalized": false,
144
+ "rstrip": true,
145
+ "single_word": false,
146
+ "special": true
147
+ },
148
+ "100274": {
149
+ "content": "<|dummy_11|>",
150
+ "lstrip": true,
151
+ "normalized": false,
152
+ "rstrip": true,
153
+ "single_word": false,
154
+ "special": true
155
+ },
156
+ "100275": {
157
+ "content": "<|dummy_12|>",
158
+ "lstrip": true,
159
+ "normalized": false,
160
+ "rstrip": true,
161
+ "single_word": false,
162
+ "special": true
163
+ },
164
+ "100276": {
165
+ "content": "<|endofprompt|>",
166
+ "lstrip": true,
167
+ "normalized": false,
168
+ "rstrip": true,
169
+ "single_word": false,
170
+ "special": true
171
+ },
172
+ "100277": {
173
+ "content": "<|dummy_13|>",
174
+ "lstrip": true,
175
+ "normalized": false,
176
+ "rstrip": true,
177
+ "single_word": false,
178
+ "special": true
179
+ },
180
+ "100278": {
181
+ "content": "<|dummy_14|>",
182
+ "lstrip": true,
183
+ "normalized": false,
184
+ "rstrip": true,
185
+ "single_word": false,
186
+ "special": true
187
+ },
188
+ "100279": {
189
+ "content": "<|dummy_15|>",
190
+ "lstrip": true,
191
+ "normalized": false,
192
+ "rstrip": true,
193
+ "single_word": false,
194
+ "special": true
195
+ },
196
+ "100280": {
197
+ "content": "<|dummy_16|>",
198
+ "lstrip": true,
199
+ "normalized": false,
200
+ "rstrip": true,
201
+ "single_word": false,
202
+ "special": true
203
+ },
204
+ "100281": {
205
+ "content": "<|dummy_17|>",
206
+ "lstrip": true,
207
+ "normalized": false,
208
+ "rstrip": true,
209
+ "single_word": false,
210
+ "special": true
211
+ },
212
+ "100282": {
213
+ "content": "<|dummy_18|>",
214
+ "lstrip": true,
215
+ "normalized": false,
216
+ "rstrip": true,
217
+ "single_word": false,
218
+ "special": true
219
+ },
220
+ "100283": {
221
+ "content": "<|dummy_19|>",
222
+ "lstrip": true,
223
+ "normalized": false,
224
+ "rstrip": true,
225
+ "single_word": false,
226
+ "special": true
227
+ },
228
+ "100284": {
229
+ "content": "<|dummy_20|>",
230
+ "lstrip": true,
231
+ "normalized": false,
232
+ "rstrip": true,
233
+ "single_word": false,
234
+ "special": true
235
+ },
236
+ "100285": {
237
+ "content": "<|dummy_21|>",
238
+ "lstrip": true,
239
+ "normalized": false,
240
+ "rstrip": true,
241
+ "single_word": false,
242
+ "special": true
243
+ },
244
+ "100286": {
245
+ "content": "<|dummy_22|>",
246
+ "lstrip": true,
247
+ "normalized": false,
248
+ "rstrip": true,
249
+ "single_word": false,
250
+ "special": true
251
+ },
252
+ "100287": {
253
+ "content": "<|dummy_23|>",
254
+ "lstrip": true,
255
+ "normalized": false,
256
+ "rstrip": true,
257
+ "single_word": false,
258
+ "special": true
259
+ },
260
+ "100288": {
261
+ "content": "<|dummy_24|>",
262
+ "lstrip": true,
263
+ "normalized": false,
264
+ "rstrip": true,
265
+ "single_word": false,
266
+ "special": true
267
+ },
268
+ "100289": {
269
+ "content": "<|dummy_25|>",
270
+ "lstrip": true,
271
+ "normalized": false,
272
+ "rstrip": true,
273
+ "single_word": false,
274
+ "special": true
275
+ },
276
+ "100290": {
277
+ "content": "<|dummy_26|>",
278
+ "lstrip": true,
279
+ "normalized": false,
280
+ "rstrip": true,
281
+ "single_word": false,
282
+ "special": true
283
+ },
284
+ "100291": {
285
+ "content": "<|dummy_27|>",
286
+ "lstrip": true,
287
+ "normalized": false,
288
+ "rstrip": true,
289
+ "single_word": false,
290
+ "special": true
291
+ },
292
+ "100292": {
293
+ "content": "<|dummy_28|>",
294
+ "lstrip": true,
295
+ "normalized": false,
296
+ "rstrip": true,
297
+ "single_word": false,
298
+ "special": true
299
+ },
300
+ "100293": {
301
+ "content": "<|dummy_29|>",
302
+ "lstrip": true,
303
+ "normalized": false,
304
+ "rstrip": true,
305
+ "single_word": false,
306
+ "special": true
307
+ },
308
+ "100294": {
309
+ "content": "<|dummy_30|>",
310
+ "lstrip": true,
311
+ "normalized": false,
312
+ "rstrip": true,
313
+ "single_word": false,
314
+ "special": true
315
+ },
316
+ "100295": {
317
+ "content": "<|dummy_31|>",
318
+ "lstrip": true,
319
+ "normalized": false,
320
+ "rstrip": true,
321
+ "single_word": false,
322
+ "special": true
323
+ },
324
+ "100296": {
325
+ "content": "<|dummy_32|>",
326
+ "lstrip": true,
327
+ "normalized": false,
328
+ "rstrip": true,
329
+ "single_word": false,
330
+ "special": true
331
+ },
332
+ "100297": {
333
+ "content": "<|dummy_33|>",
334
+ "lstrip": true,
335
+ "normalized": false,
336
+ "rstrip": true,
337
+ "single_word": false,
338
+ "special": true
339
+ },
340
+ "100298": {
341
+ "content": "<|dummy_34|>",
342
+ "lstrip": true,
343
+ "normalized": false,
344
+ "rstrip": true,
345
+ "single_word": false,
346
+ "special": true
347
+ },
348
+ "100299": {
349
+ "content": "<|dummy_35|>",
350
+ "lstrip": true,
351
+ "normalized": false,
352
+ "rstrip": true,
353
+ "single_word": false,
354
+ "special": true
355
+ },
356
+ "100300": {
357
+ "content": "<|dummy_36|>",
358
+ "lstrip": true,
359
+ "normalized": false,
360
+ "rstrip": true,
361
+ "single_word": false,
362
+ "special": true
363
+ },
364
+ "100301": {
365
+ "content": "<|dummy_37|>",
366
+ "lstrip": true,
367
+ "normalized": false,
368
+ "rstrip": true,
369
+ "single_word": false,
370
+ "special": true
371
+ },
372
+ "100302": {
373
+ "content": "<|dummy_38|>",
374
+ "lstrip": true,
375
+ "normalized": false,
376
+ "rstrip": true,
377
+ "single_word": false,
378
+ "special": true
379
+ },
380
+ "100303": {
381
+ "content": "<|dummy_39|>",
382
+ "lstrip": true,
383
+ "normalized": false,
384
+ "rstrip": true,
385
+ "single_word": false,
386
+ "special": true
387
+ },
388
+ "100304": {
389
+ "content": "<|dummy_40|>",
390
+ "lstrip": true,
391
+ "normalized": false,
392
+ "rstrip": true,
393
+ "single_word": false,
394
+ "special": true
395
+ },
396
+ "100305": {
397
+ "content": "<|dummy_41|>",
398
+ "lstrip": true,
399
+ "normalized": false,
400
+ "rstrip": true,
401
+ "single_word": false,
402
+ "special": true
403
+ },
404
+ "100306": {
405
+ "content": "<|dummy_42|>",
406
+ "lstrip": true,
407
+ "normalized": false,
408
+ "rstrip": true,
409
+ "single_word": false,
410
+ "special": true
411
+ },
412
+ "100307": {
413
+ "content": "<|dummy_43|>",
414
+ "lstrip": true,
415
+ "normalized": false,
416
+ "rstrip": true,
417
+ "single_word": false,
418
+ "special": true
419
+ },
420
+ "100308": {
421
+ "content": "<|dummy_44|>",
422
+ "lstrip": true,
423
+ "normalized": false,
424
+ "rstrip": true,
425
+ "single_word": false,
426
+ "special": true
427
+ },
428
+ "100309": {
429
+ "content": "<|dummy_45|>",
430
+ "lstrip": true,
431
+ "normalized": false,
432
+ "rstrip": true,
433
+ "single_word": false,
434
+ "special": true
435
+ },
436
+ "100310": {
437
+ "content": "<|dummy_46|>",
438
+ "lstrip": true,
439
+ "normalized": false,
440
+ "rstrip": true,
441
+ "single_word": false,
442
+ "special": true
443
+ },
444
+ "100311": {
445
+ "content": "<|dummy_47|>",
446
+ "lstrip": true,
447
+ "normalized": false,
448
+ "rstrip": true,
449
+ "single_word": false,
450
+ "special": true
451
+ },
452
+ "100312": {
453
+ "content": "<|dummy_48|>",
454
+ "lstrip": true,
455
+ "normalized": false,
456
+ "rstrip": true,
457
+ "single_word": false,
458
+ "special": true
459
+ },
460
+ "100313": {
461
+ "content": "<|dummy_49|>",
462
+ "lstrip": true,
463
+ "normalized": false,
464
+ "rstrip": true,
465
+ "single_word": false,
466
+ "special": true
467
+ },
468
+ "100314": {
469
+ "content": "<|dummy_50|>",
470
+ "lstrip": true,
471
+ "normalized": false,
472
+ "rstrip": true,
473
+ "single_word": false,
474
+ "special": true
475
+ },
476
+ "100315": {
477
+ "content": "<|dummy_51|>",
478
+ "lstrip": true,
479
+ "normalized": false,
480
+ "rstrip": true,
481
+ "single_word": false,
482
+ "special": true
483
+ },
484
+ "100316": {
485
+ "content": "<|dummy_52|>",
486
+ "lstrip": true,
487
+ "normalized": false,
488
+ "rstrip": true,
489
+ "single_word": false,
490
+ "special": true
491
+ },
492
+ "100317": {
493
+ "content": "<|dummy_53|>",
494
+ "lstrip": true,
495
+ "normalized": false,
496
+ "rstrip": true,
497
+ "single_word": false,
498
+ "special": true
499
+ },
500
+ "100318": {
501
+ "content": "<|dummy_54|>",
502
+ "lstrip": true,
503
+ "normalized": false,
504
+ "rstrip": true,
505
+ "single_word": false,
506
+ "special": true
507
+ },
508
+ "100319": {
509
+ "content": "<|dummy_55|>",
510
+ "lstrip": true,
511
+ "normalized": false,
512
+ "rstrip": true,
513
+ "single_word": false,
514
+ "special": true
515
+ },
516
+ "100320": {
517
+ "content": "<|dummy_56|>",
518
+ "lstrip": true,
519
+ "normalized": false,
520
+ "rstrip": true,
521
+ "single_word": false,
522
+ "special": true
523
+ },
524
+ "100321": {
525
+ "content": "<|dummy_57|>",
526
+ "lstrip": true,
527
+ "normalized": false,
528
+ "rstrip": true,
529
+ "single_word": false,
530
+ "special": true
531
+ },
532
+ "100322": {
533
+ "content": "<|dummy_58|>",
534
+ "lstrip": true,
535
+ "normalized": false,
536
+ "rstrip": true,
537
+ "single_word": false,
538
+ "special": true
539
+ },
540
+ "100323": {
541
+ "content": "<|dummy_59|>",
542
+ "lstrip": true,
543
+ "normalized": false,
544
+ "rstrip": true,
545
+ "single_word": false,
546
+ "special": true
547
+ },
548
+ "100324": {
549
+ "content": "<|dummy_60|>",
550
+ "lstrip": true,
551
+ "normalized": false,
552
+ "rstrip": true,
553
+ "single_word": false,
554
+ "special": true
555
+ },
556
+ "100325": {
557
+ "content": "<|dummy_61|>",
558
+ "lstrip": true,
559
+ "normalized": false,
560
+ "rstrip": true,
561
+ "single_word": false,
562
+ "special": true
563
+ },
564
+ "100326": {
565
+ "content": "<|dummy_62|>",
566
+ "lstrip": true,
567
+ "normalized": false,
568
+ "rstrip": true,
569
+ "single_word": false,
570
+ "special": true
571
+ },
572
+ "100327": {
573
+ "content": "<|dummy_63|>",
574
+ "lstrip": true,
575
+ "normalized": false,
576
+ "rstrip": true,
577
+ "single_word": false,
578
+ "special": true
579
+ },
580
+ "100328": {
581
+ "content": "<|dummy_64|>",
582
+ "lstrip": true,
583
+ "normalized": false,
584
+ "rstrip": true,
585
+ "single_word": false,
586
+ "special": true
587
+ },
588
+ "100329": {
589
+ "content": "<|dummy_65|>",
590
+ "lstrip": true,
591
+ "normalized": false,
592
+ "rstrip": true,
593
+ "single_word": false,
594
+ "special": true
595
+ },
596
+ "100330": {
597
+ "content": "<|dummy_66|>",
598
+ "lstrip": true,
599
+ "normalized": false,
600
+ "rstrip": true,
601
+ "single_word": false,
602
+ "special": true
603
+ },
604
+ "100331": {
605
+ "content": "<|dummy_67|>",
606
+ "lstrip": true,
607
+ "normalized": false,
608
+ "rstrip": true,
609
+ "single_word": false,
610
+ "special": true
611
+ },
612
+ "100332": {
613
+ "content": "<|dummy_68|>",
614
+ "lstrip": true,
615
+ "normalized": false,
616
+ "rstrip": true,
617
+ "single_word": false,
618
+ "special": true
619
+ },
620
+ "100333": {
621
+ "content": "<|dummy_69|>",
622
+ "lstrip": true,
623
+ "normalized": false,
624
+ "rstrip": true,
625
+ "single_word": false,
626
+ "special": true
627
+ },
628
+ "100334": {
629
+ "content": "<|dummy_70|>",
630
+ "lstrip": true,
631
+ "normalized": false,
632
+ "rstrip": true,
633
+ "single_word": false,
634
+ "special": true
635
+ },
636
+ "100335": {
637
+ "content": "<|dummy_71|>",
638
+ "lstrip": true,
639
+ "normalized": false,
640
+ "rstrip": true,
641
+ "single_word": false,
642
+ "special": true
643
+ },
644
+ "100336": {
645
+ "content": "<|dummy_72|>",
646
+ "lstrip": true,
647
+ "normalized": false,
648
+ "rstrip": true,
649
+ "single_word": false,
650
+ "special": true
651
+ },
652
+ "100337": {
653
+ "content": "<|dummy_73|>",
654
+ "lstrip": true,
655
+ "normalized": false,
656
+ "rstrip": true,
657
+ "single_word": false,
658
+ "special": true
659
+ },
660
+ "100338": {
661
+ "content": "<|dummy_74|>",
662
+ "lstrip": true,
663
+ "normalized": false,
664
+ "rstrip": true,
665
+ "single_word": false,
666
+ "special": true
667
+ },
668
+ "100339": {
669
+ "content": "<|dummy_75|>",
670
+ "lstrip": true,
671
+ "normalized": false,
672
+ "rstrip": true,
673
+ "single_word": false,
674
+ "special": true
675
+ },
676
+ "100340": {
677
+ "content": "<|dummy_76|>",
678
+ "lstrip": true,
679
+ "normalized": false,
680
+ "rstrip": true,
681
+ "single_word": false,
682
+ "special": true
683
+ },
684
+ "100341": {
685
+ "content": "<|dummy_77|>",
686
+ "lstrip": true,
687
+ "normalized": false,
688
+ "rstrip": true,
689
+ "single_word": false,
690
+ "special": true
691
+ },
692
+ "100342": {
693
+ "content": "<|dummy_78|>",
694
+ "lstrip": true,
695
+ "normalized": false,
696
+ "rstrip": true,
697
+ "single_word": false,
698
+ "special": true
699
+ },
700
+ "100343": {
701
+ "content": "<|dummy_79|>",
702
+ "lstrip": true,
703
+ "normalized": false,
704
+ "rstrip": true,
705
+ "single_word": false,
706
+ "special": true
707
+ },
708
+ "100344": {
709
+ "content": "<|dummy_80|>",
710
+ "lstrip": true,
711
+ "normalized": false,
712
+ "rstrip": true,
713
+ "single_word": false,
714
+ "special": true
715
+ },
716
+ "100345": {
717
+ "content": "<|dummy_81|>",
718
+ "lstrip": true,
719
+ "normalized": false,
720
+ "rstrip": true,
721
+ "single_word": false,
722
+ "special": true
723
+ },
724
+ "100346": {
725
+ "content": "<|dummy_82|>",
726
+ "lstrip": true,
727
+ "normalized": false,
728
+ "rstrip": true,
729
+ "single_word": false,
730
+ "special": true
731
+ },
732
+ "100347": {
733
+ "content": "<|dummy_83|>",
734
+ "lstrip": true,
735
+ "normalized": false,
736
+ "rstrip": true,
737
+ "single_word": false,
738
+ "special": true
739
+ },
740
+ "100348": {
741
+ "content": "<|dummy_84|>",
742
+ "lstrip": true,
743
+ "normalized": false,
744
+ "rstrip": true,
745
+ "single_word": false,
746
+ "special": true
747
+ },
748
+ "100349": {
749
+ "content": "<|dummy_85|>",
750
+ "lstrip": true,
751
+ "normalized": false,
752
+ "rstrip": true,
753
+ "single_word": false,
754
+ "special": true
755
+ },
756
+ "100350": {
757
+ "content": "<|dummy_86|>",
758
+ "lstrip": true,
759
+ "normalized": false,
760
+ "rstrip": true,
761
+ "single_word": false,
762
+ "special": true
763
+ },
764
+ "100351": {
765
+ "content": "<|dummy_87|>",
766
+ "lstrip": true,
767
+ "normalized": false,
768
+ "rstrip": true,
769
+ "single_word": false,
770
+ "special": true
771
+ }
772
+ },
773
+ "additional_special_tokens": [
774
+ "<|im_end|>"
775
+ ],
776
+ "bos_token": "<|endoftext|>",
777
+ "chat_template": "{% for message in messages %}{% if (message['role'] == 'system') %}{{'<|im_start|>system<|im_sep|>' + message['content'] + '<|im_end|>'}}{% elif (message['role'] == 'user') %}{{'<|im_start|>user<|im_sep|>' + message['content'] + '<|im_end|>'}}{% elif (message['role'] == 'assistant') %}{{'<|im_start|>assistant<|im_sep|>' + message['content'] + '<|im_end|>'}}{% endif %}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant<|im_sep|>' }}{% endif %}",
778
+ "clean_up_tokenization_spaces": false,
779
+ "eos_token": "<|im_end|>",
780
+ "extra_special_tokens": {},
781
+ "model_max_length": 16384,
782
+ "pad_token": "<|dummy_85|>",
783
+ "padding_side": "right",
784
+ "split_special_tokens": false,
785
+ "tokenizer_class": "GPT2Tokenizer",
786
+ "unk_token": "<|endoftext|>"
787
+ }
trainer_state.json ADDED
@@ -0,0 +1,3533 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.6020469596628537,
5
+ "eval_steps": 500,
6
+ "global_step": 5000,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.0012040939193257074,
13
+ "grad_norm": 2.0694425106048584,
14
+ "learning_rate": 1.2033694344163658e-08,
15
+ "loss": 0.6897,
16
+ "step": 10
17
+ },
18
+ {
19
+ "epoch": 0.002408187838651415,
20
+ "grad_norm": 2.151496171951294,
21
+ "learning_rate": 2.4067388688327316e-08,
22
+ "loss": 0.6787,
23
+ "step": 20
24
+ },
25
+ {
26
+ "epoch": 0.003612281757977122,
27
+ "grad_norm": 2.640268564224243,
28
+ "learning_rate": 3.610108303249097e-08,
29
+ "loss": 0.6639,
30
+ "step": 30
31
+ },
32
+ {
33
+ "epoch": 0.00481637567730283,
34
+ "grad_norm": 2.6572210788726807,
35
+ "learning_rate": 4.813477737665463e-08,
36
+ "loss": 0.7152,
37
+ "step": 40
38
+ },
39
+ {
40
+ "epoch": 0.006020469596628537,
41
+ "grad_norm": 1.7933714389801025,
42
+ "learning_rate": 6.016847172081829e-08,
43
+ "loss": 0.6503,
44
+ "step": 50
45
+ },
46
+ {
47
+ "epoch": 0.007224563515954244,
48
+ "grad_norm": 2.3688879013061523,
49
+ "learning_rate": 7.220216606498194e-08,
50
+ "loss": 0.6827,
51
+ "step": 60
52
+ },
53
+ {
54
+ "epoch": 0.008428657435279952,
55
+ "grad_norm": 2.220139265060425,
56
+ "learning_rate": 8.42358604091456e-08,
57
+ "loss": 0.6443,
58
+ "step": 70
59
+ },
60
+ {
61
+ "epoch": 0.00963275135460566,
62
+ "grad_norm": 2.4725093841552734,
63
+ "learning_rate": 9.626955475330927e-08,
64
+ "loss": 0.6681,
65
+ "step": 80
66
+ },
67
+ {
68
+ "epoch": 0.010836845273931367,
69
+ "grad_norm": 1.4149224758148193,
70
+ "learning_rate": 1.0830324909747292e-07,
71
+ "loss": 0.5592,
72
+ "step": 90
73
+ },
74
+ {
75
+ "epoch": 0.012040939193257074,
76
+ "grad_norm": 0.9355699419975281,
77
+ "learning_rate": 1.2033694344163658e-07,
78
+ "loss": 0.5802,
79
+ "step": 100
80
+ },
81
+ {
82
+ "epoch": 0.013245033112582781,
83
+ "grad_norm": 1.0211461782455444,
84
+ "learning_rate": 1.3237063778580024e-07,
85
+ "loss": 0.5589,
86
+ "step": 110
87
+ },
88
+ {
89
+ "epoch": 0.014449127031908489,
90
+ "grad_norm": 1.0006492137908936,
91
+ "learning_rate": 1.4440433212996388e-07,
92
+ "loss": 0.5421,
93
+ "step": 120
94
+ },
95
+ {
96
+ "epoch": 0.015653220951234198,
97
+ "grad_norm": 0.8444674015045166,
98
+ "learning_rate": 1.5643802647412754e-07,
99
+ "loss": 0.5079,
100
+ "step": 130
101
+ },
102
+ {
103
+ "epoch": 0.016857314870559904,
104
+ "grad_norm": 0.7920398712158203,
105
+ "learning_rate": 1.684717208182912e-07,
106
+ "loss": 0.4898,
107
+ "step": 140
108
+ },
109
+ {
110
+ "epoch": 0.018061408789885613,
111
+ "grad_norm": 0.6817948818206787,
112
+ "learning_rate": 1.8050541516245487e-07,
113
+ "loss": 0.4645,
114
+ "step": 150
115
+ },
116
+ {
117
+ "epoch": 0.01926550270921132,
118
+ "grad_norm": 0.9353106021881104,
119
+ "learning_rate": 1.9253910950661853e-07,
120
+ "loss": 0.485,
121
+ "step": 160
122
+ },
123
+ {
124
+ "epoch": 0.020469596628537028,
125
+ "grad_norm": 0.6695616841316223,
126
+ "learning_rate": 2.045728038507822e-07,
127
+ "loss": 0.4647,
128
+ "step": 170
129
+ },
130
+ {
131
+ "epoch": 0.021673690547862733,
132
+ "grad_norm": 0.6993837952613831,
133
+ "learning_rate": 2.1660649819494583e-07,
134
+ "loss": 0.4378,
135
+ "step": 180
136
+ },
137
+ {
138
+ "epoch": 0.022877784467188442,
139
+ "grad_norm": 0.7333642244338989,
140
+ "learning_rate": 2.286401925391095e-07,
141
+ "loss": 0.4288,
142
+ "step": 190
143
+ },
144
+ {
145
+ "epoch": 0.024081878386514148,
146
+ "grad_norm": 0.707914412021637,
147
+ "learning_rate": 2.4067388688327316e-07,
148
+ "loss": 0.4601,
149
+ "step": 200
150
+ },
151
+ {
152
+ "epoch": 0.025285972305839857,
153
+ "grad_norm": 0.7626605033874512,
154
+ "learning_rate": 2.527075812274368e-07,
155
+ "loss": 0.4454,
156
+ "step": 210
157
+ },
158
+ {
159
+ "epoch": 0.026490066225165563,
160
+ "grad_norm": 1.2267224788665771,
161
+ "learning_rate": 2.647412755716005e-07,
162
+ "loss": 0.4398,
163
+ "step": 220
164
+ },
165
+ {
166
+ "epoch": 0.027694160144491272,
167
+ "grad_norm": 0.7376552224159241,
168
+ "learning_rate": 2.767749699157641e-07,
169
+ "loss": 0.4275,
170
+ "step": 230
171
+ },
172
+ {
173
+ "epoch": 0.028898254063816978,
174
+ "grad_norm": 0.7109339237213135,
175
+ "learning_rate": 2.8880866425992776e-07,
176
+ "loss": 0.3996,
177
+ "step": 240
178
+ },
179
+ {
180
+ "epoch": 0.030102347983142687,
181
+ "grad_norm": 0.6406791806221008,
182
+ "learning_rate": 3.008423586040915e-07,
183
+ "loss": 0.4337,
184
+ "step": 250
185
+ },
186
+ {
187
+ "epoch": 0.031306441902468396,
188
+ "grad_norm": 0.6780328154563904,
189
+ "learning_rate": 3.128760529482551e-07,
190
+ "loss": 0.4296,
191
+ "step": 260
192
+ },
193
+ {
194
+ "epoch": 0.0325105358217941,
195
+ "grad_norm": 0.5574681162834167,
196
+ "learning_rate": 3.2490974729241875e-07,
197
+ "loss": 0.4123,
198
+ "step": 270
199
+ },
200
+ {
201
+ "epoch": 0.03371462974111981,
202
+ "grad_norm": 0.6190093755722046,
203
+ "learning_rate": 3.369434416365824e-07,
204
+ "loss": 0.3959,
205
+ "step": 280
206
+ },
207
+ {
208
+ "epoch": 0.034918723660445516,
209
+ "grad_norm": 0.6488677859306335,
210
+ "learning_rate": 3.4897713598074607e-07,
211
+ "loss": 0.3883,
212
+ "step": 290
213
+ },
214
+ {
215
+ "epoch": 0.036122817579771226,
216
+ "grad_norm": 0.6014848351478577,
217
+ "learning_rate": 3.6101083032490974e-07,
218
+ "loss": 0.4222,
219
+ "step": 300
220
+ },
221
+ {
222
+ "epoch": 0.03732691149909693,
223
+ "grad_norm": 0.5347362160682678,
224
+ "learning_rate": 3.730445246690734e-07,
225
+ "loss": 0.3929,
226
+ "step": 310
227
+ },
228
+ {
229
+ "epoch": 0.03853100541842264,
230
+ "grad_norm": 1.4445090293884277,
231
+ "learning_rate": 3.8507821901323706e-07,
232
+ "loss": 0.3798,
233
+ "step": 320
234
+ },
235
+ {
236
+ "epoch": 0.039735099337748346,
237
+ "grad_norm": 0.6319730877876282,
238
+ "learning_rate": 3.9711191335740067e-07,
239
+ "loss": 0.386,
240
+ "step": 330
241
+ },
242
+ {
243
+ "epoch": 0.040939193257074055,
244
+ "grad_norm": 0.9257851243019104,
245
+ "learning_rate": 4.091456077015644e-07,
246
+ "loss": 0.393,
247
+ "step": 340
248
+ },
249
+ {
250
+ "epoch": 0.04214328717639976,
251
+ "grad_norm": 0.5936801433563232,
252
+ "learning_rate": 4.2117930204572805e-07,
253
+ "loss": 0.3912,
254
+ "step": 350
255
+ },
256
+ {
257
+ "epoch": 0.04334738109572547,
258
+ "grad_norm": 0.686888575553894,
259
+ "learning_rate": 4.3321299638989166e-07,
260
+ "loss": 0.4015,
261
+ "step": 360
262
+ },
263
+ {
264
+ "epoch": 0.044551475015051176,
265
+ "grad_norm": 0.5986278653144836,
266
+ "learning_rate": 4.452466907340554e-07,
267
+ "loss": 0.3622,
268
+ "step": 370
269
+ },
270
+ {
271
+ "epoch": 0.045755568934376885,
272
+ "grad_norm": 0.5603286623954773,
273
+ "learning_rate": 4.57280385078219e-07,
274
+ "loss": 0.3774,
275
+ "step": 380
276
+ },
277
+ {
278
+ "epoch": 0.04695966285370259,
279
+ "grad_norm": 1.2507776021957397,
280
+ "learning_rate": 4.6931407942238265e-07,
281
+ "loss": 0.3681,
282
+ "step": 390
283
+ },
284
+ {
285
+ "epoch": 0.048163756773028296,
286
+ "grad_norm": 0.5886845588684082,
287
+ "learning_rate": 4.813477737665463e-07,
288
+ "loss": 0.371,
289
+ "step": 400
290
+ },
291
+ {
292
+ "epoch": 0.049367850692354005,
293
+ "grad_norm": 0.5690301656723022,
294
+ "learning_rate": 4.9338146811071e-07,
295
+ "loss": 0.3454,
296
+ "step": 410
297
+ },
298
+ {
299
+ "epoch": 0.050571944611679714,
300
+ "grad_norm": 0.6363804340362549,
301
+ "learning_rate": 5.054151624548736e-07,
302
+ "loss": 0.3477,
303
+ "step": 420
304
+ },
305
+ {
306
+ "epoch": 0.05177603853100542,
307
+ "grad_norm": 0.49289166927337646,
308
+ "learning_rate": 5.174488567990373e-07,
309
+ "loss": 0.352,
310
+ "step": 430
311
+ },
312
+ {
313
+ "epoch": 0.052980132450331126,
314
+ "grad_norm": 0.5901724696159363,
315
+ "learning_rate": 5.29482551143201e-07,
316
+ "loss": 0.3514,
317
+ "step": 440
318
+ },
319
+ {
320
+ "epoch": 0.054184226369656835,
321
+ "grad_norm": 0.6019484996795654,
322
+ "learning_rate": 5.415162454873646e-07,
323
+ "loss": 0.3713,
324
+ "step": 450
325
+ },
326
+ {
327
+ "epoch": 0.055388320288982544,
328
+ "grad_norm": 0.5057175755500793,
329
+ "learning_rate": 5.535499398315282e-07,
330
+ "loss": 0.3346,
331
+ "step": 460
332
+ },
333
+ {
334
+ "epoch": 0.056592414208308246,
335
+ "grad_norm": 0.4834252893924713,
336
+ "learning_rate": 5.655836341756919e-07,
337
+ "loss": 0.3638,
338
+ "step": 470
339
+ },
340
+ {
341
+ "epoch": 0.057796508127633955,
342
+ "grad_norm": 0.6098750233650208,
343
+ "learning_rate": 5.776173285198555e-07,
344
+ "loss": 0.3622,
345
+ "step": 480
346
+ },
347
+ {
348
+ "epoch": 0.059000602046959665,
349
+ "grad_norm": 0.6201721429824829,
350
+ "learning_rate": 5.896510228640193e-07,
351
+ "loss": 0.3329,
352
+ "step": 490
353
+ },
354
+ {
355
+ "epoch": 0.060204695966285374,
356
+ "grad_norm": 0.7006021738052368,
357
+ "learning_rate": 6.01684717208183e-07,
358
+ "loss": 0.3487,
359
+ "step": 500
360
+ },
361
+ {
362
+ "epoch": 0.061408789885611076,
363
+ "grad_norm": 0.708990216255188,
364
+ "learning_rate": 6.137184115523465e-07,
365
+ "loss": 0.3448,
366
+ "step": 510
367
+ },
368
+ {
369
+ "epoch": 0.06261288380493679,
370
+ "grad_norm": 0.7767229676246643,
371
+ "learning_rate": 6.257521058965102e-07,
372
+ "loss": 0.3751,
373
+ "step": 520
374
+ },
375
+ {
376
+ "epoch": 0.0638169777242625,
377
+ "grad_norm": 0.6051218509674072,
378
+ "learning_rate": 6.377858002406738e-07,
379
+ "loss": 0.3502,
380
+ "step": 530
381
+ },
382
+ {
383
+ "epoch": 0.0650210716435882,
384
+ "grad_norm": 0.7111226916313171,
385
+ "learning_rate": 6.498194945848375e-07,
386
+ "loss": 0.3625,
387
+ "step": 540
388
+ },
389
+ {
390
+ "epoch": 0.06622516556291391,
391
+ "grad_norm": 0.7441733479499817,
392
+ "learning_rate": 6.618531889290013e-07,
393
+ "loss": 0.3269,
394
+ "step": 550
395
+ },
396
+ {
397
+ "epoch": 0.06742925948223961,
398
+ "grad_norm": 0.6909326910972595,
399
+ "learning_rate": 6.738868832731648e-07,
400
+ "loss": 0.3302,
401
+ "step": 560
402
+ },
403
+ {
404
+ "epoch": 0.06863335340156532,
405
+ "grad_norm": 0.7504749298095703,
406
+ "learning_rate": 6.859205776173285e-07,
407
+ "loss": 0.3425,
408
+ "step": 570
409
+ },
410
+ {
411
+ "epoch": 0.06983744732089103,
412
+ "grad_norm": 0.5878099799156189,
413
+ "learning_rate": 6.979542719614921e-07,
414
+ "loss": 0.3504,
415
+ "step": 580
416
+ },
417
+ {
418
+ "epoch": 0.07104154124021674,
419
+ "grad_norm": 0.5515761971473694,
420
+ "learning_rate": 7.099879663056558e-07,
421
+ "loss": 0.3409,
422
+ "step": 590
423
+ },
424
+ {
425
+ "epoch": 0.07224563515954245,
426
+ "grad_norm": 0.57797771692276,
427
+ "learning_rate": 7.220216606498195e-07,
428
+ "loss": 0.3416,
429
+ "step": 600
430
+ },
431
+ {
432
+ "epoch": 0.07344972907886815,
433
+ "grad_norm": 0.4524708390235901,
434
+ "learning_rate": 7.34055354993983e-07,
435
+ "loss": 0.3581,
436
+ "step": 610
437
+ },
438
+ {
439
+ "epoch": 0.07465382299819386,
440
+ "grad_norm": 0.718927800655365,
441
+ "learning_rate": 7.460890493381468e-07,
442
+ "loss": 0.3609,
443
+ "step": 620
444
+ },
445
+ {
446
+ "epoch": 0.07585791691751957,
447
+ "grad_norm": 0.5666077733039856,
448
+ "learning_rate": 7.581227436823105e-07,
449
+ "loss": 0.335,
450
+ "step": 630
451
+ },
452
+ {
453
+ "epoch": 0.07706201083684527,
454
+ "grad_norm": 0.5896601676940918,
455
+ "learning_rate": 7.701564380264741e-07,
456
+ "loss": 0.3274,
457
+ "step": 640
458
+ },
459
+ {
460
+ "epoch": 0.07826610475617098,
461
+ "grad_norm": 0.6044319868087769,
462
+ "learning_rate": 7.821901323706378e-07,
463
+ "loss": 0.3407,
464
+ "step": 650
465
+ },
466
+ {
467
+ "epoch": 0.07947019867549669,
468
+ "grad_norm": 0.6831541061401367,
469
+ "learning_rate": 7.942238267148013e-07,
470
+ "loss": 0.3333,
471
+ "step": 660
472
+ },
473
+ {
474
+ "epoch": 0.0806742925948224,
475
+ "grad_norm": 0.7124572396278381,
476
+ "learning_rate": 8.06257521058965e-07,
477
+ "loss": 0.3326,
478
+ "step": 670
479
+ },
480
+ {
481
+ "epoch": 0.08187838651414811,
482
+ "grad_norm": 0.732711136341095,
483
+ "learning_rate": 8.182912154031288e-07,
484
+ "loss": 0.3487,
485
+ "step": 680
486
+ },
487
+ {
488
+ "epoch": 0.08308248043347381,
489
+ "grad_norm": 0.7555579543113708,
490
+ "learning_rate": 8.303249097472924e-07,
491
+ "loss": 0.3218,
492
+ "step": 690
493
+ },
494
+ {
495
+ "epoch": 0.08428657435279951,
496
+ "grad_norm": 0.7618419528007507,
497
+ "learning_rate": 8.423586040914561e-07,
498
+ "loss": 0.3231,
499
+ "step": 700
500
+ },
501
+ {
502
+ "epoch": 0.08549066827212523,
503
+ "grad_norm": 0.7383216023445129,
504
+ "learning_rate": 8.543922984356197e-07,
505
+ "loss": 0.3218,
506
+ "step": 710
507
+ },
508
+ {
509
+ "epoch": 0.08669476219145093,
510
+ "grad_norm": 0.5902182459831238,
511
+ "learning_rate": 8.664259927797833e-07,
512
+ "loss": 0.3367,
513
+ "step": 720
514
+ },
515
+ {
516
+ "epoch": 0.08789885611077664,
517
+ "grad_norm": 0.6107906103134155,
518
+ "learning_rate": 8.78459687123947e-07,
519
+ "loss": 0.3331,
520
+ "step": 730
521
+ },
522
+ {
523
+ "epoch": 0.08910295003010235,
524
+ "grad_norm": 0.7179387211799622,
525
+ "learning_rate": 8.904933814681108e-07,
526
+ "loss": 0.3347,
527
+ "step": 740
528
+ },
529
+ {
530
+ "epoch": 0.09030704394942805,
531
+ "grad_norm": 0.8263080716133118,
532
+ "learning_rate": 9.025270758122743e-07,
533
+ "loss": 0.3247,
534
+ "step": 750
535
+ },
536
+ {
537
+ "epoch": 0.09151113786875377,
538
+ "grad_norm": 0.8549688458442688,
539
+ "learning_rate": 9.14560770156438e-07,
540
+ "loss": 0.3239,
541
+ "step": 760
542
+ },
543
+ {
544
+ "epoch": 0.09271523178807947,
545
+ "grad_norm": 0.6674267053604126,
546
+ "learning_rate": 9.265944645006016e-07,
547
+ "loss": 0.333,
548
+ "step": 770
549
+ },
550
+ {
551
+ "epoch": 0.09391932570740517,
552
+ "grad_norm": 0.5892189741134644,
553
+ "learning_rate": 9.386281588447653e-07,
554
+ "loss": 0.322,
555
+ "step": 780
556
+ },
557
+ {
558
+ "epoch": 0.09512341962673089,
559
+ "grad_norm": 0.7087513208389282,
560
+ "learning_rate": 9.50661853188929e-07,
561
+ "loss": 0.327,
562
+ "step": 790
563
+ },
564
+ {
565
+ "epoch": 0.09632751354605659,
566
+ "grad_norm": 0.6016402840614319,
567
+ "learning_rate": 9.626955475330926e-07,
568
+ "loss": 0.3255,
569
+ "step": 800
570
+ },
571
+ {
572
+ "epoch": 0.0975316074653823,
573
+ "grad_norm": 0.5783524513244629,
574
+ "learning_rate": 9.747292418772562e-07,
575
+ "loss": 0.3128,
576
+ "step": 810
577
+ },
578
+ {
579
+ "epoch": 0.09873570138470801,
580
+ "grad_norm": 0.6049711108207703,
581
+ "learning_rate": 9.8676293622142e-07,
582
+ "loss": 0.3257,
583
+ "step": 820
584
+ },
585
+ {
586
+ "epoch": 0.09993979530403371,
587
+ "grad_norm": 0.6259274482727051,
588
+ "learning_rate": 9.987966305655835e-07,
589
+ "loss": 0.3318,
590
+ "step": 830
591
+ },
592
+ {
593
+ "epoch": 0.10114388922335943,
594
+ "grad_norm": 0.5331777930259705,
595
+ "learning_rate": 9.999964221834556e-07,
596
+ "loss": 0.3133,
597
+ "step": 840
598
+ },
599
+ {
600
+ "epoch": 0.10234798314268513,
601
+ "grad_norm": 0.5190764665603638,
602
+ "learning_rate": 9.999840544882987e-07,
603
+ "loss": 0.3349,
604
+ "step": 850
605
+ },
606
+ {
607
+ "epoch": 0.10355207706201083,
608
+ "grad_norm": 0.5867928862571716,
609
+ "learning_rate": 9.99962852962418e-07,
610
+ "loss": 0.3252,
611
+ "step": 860
612
+ },
613
+ {
614
+ "epoch": 0.10475617098133655,
615
+ "grad_norm": 0.7667666673660278,
616
+ "learning_rate": 9.999328179804064e-07,
617
+ "loss": 0.3269,
618
+ "step": 870
619
+ },
620
+ {
621
+ "epoch": 0.10596026490066225,
622
+ "grad_norm": 0.5684708952903748,
623
+ "learning_rate": 9.998939500729291e-07,
624
+ "loss": 0.3204,
625
+ "step": 880
626
+ },
627
+ {
628
+ "epoch": 0.10716435881998795,
629
+ "grad_norm": 0.5369793772697449,
630
+ "learning_rate": 9.99846249926713e-07,
631
+ "loss": 0.2997,
632
+ "step": 890
633
+ },
634
+ {
635
+ "epoch": 0.10836845273931367,
636
+ "grad_norm": 0.5773791074752808,
637
+ "learning_rate": 9.997897183845347e-07,
638
+ "loss": 0.3147,
639
+ "step": 900
640
+ },
641
+ {
642
+ "epoch": 0.10957254665863937,
643
+ "grad_norm": 0.571826159954071,
644
+ "learning_rate": 9.997243564452064e-07,
645
+ "loss": 0.32,
646
+ "step": 910
647
+ },
648
+ {
649
+ "epoch": 0.11077664057796509,
650
+ "grad_norm": 0.420244961977005,
651
+ "learning_rate": 9.996501652635578e-07,
652
+ "loss": 0.3141,
653
+ "step": 920
654
+ },
655
+ {
656
+ "epoch": 0.11198073449729079,
657
+ "grad_norm": 0.5253920555114746,
658
+ "learning_rate": 9.99567146150415e-07,
659
+ "loss": 0.3201,
660
+ "step": 930
661
+ },
662
+ {
663
+ "epoch": 0.11318482841661649,
664
+ "grad_norm": 0.49279969930648804,
665
+ "learning_rate": 9.994753005725785e-07,
666
+ "loss": 0.3076,
667
+ "step": 940
668
+ },
669
+ {
670
+ "epoch": 0.11438892233594221,
671
+ "grad_norm": 0.6114805936813354,
672
+ "learning_rate": 9.993746301527965e-07,
673
+ "loss": 0.3209,
674
+ "step": 950
675
+ },
676
+ {
677
+ "epoch": 0.11559301625526791,
678
+ "grad_norm": 1.6514418125152588,
679
+ "learning_rate": 9.99265136669737e-07,
680
+ "loss": 0.319,
681
+ "step": 960
682
+ },
683
+ {
684
+ "epoch": 0.11679711017459361,
685
+ "grad_norm": 0.6415925621986389,
686
+ "learning_rate": 9.99146822057955e-07,
687
+ "loss": 0.3268,
688
+ "step": 970
689
+ },
690
+ {
691
+ "epoch": 0.11800120409391933,
692
+ "grad_norm": 0.5680079460144043,
693
+ "learning_rate": 9.990196884078599e-07,
694
+ "loss": 0.3139,
695
+ "step": 980
696
+ },
697
+ {
698
+ "epoch": 0.11920529801324503,
699
+ "grad_norm": 0.715497612953186,
700
+ "learning_rate": 9.988837379656778e-07,
701
+ "loss": 0.3143,
702
+ "step": 990
703
+ },
704
+ {
705
+ "epoch": 0.12040939193257075,
706
+ "grad_norm": 0.6379466652870178,
707
+ "learning_rate": 9.987389731334112e-07,
708
+ "loss": 0.3037,
709
+ "step": 1000
710
+ },
711
+ {
712
+ "epoch": 0.12161348585189645,
713
+ "grad_norm": 0.5227240920066833,
714
+ "learning_rate": 9.985853964687985e-07,
715
+ "loss": 0.3202,
716
+ "step": 1010
717
+ },
718
+ {
719
+ "epoch": 0.12281757977122215,
720
+ "grad_norm": 0.5148226022720337,
721
+ "learning_rate": 9.984230106852658e-07,
722
+ "loss": 0.3089,
723
+ "step": 1020
724
+ },
725
+ {
726
+ "epoch": 0.12402167369054787,
727
+ "grad_norm": 0.8337252140045166,
728
+ "learning_rate": 9.982518186518824e-07,
729
+ "loss": 0.3093,
730
+ "step": 1030
731
+ },
732
+ {
733
+ "epoch": 0.12522576760987358,
734
+ "grad_norm": 0.5874176621437073,
735
+ "learning_rate": 9.980718233933072e-07,
736
+ "loss": 0.3257,
737
+ "step": 1040
738
+ },
739
+ {
740
+ "epoch": 0.12642986152919927,
741
+ "grad_norm": 0.6203235983848572,
742
+ "learning_rate": 9.978830280897373e-07,
743
+ "loss": 0.3094,
744
+ "step": 1050
745
+ },
746
+ {
747
+ "epoch": 0.127633955448525,
748
+ "grad_norm": 0.7386701107025146,
749
+ "learning_rate": 9.976854360768501e-07,
750
+ "loss": 0.3283,
751
+ "step": 1060
752
+ },
753
+ {
754
+ "epoch": 0.1288380493678507,
755
+ "grad_norm": 0.7480394244194031,
756
+ "learning_rate": 9.97479050845746e-07,
757
+ "loss": 0.322,
758
+ "step": 1070
759
+ },
760
+ {
761
+ "epoch": 0.1300421432871764,
762
+ "grad_norm": 0.6779530048370361,
763
+ "learning_rate": 9.97263876042886e-07,
764
+ "loss": 0.3263,
765
+ "step": 1080
766
+ },
767
+ {
768
+ "epoch": 0.1312462372065021,
769
+ "grad_norm": 1.0457607507705688,
770
+ "learning_rate": 9.970399154700262e-07,
771
+ "loss": 0.324,
772
+ "step": 1090
773
+ },
774
+ {
775
+ "epoch": 0.13245033112582782,
776
+ "grad_norm": 0.4574492871761322,
777
+ "learning_rate": 9.96807173084153e-07,
778
+ "loss": 0.3033,
779
+ "step": 1100
780
+ },
781
+ {
782
+ "epoch": 0.1336544250451535,
783
+ "grad_norm": 0.4800940454006195,
784
+ "learning_rate": 9.965656529974108e-07,
785
+ "loss": 0.3076,
786
+ "step": 1110
787
+ },
788
+ {
789
+ "epoch": 0.13485851896447923,
790
+ "grad_norm": 0.5336936116218567,
791
+ "learning_rate": 9.96315359477031e-07,
792
+ "loss": 0.3029,
793
+ "step": 1120
794
+ },
795
+ {
796
+ "epoch": 0.13606261288380495,
797
+ "grad_norm": 0.9403670430183411,
798
+ "learning_rate": 9.960562969452559e-07,
799
+ "loss": 0.3019,
800
+ "step": 1130
801
+ },
802
+ {
803
+ "epoch": 0.13726670680313063,
804
+ "grad_norm": 0.6152085661888123,
805
+ "learning_rate": 9.957884699792604e-07,
806
+ "loss": 0.3051,
807
+ "step": 1140
808
+ },
809
+ {
810
+ "epoch": 0.13847080072245635,
811
+ "grad_norm": 0.7313536405563354,
812
+ "learning_rate": 9.955118833110716e-07,
813
+ "loss": 0.3137,
814
+ "step": 1150
815
+ },
816
+ {
817
+ "epoch": 0.13967489464178207,
818
+ "grad_norm": 0.47397103905677795,
819
+ "learning_rate": 9.95226541827485e-07,
820
+ "loss": 0.3214,
821
+ "step": 1160
822
+ },
823
+ {
824
+ "epoch": 0.14087898856110775,
825
+ "grad_norm": 0.4812333881855011,
826
+ "learning_rate": 9.949324505699782e-07,
827
+ "loss": 0.3164,
828
+ "step": 1170
829
+ },
830
+ {
831
+ "epoch": 0.14208308248043347,
832
+ "grad_norm": 0.6729305386543274,
833
+ "learning_rate": 9.946296147346215e-07,
834
+ "loss": 0.2946,
835
+ "step": 1180
836
+ },
837
+ {
838
+ "epoch": 0.1432871763997592,
839
+ "grad_norm": 0.6568790078163147,
840
+ "learning_rate": 9.943180396719867e-07,
841
+ "loss": 0.2929,
842
+ "step": 1190
843
+ },
844
+ {
845
+ "epoch": 0.1444912703190849,
846
+ "grad_norm": 0.5633556842803955,
847
+ "learning_rate": 9.939977308870518e-07,
848
+ "loss": 0.3073,
849
+ "step": 1200
850
+ },
851
+ {
852
+ "epoch": 0.1456953642384106,
853
+ "grad_norm": 1.1128957271575928,
854
+ "learning_rate": 9.936686940391048e-07,
855
+ "loss": 0.3264,
856
+ "step": 1210
857
+ },
858
+ {
859
+ "epoch": 0.1468994581577363,
860
+ "grad_norm": 0.5192599892616272,
861
+ "learning_rate": 9.933309349416428e-07,
862
+ "loss": 0.3064,
863
+ "step": 1220
864
+ },
865
+ {
866
+ "epoch": 0.14810355207706202,
867
+ "grad_norm": 0.49194392561912537,
868
+ "learning_rate": 9.92984459562269e-07,
869
+ "loss": 0.302,
870
+ "step": 1230
871
+ },
872
+ {
873
+ "epoch": 0.1493076459963877,
874
+ "grad_norm": 0.5606468915939331,
875
+ "learning_rate": 9.926292740225888e-07,
876
+ "loss": 0.3037,
877
+ "step": 1240
878
+ },
879
+ {
880
+ "epoch": 0.15051173991571343,
881
+ "grad_norm": 0.544266939163208,
882
+ "learning_rate": 9.922653845981e-07,
883
+ "loss": 0.3025,
884
+ "step": 1250
885
+ },
886
+ {
887
+ "epoch": 0.15171583383503914,
888
+ "grad_norm": 1.0137197971343994,
889
+ "learning_rate": 9.918927977180826e-07,
890
+ "loss": 0.2998,
891
+ "step": 1260
892
+ },
893
+ {
894
+ "epoch": 0.15291992775436483,
895
+ "grad_norm": 0.4881134629249573,
896
+ "learning_rate": 9.91511519965486e-07,
897
+ "loss": 0.2975,
898
+ "step": 1270
899
+ },
900
+ {
901
+ "epoch": 0.15412402167369055,
902
+ "grad_norm": 0.4854426383972168,
903
+ "learning_rate": 9.911215580768106e-07,
904
+ "loss": 0.3109,
905
+ "step": 1280
906
+ },
907
+ {
908
+ "epoch": 0.15532811559301626,
909
+ "grad_norm": 0.5056730508804321,
910
+ "learning_rate": 9.90722918941991e-07,
911
+ "loss": 0.3121,
912
+ "step": 1290
913
+ },
914
+ {
915
+ "epoch": 0.15653220951234195,
916
+ "grad_norm": 0.5286668539047241,
917
+ "learning_rate": 9.903156096042734e-07,
918
+ "loss": 0.2982,
919
+ "step": 1300
920
+ },
921
+ {
922
+ "epoch": 0.15773630343166767,
923
+ "grad_norm": 0.5490984916687012,
924
+ "learning_rate": 9.898996372600903e-07,
925
+ "loss": 0.3115,
926
+ "step": 1310
927
+ },
928
+ {
929
+ "epoch": 0.15894039735099338,
930
+ "grad_norm": 0.614521861076355,
931
+ "learning_rate": 9.894750092589349e-07,
932
+ "loss": 0.2985,
933
+ "step": 1320
934
+ },
935
+ {
936
+ "epoch": 0.16014449127031907,
937
+ "grad_norm": 0.5678403973579407,
938
+ "learning_rate": 9.8904173310323e-07,
939
+ "loss": 0.3046,
940
+ "step": 1330
941
+ },
942
+ {
943
+ "epoch": 0.1613485851896448,
944
+ "grad_norm": 0.5179656147956848,
945
+ "learning_rate": 9.885998164481966e-07,
946
+ "loss": 0.3053,
947
+ "step": 1340
948
+ },
949
+ {
950
+ "epoch": 0.1625526791089705,
951
+ "grad_norm": 0.526849091053009,
952
+ "learning_rate": 9.881492671017172e-07,
953
+ "loss": 0.3143,
954
+ "step": 1350
955
+ },
956
+ {
957
+ "epoch": 0.16375677302829622,
958
+ "grad_norm": 0.5683344006538391,
959
+ "learning_rate": 9.876900930241991e-07,
960
+ "loss": 0.3031,
961
+ "step": 1360
962
+ },
963
+ {
964
+ "epoch": 0.1649608669476219,
965
+ "grad_norm": 0.5243839621543884,
966
+ "learning_rate": 9.872223023284333e-07,
967
+ "loss": 0.312,
968
+ "step": 1370
969
+ },
970
+ {
971
+ "epoch": 0.16616496086694763,
972
+ "grad_norm": 0.5260365605354309,
973
+ "learning_rate": 9.867459032794508e-07,
974
+ "loss": 0.3037,
975
+ "step": 1380
976
+ },
977
+ {
978
+ "epoch": 0.16736905478627334,
979
+ "grad_norm": 0.4755154252052307,
980
+ "learning_rate": 9.86260904294377e-07,
981
+ "loss": 0.2916,
982
+ "step": 1390
983
+ },
984
+ {
985
+ "epoch": 0.16857314870559903,
986
+ "grad_norm": 0.5555715560913086,
987
+ "learning_rate": 9.857673139422833e-07,
988
+ "loss": 0.3135,
989
+ "step": 1400
990
+ },
991
+ {
992
+ "epoch": 0.16977724262492475,
993
+ "grad_norm": 0.5810279250144958,
994
+ "learning_rate": 9.85265140944035e-07,
995
+ "loss": 0.3104,
996
+ "step": 1410
997
+ },
998
+ {
999
+ "epoch": 0.17098133654425046,
1000
+ "grad_norm": 0.48022618889808655,
1001
+ "learning_rate": 9.847543941721379e-07,
1002
+ "loss": 0.3022,
1003
+ "step": 1420
1004
+ },
1005
+ {
1006
+ "epoch": 0.17218543046357615,
1007
+ "grad_norm": 0.5191965103149414,
1008
+ "learning_rate": 9.842350826505802e-07,
1009
+ "loss": 0.3018,
1010
+ "step": 1430
1011
+ },
1012
+ {
1013
+ "epoch": 0.17338952438290187,
1014
+ "grad_norm": 1.2972302436828613,
1015
+ "learning_rate": 9.837072155546753e-07,
1016
+ "loss": 0.3026,
1017
+ "step": 1440
1018
+ },
1019
+ {
1020
+ "epoch": 0.17459361830222758,
1021
+ "grad_norm": 0.47315987944602966,
1022
+ "learning_rate": 9.831708022108972e-07,
1023
+ "loss": 0.311,
1024
+ "step": 1450
1025
+ },
1026
+ {
1027
+ "epoch": 0.17579771222155327,
1028
+ "grad_norm": 0.5953189134597778,
1029
+ "learning_rate": 9.826258520967177e-07,
1030
+ "loss": 0.3071,
1031
+ "step": 1460
1032
+ },
1033
+ {
1034
+ "epoch": 0.177001806140879,
1035
+ "grad_norm": 0.5407562851905823,
1036
+ "learning_rate": 9.820723748404382e-07,
1037
+ "loss": 0.31,
1038
+ "step": 1470
1039
+ },
1040
+ {
1041
+ "epoch": 0.1782059000602047,
1042
+ "grad_norm": 0.5249618291854858,
1043
+ "learning_rate": 9.815103802210193e-07,
1044
+ "loss": 0.2898,
1045
+ "step": 1480
1046
+ },
1047
+ {
1048
+ "epoch": 0.1794099939795304,
1049
+ "grad_norm": 0.5347439646720886,
1050
+ "learning_rate": 9.80939878167908e-07,
1051
+ "loss": 0.2944,
1052
+ "step": 1490
1053
+ },
1054
+ {
1055
+ "epoch": 0.1806140878988561,
1056
+ "grad_norm": 0.49509304761886597,
1057
+ "learning_rate": 9.80360878760863e-07,
1058
+ "loss": 0.3073,
1059
+ "step": 1500
1060
+ },
1061
+ {
1062
+ "epoch": 0.18181818181818182,
1063
+ "grad_norm": 0.5182557106018066,
1064
+ "learning_rate": 9.79773392229776e-07,
1065
+ "loss": 0.3092,
1066
+ "step": 1510
1067
+ },
1068
+ {
1069
+ "epoch": 0.18302227573750754,
1070
+ "grad_norm": 0.5343918204307556,
1071
+ "learning_rate": 9.79177428954492e-07,
1072
+ "loss": 0.3058,
1073
+ "step": 1520
1074
+ },
1075
+ {
1076
+ "epoch": 0.18422636965683323,
1077
+ "grad_norm": 0.42448320984840393,
1078
+ "learning_rate": 9.785729994646228e-07,
1079
+ "loss": 0.2966,
1080
+ "step": 1530
1081
+ },
1082
+ {
1083
+ "epoch": 0.18543046357615894,
1084
+ "grad_norm": 0.514305055141449,
1085
+ "learning_rate": 9.779601144393655e-07,
1086
+ "loss": 0.3063,
1087
+ "step": 1540
1088
+ },
1089
+ {
1090
+ "epoch": 0.18663455749548466,
1091
+ "grad_norm": 0.559808075428009,
1092
+ "learning_rate": 9.773387847073102e-07,
1093
+ "loss": 0.3103,
1094
+ "step": 1550
1095
+ },
1096
+ {
1097
+ "epoch": 0.18783865141481035,
1098
+ "grad_norm": 0.5099034905433655,
1099
+ "learning_rate": 9.767090212462506e-07,
1100
+ "loss": 0.3045,
1101
+ "step": 1560
1102
+ },
1103
+ {
1104
+ "epoch": 0.18904274533413606,
1105
+ "grad_norm": 0.5309582352638245,
1106
+ "learning_rate": 9.76070835182989e-07,
1107
+ "loss": 0.3198,
1108
+ "step": 1570
1109
+ },
1110
+ {
1111
+ "epoch": 0.19024683925346178,
1112
+ "grad_norm": 0.5174340605735779,
1113
+ "learning_rate": 9.754242377931402e-07,
1114
+ "loss": 0.3019,
1115
+ "step": 1580
1116
+ },
1117
+ {
1118
+ "epoch": 0.19145093317278747,
1119
+ "grad_norm": 0.47818174958229065,
1120
+ "learning_rate": 9.747692405009327e-07,
1121
+ "loss": 0.2885,
1122
+ "step": 1590
1123
+ },
1124
+ {
1125
+ "epoch": 0.19265502709211318,
1126
+ "grad_norm": 0.4435511529445648,
1127
+ "learning_rate": 9.741058548790055e-07,
1128
+ "loss": 0.2716,
1129
+ "step": 1600
1130
+ },
1131
+ {
1132
+ "epoch": 0.1938591210114389,
1133
+ "grad_norm": 0.47226864099502563,
1134
+ "learning_rate": 9.734340926482052e-07,
1135
+ "loss": 0.2911,
1136
+ "step": 1610
1137
+ },
1138
+ {
1139
+ "epoch": 0.1950632149307646,
1140
+ "grad_norm": 0.4990203082561493,
1141
+ "learning_rate": 9.72753965677378e-07,
1142
+ "loss": 0.3119,
1143
+ "step": 1620
1144
+ },
1145
+ {
1146
+ "epoch": 0.1962673088500903,
1147
+ "grad_norm": 0.6255252957344055,
1148
+ "learning_rate": 9.7206548598316e-07,
1149
+ "loss": 0.2902,
1150
+ "step": 1630
1151
+ },
1152
+ {
1153
+ "epoch": 0.19747140276941602,
1154
+ "grad_norm": 0.5827116370201111,
1155
+ "learning_rate": 9.713686657297655e-07,
1156
+ "loss": 0.3079,
1157
+ "step": 1640
1158
+ },
1159
+ {
1160
+ "epoch": 0.1986754966887417,
1161
+ "grad_norm": 0.5475650429725647,
1162
+ "learning_rate": 9.706635172287715e-07,
1163
+ "loss": 0.3095,
1164
+ "step": 1650
1165
+ },
1166
+ {
1167
+ "epoch": 0.19987959060806743,
1168
+ "grad_norm": 0.674460768699646,
1169
+ "learning_rate": 9.699500529389001e-07,
1170
+ "loss": 0.2953,
1171
+ "step": 1660
1172
+ },
1173
+ {
1174
+ "epoch": 0.20108368452739314,
1175
+ "grad_norm": 0.5000407695770264,
1176
+ "learning_rate": 9.692282854657989e-07,
1177
+ "loss": 0.3055,
1178
+ "step": 1670
1179
+ },
1180
+ {
1181
+ "epoch": 0.20228777844671886,
1182
+ "grad_norm": 0.5063086748123169,
1183
+ "learning_rate": 9.684982275618178e-07,
1184
+ "loss": 0.2952,
1185
+ "step": 1680
1186
+ },
1187
+ {
1188
+ "epoch": 0.20349187236604455,
1189
+ "grad_norm": 0.6266674399375916,
1190
+ "learning_rate": 9.677598921257842e-07,
1191
+ "loss": 0.3028,
1192
+ "step": 1690
1193
+ },
1194
+ {
1195
+ "epoch": 0.20469596628537026,
1196
+ "grad_norm": 1.3428351879119873,
1197
+ "learning_rate": 9.67013292202775e-07,
1198
+ "loss": 0.3165,
1199
+ "step": 1700
1200
+ },
1201
+ {
1202
+ "epoch": 0.20590006020469598,
1203
+ "grad_norm": 0.6307231187820435,
1204
+ "learning_rate": 9.66258440983885e-07,
1205
+ "loss": 0.3112,
1206
+ "step": 1710
1207
+ },
1208
+ {
1209
+ "epoch": 0.20710415412402167,
1210
+ "grad_norm": 0.5176913738250732,
1211
+ "learning_rate": 9.654953518059953e-07,
1212
+ "loss": 0.3042,
1213
+ "step": 1720
1214
+ },
1215
+ {
1216
+ "epoch": 0.20830824804334738,
1217
+ "grad_norm": 0.4618211090564728,
1218
+ "learning_rate": 9.647240381515376e-07,
1219
+ "loss": 0.3107,
1220
+ "step": 1730
1221
+ },
1222
+ {
1223
+ "epoch": 0.2095123419626731,
1224
+ "grad_norm": 0.4354129135608673,
1225
+ "learning_rate": 9.639445136482546e-07,
1226
+ "loss": 0.2932,
1227
+ "step": 1740
1228
+ },
1229
+ {
1230
+ "epoch": 0.2107164358819988,
1231
+ "grad_norm": 0.6150096654891968,
1232
+ "learning_rate": 9.631567920689607e-07,
1233
+ "loss": 0.2898,
1234
+ "step": 1750
1235
+ },
1236
+ {
1237
+ "epoch": 0.2119205298013245,
1238
+ "grad_norm": 0.4629852771759033,
1239
+ "learning_rate": 9.623608873312979e-07,
1240
+ "loss": 0.2969,
1241
+ "step": 1760
1242
+ },
1243
+ {
1244
+ "epoch": 0.21312462372065022,
1245
+ "grad_norm": 0.4912186563014984,
1246
+ "learning_rate": 9.615568134974902e-07,
1247
+ "loss": 0.3037,
1248
+ "step": 1770
1249
+ },
1250
+ {
1251
+ "epoch": 0.2143287176399759,
1252
+ "grad_norm": 0.5452593564987183,
1253
+ "learning_rate": 9.607445847740946e-07,
1254
+ "loss": 0.3011,
1255
+ "step": 1780
1256
+ },
1257
+ {
1258
+ "epoch": 0.21553281155930162,
1259
+ "grad_norm": 0.5524305701255798,
1260
+ "learning_rate": 9.599242155117514e-07,
1261
+ "loss": 0.3056,
1262
+ "step": 1790
1263
+ },
1264
+ {
1265
+ "epoch": 0.21673690547862734,
1266
+ "grad_norm": 0.4734737277030945,
1267
+ "learning_rate": 9.590957202049288e-07,
1268
+ "loss": 0.2937,
1269
+ "step": 1800
1270
+ },
1271
+ {
1272
+ "epoch": 0.21794099939795303,
1273
+ "grad_norm": 0.5050627589225769,
1274
+ "learning_rate": 9.582591134916683e-07,
1275
+ "loss": 0.2964,
1276
+ "step": 1810
1277
+ },
1278
+ {
1279
+ "epoch": 0.21914509331727874,
1280
+ "grad_norm": 0.5784972310066223,
1281
+ "learning_rate": 9.574144101533258e-07,
1282
+ "loss": 0.3126,
1283
+ "step": 1820
1284
+ },
1285
+ {
1286
+ "epoch": 0.22034918723660446,
1287
+ "grad_norm": 0.67679762840271,
1288
+ "learning_rate": 9.565616251143093e-07,
1289
+ "loss": 0.2997,
1290
+ "step": 1830
1291
+ },
1292
+ {
1293
+ "epoch": 0.22155328115593018,
1294
+ "grad_norm": 0.730844259262085,
1295
+ "learning_rate": 9.55700773441817e-07,
1296
+ "loss": 0.2992,
1297
+ "step": 1840
1298
+ },
1299
+ {
1300
+ "epoch": 0.22275737507525586,
1301
+ "grad_norm": 0.511701226234436,
1302
+ "learning_rate": 9.5483187034557e-07,
1303
+ "loss": 0.2843,
1304
+ "step": 1850
1305
+ },
1306
+ {
1307
+ "epoch": 0.22396146899458158,
1308
+ "grad_norm": 0.49653661251068115,
1309
+ "learning_rate": 9.539549311775434e-07,
1310
+ "loss": 0.3003,
1311
+ "step": 1860
1312
+ },
1313
+ {
1314
+ "epoch": 0.2251655629139073,
1315
+ "grad_norm": 0.479397714138031,
1316
+ "learning_rate": 9.530699714316955e-07,
1317
+ "loss": 0.3007,
1318
+ "step": 1870
1319
+ },
1320
+ {
1321
+ "epoch": 0.22636965683323299,
1322
+ "grad_norm": 0.5917854905128479,
1323
+ "learning_rate": 9.521770067436944e-07,
1324
+ "loss": 0.2818,
1325
+ "step": 1880
1326
+ },
1327
+ {
1328
+ "epoch": 0.2275737507525587,
1329
+ "grad_norm": 0.4750485420227051,
1330
+ "learning_rate": 9.512760528906409e-07,
1331
+ "loss": 0.3107,
1332
+ "step": 1890
1333
+ },
1334
+ {
1335
+ "epoch": 0.22877784467188442,
1336
+ "grad_norm": 0.5081465244293213,
1337
+ "learning_rate": 9.503671257907905e-07,
1338
+ "loss": 0.3003,
1339
+ "step": 1900
1340
+ },
1341
+ {
1342
+ "epoch": 0.2299819385912101,
1343
+ "grad_norm": 0.7816819548606873,
1344
+ "learning_rate": 9.494502415032714e-07,
1345
+ "loss": 0.2898,
1346
+ "step": 1910
1347
+ },
1348
+ {
1349
+ "epoch": 0.23118603251053582,
1350
+ "grad_norm": 0.600690484046936,
1351
+ "learning_rate": 9.485254162278013e-07,
1352
+ "loss": 0.2975,
1353
+ "step": 1920
1354
+ },
1355
+ {
1356
+ "epoch": 0.23239012642986154,
1357
+ "grad_norm": 0.6016291379928589,
1358
+ "learning_rate": 9.475926663044016e-07,
1359
+ "loss": 0.2895,
1360
+ "step": 1930
1361
+ },
1362
+ {
1363
+ "epoch": 0.23359422034918723,
1364
+ "grad_norm": 0.5959491729736328,
1365
+ "learning_rate": 9.466520082131074e-07,
1366
+ "loss": 0.293,
1367
+ "step": 1940
1368
+ },
1369
+ {
1370
+ "epoch": 0.23479831426851294,
1371
+ "grad_norm": 0.5337576270103455,
1372
+ "learning_rate": 9.457034585736776e-07,
1373
+ "loss": 0.2954,
1374
+ "step": 1950
1375
+ },
1376
+ {
1377
+ "epoch": 0.23600240818783866,
1378
+ "grad_norm": 0.5701966881752014,
1379
+ "learning_rate": 9.447470341453003e-07,
1380
+ "loss": 0.3016,
1381
+ "step": 1960
1382
+ },
1383
+ {
1384
+ "epoch": 0.23720650210716435,
1385
+ "grad_norm": 0.48122677206993103,
1386
+ "learning_rate": 9.437827518262976e-07,
1387
+ "loss": 0.2834,
1388
+ "step": 1970
1389
+ },
1390
+ {
1391
+ "epoch": 0.23841059602649006,
1392
+ "grad_norm": 0.6107509732246399,
1393
+ "learning_rate": 9.428106286538263e-07,
1394
+ "loss": 0.2865,
1395
+ "step": 1980
1396
+ },
1397
+ {
1398
+ "epoch": 0.23961468994581578,
1399
+ "grad_norm": 0.4537561237812042,
1400
+ "learning_rate": 9.418306818035773e-07,
1401
+ "loss": 0.2981,
1402
+ "step": 1990
1403
+ },
1404
+ {
1405
+ "epoch": 0.2408187838651415,
1406
+ "grad_norm": 0.6205712556838989,
1407
+ "learning_rate": 9.408429285894721e-07,
1408
+ "loss": 0.3099,
1409
+ "step": 2000
1410
+ },
1411
+ {
1412
+ "epoch": 0.24202287778446718,
1413
+ "grad_norm": 0.4940670132637024,
1414
+ "learning_rate": 9.398473864633564e-07,
1415
+ "loss": 0.2942,
1416
+ "step": 2010
1417
+ },
1418
+ {
1419
+ "epoch": 0.2432269717037929,
1420
+ "grad_norm": 0.45464888215065,
1421
+ "learning_rate": 9.388440730146923e-07,
1422
+ "loss": 0.2875,
1423
+ "step": 2020
1424
+ },
1425
+ {
1426
+ "epoch": 0.24443106562311862,
1427
+ "grad_norm": 0.4339371919631958,
1428
+ "learning_rate": 9.378330059702479e-07,
1429
+ "loss": 0.284,
1430
+ "step": 2030
1431
+ },
1432
+ {
1433
+ "epoch": 0.2456351595424443,
1434
+ "grad_norm": 0.6798887848854065,
1435
+ "learning_rate": 9.368142031937826e-07,
1436
+ "loss": 0.3079,
1437
+ "step": 2040
1438
+ },
1439
+ {
1440
+ "epoch": 0.24683925346177002,
1441
+ "grad_norm": 0.504805326461792,
1442
+ "learning_rate": 9.357876826857334e-07,
1443
+ "loss": 0.2942,
1444
+ "step": 2050
1445
+ },
1446
+ {
1447
+ "epoch": 0.24804334738109574,
1448
+ "grad_norm": 1.0256134271621704,
1449
+ "learning_rate": 9.347534625828955e-07,
1450
+ "loss": 0.2958,
1451
+ "step": 2060
1452
+ },
1453
+ {
1454
+ "epoch": 0.24924744130042142,
1455
+ "grad_norm": 0.7034043073654175,
1456
+ "learning_rate": 9.337115611581019e-07,
1457
+ "loss": 0.2977,
1458
+ "step": 2070
1459
+ },
1460
+ {
1461
+ "epoch": 0.25045153521974717,
1462
+ "grad_norm": 0.6767880916595459,
1463
+ "learning_rate": 9.326619968199016e-07,
1464
+ "loss": 0.2843,
1465
+ "step": 2080
1466
+ },
1467
+ {
1468
+ "epoch": 0.25165562913907286,
1469
+ "grad_norm": 0.5257042050361633,
1470
+ "learning_rate": 9.316047881122334e-07,
1471
+ "loss": 0.2869,
1472
+ "step": 2090
1473
+ },
1474
+ {
1475
+ "epoch": 0.25285972305839854,
1476
+ "grad_norm": 0.5919986963272095,
1477
+ "learning_rate": 9.305399537140983e-07,
1478
+ "loss": 0.3009,
1479
+ "step": 2100
1480
+ },
1481
+ {
1482
+ "epoch": 0.2540638169777243,
1483
+ "grad_norm": 0.5936114192008972,
1484
+ "learning_rate": 9.294675124392302e-07,
1485
+ "loss": 0.2863,
1486
+ "step": 2110
1487
+ },
1488
+ {
1489
+ "epoch": 0.25526791089705,
1490
+ "grad_norm": 1.1754176616668701,
1491
+ "learning_rate": 9.283874832357625e-07,
1492
+ "loss": 0.2808,
1493
+ "step": 2120
1494
+ },
1495
+ {
1496
+ "epoch": 0.25647200481637566,
1497
+ "grad_norm": 0.6144666075706482,
1498
+ "learning_rate": 9.272998851858943e-07,
1499
+ "loss": 0.2854,
1500
+ "step": 2130
1501
+ },
1502
+ {
1503
+ "epoch": 0.2576760987357014,
1504
+ "grad_norm": 0.47984328866004944,
1505
+ "learning_rate": 9.262047375055524e-07,
1506
+ "loss": 0.2978,
1507
+ "step": 2140
1508
+ },
1509
+ {
1510
+ "epoch": 0.2588801926550271,
1511
+ "grad_norm": 0.6158226728439331,
1512
+ "learning_rate": 9.251020595440524e-07,
1513
+ "loss": 0.3072,
1514
+ "step": 2150
1515
+ },
1516
+ {
1517
+ "epoch": 0.2600842865743528,
1518
+ "grad_norm": 0.6357386708259583,
1519
+ "learning_rate": 9.239918707837564e-07,
1520
+ "loss": 0.2927,
1521
+ "step": 2160
1522
+ },
1523
+ {
1524
+ "epoch": 0.26128838049367853,
1525
+ "grad_norm": 0.6893799901008606,
1526
+ "learning_rate": 9.228741908397293e-07,
1527
+ "loss": 0.2988,
1528
+ "step": 2170
1529
+ },
1530
+ {
1531
+ "epoch": 0.2624924744130042,
1532
+ "grad_norm": 0.5763195157051086,
1533
+ "learning_rate": 9.217490394593914e-07,
1534
+ "loss": 0.3049,
1535
+ "step": 2180
1536
+ },
1537
+ {
1538
+ "epoch": 0.2636965683323299,
1539
+ "grad_norm": 0.5649781823158264,
1540
+ "learning_rate": 9.206164365221706e-07,
1541
+ "loss": 0.3083,
1542
+ "step": 2190
1543
+ },
1544
+ {
1545
+ "epoch": 0.26490066225165565,
1546
+ "grad_norm": 0.4519605040550232,
1547
+ "learning_rate": 9.194764020391506e-07,
1548
+ "loss": 0.274,
1549
+ "step": 2200
1550
+ },
1551
+ {
1552
+ "epoch": 0.26610475617098134,
1553
+ "grad_norm": 0.5203403830528259,
1554
+ "learning_rate": 9.183289561527164e-07,
1555
+ "loss": 0.2823,
1556
+ "step": 2210
1557
+ },
1558
+ {
1559
+ "epoch": 0.267308850090307,
1560
+ "grad_norm": 0.525934100151062,
1561
+ "learning_rate": 9.171741191362005e-07,
1562
+ "loss": 0.2928,
1563
+ "step": 2220
1564
+ },
1565
+ {
1566
+ "epoch": 0.26851294400963277,
1567
+ "grad_norm": 0.5151864290237427,
1568
+ "learning_rate": 9.160119113935227e-07,
1569
+ "loss": 0.2914,
1570
+ "step": 2230
1571
+ },
1572
+ {
1573
+ "epoch": 0.26971703792895846,
1574
+ "grad_norm": 0.663339376449585,
1575
+ "learning_rate": 9.14842353458831e-07,
1576
+ "loss": 0.301,
1577
+ "step": 2240
1578
+ },
1579
+ {
1580
+ "epoch": 0.27092113184828415,
1581
+ "grad_norm": 0.5526972413063049,
1582
+ "learning_rate": 9.136654659961381e-07,
1583
+ "loss": 0.2931,
1584
+ "step": 2250
1585
+ },
1586
+ {
1587
+ "epoch": 0.2721252257676099,
1588
+ "grad_norm": 0.6518740057945251,
1589
+ "learning_rate": 9.12481269798956e-07,
1590
+ "loss": 0.2772,
1591
+ "step": 2260
1592
+ },
1593
+ {
1594
+ "epoch": 0.2733293196869356,
1595
+ "grad_norm": 0.5191295742988586,
1596
+ "learning_rate": 9.112897857899298e-07,
1597
+ "loss": 0.2933,
1598
+ "step": 2270
1599
+ },
1600
+ {
1601
+ "epoch": 0.27453341360626127,
1602
+ "grad_norm": 1.087936282157898,
1603
+ "learning_rate": 9.100910350204669e-07,
1604
+ "loss": 0.2956,
1605
+ "step": 2280
1606
+ },
1607
+ {
1608
+ "epoch": 0.275737507525587,
1609
+ "grad_norm": 0.5870952010154724,
1610
+ "learning_rate": 9.088850386703653e-07,
1611
+ "loss": 0.2857,
1612
+ "step": 2290
1613
+ },
1614
+ {
1615
+ "epoch": 0.2769416014449127,
1616
+ "grad_norm": 0.5123207569122314,
1617
+ "learning_rate": 9.076718180474399e-07,
1618
+ "loss": 0.3005,
1619
+ "step": 2300
1620
+ },
1621
+ {
1622
+ "epoch": 0.2781456953642384,
1623
+ "grad_norm": 0.47658002376556396,
1624
+ "learning_rate": 9.064513945871457e-07,
1625
+ "loss": 0.2889,
1626
+ "step": 2310
1627
+ },
1628
+ {
1629
+ "epoch": 0.27934978928356413,
1630
+ "grad_norm": 0.564738929271698,
1631
+ "learning_rate": 9.052237898521984e-07,
1632
+ "loss": 0.2929,
1633
+ "step": 2320
1634
+ },
1635
+ {
1636
+ "epoch": 0.2805538832028898,
1637
+ "grad_norm": 0.47116583585739136,
1638
+ "learning_rate": 9.03989025532195e-07,
1639
+ "loss": 0.2942,
1640
+ "step": 2330
1641
+ },
1642
+ {
1643
+ "epoch": 0.2817579771222155,
1644
+ "grad_norm": 0.5838178396224976,
1645
+ "learning_rate": 9.027471234432292e-07,
1646
+ "loss": 0.2883,
1647
+ "step": 2340
1648
+ },
1649
+ {
1650
+ "epoch": 0.28296207104154125,
1651
+ "grad_norm": 0.48679229617118835,
1652
+ "learning_rate": 9.014981055275059e-07,
1653
+ "loss": 0.29,
1654
+ "step": 2350
1655
+ },
1656
+ {
1657
+ "epoch": 0.28416616496086694,
1658
+ "grad_norm": 0.5863898992538452,
1659
+ "learning_rate": 9.00241993852955e-07,
1660
+ "loss": 0.2871,
1661
+ "step": 2360
1662
+ },
1663
+ {
1664
+ "epoch": 0.28537025888019263,
1665
+ "grad_norm": 0.5949921607971191,
1666
+ "learning_rate": 8.989788106128402e-07,
1667
+ "loss": 0.2927,
1668
+ "step": 2370
1669
+ },
1670
+ {
1671
+ "epoch": 0.2865743527995184,
1672
+ "grad_norm": 0.42538484930992126,
1673
+ "learning_rate": 8.977085781253668e-07,
1674
+ "loss": 0.2825,
1675
+ "step": 2380
1676
+ },
1677
+ {
1678
+ "epoch": 0.28777844671884406,
1679
+ "grad_norm": 0.5678000450134277,
1680
+ "learning_rate": 8.964313188332881e-07,
1681
+ "loss": 0.294,
1682
+ "step": 2390
1683
+ },
1684
+ {
1685
+ "epoch": 0.2889825406381698,
1686
+ "grad_norm": 0.5283777713775635,
1687
+ "learning_rate": 8.951470553035086e-07,
1688
+ "loss": 0.286,
1689
+ "step": 2400
1690
+ },
1691
+ {
1692
+ "epoch": 0.2901866345574955,
1693
+ "grad_norm": 0.8639681935310364,
1694
+ "learning_rate": 8.938558102266851e-07,
1695
+ "loss": 0.2971,
1696
+ "step": 2410
1697
+ },
1698
+ {
1699
+ "epoch": 0.2913907284768212,
1700
+ "grad_norm": 0.5353107452392578,
1701
+ "learning_rate": 8.925576064168261e-07,
1702
+ "loss": 0.3038,
1703
+ "step": 2420
1704
+ },
1705
+ {
1706
+ "epoch": 0.2925948223961469,
1707
+ "grad_norm": 0.5691916346549988,
1708
+ "learning_rate": 8.912524668108885e-07,
1709
+ "loss": 0.2901,
1710
+ "step": 2430
1711
+ },
1712
+ {
1713
+ "epoch": 0.2937989163154726,
1714
+ "grad_norm": 0.5999578833580017,
1715
+ "learning_rate": 8.899404144683724e-07,
1716
+ "loss": 0.2864,
1717
+ "step": 2440
1718
+ },
1719
+ {
1720
+ "epoch": 0.2950030102347983,
1721
+ "grad_norm": 0.6660271883010864,
1722
+ "learning_rate": 8.886214725709136e-07,
1723
+ "loss": 0.2866,
1724
+ "step": 2450
1725
+ },
1726
+ {
1727
+ "epoch": 0.29620710415412405,
1728
+ "grad_norm": 0.5501262545585632,
1729
+ "learning_rate": 8.872956644218742e-07,
1730
+ "loss": 0.2909,
1731
+ "step": 2460
1732
+ },
1733
+ {
1734
+ "epoch": 0.29741119807344973,
1735
+ "grad_norm": 0.44489532709121704,
1736
+ "learning_rate": 8.859630134459308e-07,
1737
+ "loss": 0.2869,
1738
+ "step": 2470
1739
+ },
1740
+ {
1741
+ "epoch": 0.2986152919927754,
1742
+ "grad_norm": 0.619097113609314,
1743
+ "learning_rate": 8.846235431886604e-07,
1744
+ "loss": 0.2782,
1745
+ "step": 2480
1746
+ },
1747
+ {
1748
+ "epoch": 0.29981938591210117,
1749
+ "grad_norm": 0.49712878465652466,
1750
+ "learning_rate": 8.832772773161251e-07,
1751
+ "loss": 0.2848,
1752
+ "step": 2490
1753
+ },
1754
+ {
1755
+ "epoch": 0.30102347983142685,
1756
+ "grad_norm": 0.46963346004486084,
1757
+ "learning_rate": 8.819242396144529e-07,
1758
+ "loss": 0.2915,
1759
+ "step": 2500
1760
+ },
1761
+ {
1762
+ "epoch": 0.30222757375075254,
1763
+ "grad_norm": 0.5881354212760925,
1764
+ "learning_rate": 8.805644539894181e-07,
1765
+ "loss": 0.2969,
1766
+ "step": 2510
1767
+ },
1768
+ {
1769
+ "epoch": 0.3034316676700783,
1770
+ "grad_norm": 0.5345028042793274,
1771
+ "learning_rate": 8.791979444660193e-07,
1772
+ "loss": 0.2985,
1773
+ "step": 2520
1774
+ },
1775
+ {
1776
+ "epoch": 0.304635761589404,
1777
+ "grad_norm": 0.5038124322891235,
1778
+ "learning_rate": 8.778247351880536e-07,
1779
+ "loss": 0.2931,
1780
+ "step": 2530
1781
+ },
1782
+ {
1783
+ "epoch": 0.30583985550872966,
1784
+ "grad_norm": 0.6723479628562927,
1785
+ "learning_rate": 8.764448504176919e-07,
1786
+ "loss": 0.2885,
1787
+ "step": 2540
1788
+ },
1789
+ {
1790
+ "epoch": 0.3070439494280554,
1791
+ "grad_norm": 0.474516361951828,
1792
+ "learning_rate": 8.750583145350483e-07,
1793
+ "loss": 0.2906,
1794
+ "step": 2550
1795
+ },
1796
+ {
1797
+ "epoch": 0.3082480433473811,
1798
+ "grad_norm": 0.509379506111145,
1799
+ "learning_rate": 8.736651520377507e-07,
1800
+ "loss": 0.2874,
1801
+ "step": 2560
1802
+ },
1803
+ {
1804
+ "epoch": 0.3094521372667068,
1805
+ "grad_norm": 0.9317507743835449,
1806
+ "learning_rate": 8.722653875405075e-07,
1807
+ "loss": 0.2891,
1808
+ "step": 2570
1809
+ },
1810
+ {
1811
+ "epoch": 0.3106562311860325,
1812
+ "grad_norm": 0.4634588360786438,
1813
+ "learning_rate": 8.708590457746727e-07,
1814
+ "loss": 0.284,
1815
+ "step": 2580
1816
+ },
1817
+ {
1818
+ "epoch": 0.3118603251053582,
1819
+ "grad_norm": 0.4674171209335327,
1820
+ "learning_rate": 8.694461515878088e-07,
1821
+ "loss": 0.2851,
1822
+ "step": 2590
1823
+ },
1824
+ {
1825
+ "epoch": 0.3130644190246839,
1826
+ "grad_norm": 0.4606451988220215,
1827
+ "learning_rate": 8.68026729943248e-07,
1828
+ "loss": 0.282,
1829
+ "step": 2600
1830
+ },
1831
+ {
1832
+ "epoch": 0.31426851294400965,
1833
+ "grad_norm": 0.5793256163597107,
1834
+ "learning_rate": 8.666008059196513e-07,
1835
+ "loss": 0.2852,
1836
+ "step": 2610
1837
+ },
1838
+ {
1839
+ "epoch": 0.31547260686333534,
1840
+ "grad_norm": 0.742026686668396,
1841
+ "learning_rate": 8.65168404710565e-07,
1842
+ "loss": 0.2909,
1843
+ "step": 2620
1844
+ },
1845
+ {
1846
+ "epoch": 0.316676700782661,
1847
+ "grad_norm": 0.469868928194046,
1848
+ "learning_rate": 8.637295516239757e-07,
1849
+ "loss": 0.2784,
1850
+ "step": 2630
1851
+ },
1852
+ {
1853
+ "epoch": 0.31788079470198677,
1854
+ "grad_norm": 0.6895257234573364,
1855
+ "learning_rate": 8.622842720818635e-07,
1856
+ "loss": 0.2849,
1857
+ "step": 2640
1858
+ },
1859
+ {
1860
+ "epoch": 0.31908488862131246,
1861
+ "grad_norm": 0.6843047142028809,
1862
+ "learning_rate": 8.608325916197524e-07,
1863
+ "loss": 0.2969,
1864
+ "step": 2650
1865
+ },
1866
+ {
1867
+ "epoch": 0.32028898254063815,
1868
+ "grad_norm": 2.822052240371704,
1869
+ "learning_rate": 8.593745358862592e-07,
1870
+ "loss": 0.2954,
1871
+ "step": 2660
1872
+ },
1873
+ {
1874
+ "epoch": 0.3214930764599639,
1875
+ "grad_norm": 0.5745678544044495,
1876
+ "learning_rate": 8.579101306426406e-07,
1877
+ "loss": 0.3005,
1878
+ "step": 2670
1879
+ },
1880
+ {
1881
+ "epoch": 0.3226971703792896,
1882
+ "grad_norm": 0.4625186026096344,
1883
+ "learning_rate": 8.564394017623378e-07,
1884
+ "loss": 0.2889,
1885
+ "step": 2680
1886
+ },
1887
+ {
1888
+ "epoch": 0.32390126429861527,
1889
+ "grad_norm": 0.5813141465187073,
1890
+ "learning_rate": 8.549623752305192e-07,
1891
+ "loss": 0.2926,
1892
+ "step": 2690
1893
+ },
1894
+ {
1895
+ "epoch": 0.325105358217941,
1896
+ "grad_norm": 0.49706658720970154,
1897
+ "learning_rate": 8.534790771436222e-07,
1898
+ "loss": 0.2884,
1899
+ "step": 2700
1900
+ },
1901
+ {
1902
+ "epoch": 0.3263094521372667,
1903
+ "grad_norm": 0.5477120280265808,
1904
+ "learning_rate": 8.519895337088907e-07,
1905
+ "loss": 0.2922,
1906
+ "step": 2710
1907
+ },
1908
+ {
1909
+ "epoch": 0.32751354605659244,
1910
+ "grad_norm": 1.157457709312439,
1911
+ "learning_rate": 8.504937712439131e-07,
1912
+ "loss": 0.2699,
1913
+ "step": 2720
1914
+ },
1915
+ {
1916
+ "epoch": 0.32871763997591813,
1917
+ "grad_norm": 0.5263344049453735,
1918
+ "learning_rate": 8.48991816176157e-07,
1919
+ "loss": 0.2888,
1920
+ "step": 2730
1921
+ },
1922
+ {
1923
+ "epoch": 0.3299217338952438,
1924
+ "grad_norm": 0.764481782913208,
1925
+ "learning_rate": 8.474836950425026e-07,
1926
+ "loss": 0.292,
1927
+ "step": 2740
1928
+ },
1929
+ {
1930
+ "epoch": 0.33112582781456956,
1931
+ "grad_norm": 0.5704035758972168,
1932
+ "learning_rate": 8.459694344887731e-07,
1933
+ "loss": 0.2928,
1934
+ "step": 2750
1935
+ },
1936
+ {
1937
+ "epoch": 0.33232992173389525,
1938
+ "grad_norm": 0.46473219990730286,
1939
+ "learning_rate": 8.444490612692645e-07,
1940
+ "loss": 0.2816,
1941
+ "step": 2760
1942
+ },
1943
+ {
1944
+ "epoch": 0.33353401565322094,
1945
+ "grad_norm": 0.5250662565231323,
1946
+ "learning_rate": 8.429226022462728e-07,
1947
+ "loss": 0.2881,
1948
+ "step": 2770
1949
+ },
1950
+ {
1951
+ "epoch": 0.3347381095725467,
1952
+ "grad_norm": 0.6085227727890015,
1953
+ "learning_rate": 8.413900843896193e-07,
1954
+ "loss": 0.3122,
1955
+ "step": 2780
1956
+ },
1957
+ {
1958
+ "epoch": 0.33594220349187237,
1959
+ "grad_norm": 0.7203246355056763,
1960
+ "learning_rate": 8.398515347761745e-07,
1961
+ "loss": 0.2911,
1962
+ "step": 2790
1963
+ },
1964
+ {
1965
+ "epoch": 0.33714629741119806,
1966
+ "grad_norm": 0.5305497050285339,
1967
+ "learning_rate": 8.383069805893784e-07,
1968
+ "loss": 0.2888,
1969
+ "step": 2800
1970
+ },
1971
+ {
1972
+ "epoch": 0.3383503913305238,
1973
+ "grad_norm": 0.5452449917793274,
1974
+ "learning_rate": 8.367564491187622e-07,
1975
+ "loss": 0.2866,
1976
+ "step": 2810
1977
+ },
1978
+ {
1979
+ "epoch": 0.3395544852498495,
1980
+ "grad_norm": 0.4815659523010254,
1981
+ "learning_rate": 8.351999677594645e-07,
1982
+ "loss": 0.2863,
1983
+ "step": 2820
1984
+ },
1985
+ {
1986
+ "epoch": 0.3407585791691752,
1987
+ "grad_norm": 0.5499128103256226,
1988
+ "learning_rate": 8.336375640117481e-07,
1989
+ "loss": 0.2865,
1990
+ "step": 2830
1991
+ },
1992
+ {
1993
+ "epoch": 0.3419626730885009,
1994
+ "grad_norm": 0.559804379940033,
1995
+ "learning_rate": 8.320692654805136e-07,
1996
+ "loss": 0.2833,
1997
+ "step": 2840
1998
+ },
1999
+ {
2000
+ "epoch": 0.3431667670078266,
2001
+ "grad_norm": 0.5070551633834839,
2002
+ "learning_rate": 8.304950998748124e-07,
2003
+ "loss": 0.2969,
2004
+ "step": 2850
2005
+ },
2006
+ {
2007
+ "epoch": 0.3443708609271523,
2008
+ "grad_norm": 0.5566725730895996,
2009
+ "learning_rate": 8.289150950073564e-07,
2010
+ "loss": 0.2814,
2011
+ "step": 2860
2012
+ },
2013
+ {
2014
+ "epoch": 0.34557495484647804,
2015
+ "grad_norm": 0.5421969890594482,
2016
+ "learning_rate": 8.273292787940268e-07,
2017
+ "loss": 0.2805,
2018
+ "step": 2870
2019
+ },
2020
+ {
2021
+ "epoch": 0.34677904876580373,
2022
+ "grad_norm": 0.49686506390571594,
2023
+ "learning_rate": 8.257376792533813e-07,
2024
+ "loss": 0.2872,
2025
+ "step": 2880
2026
+ },
2027
+ {
2028
+ "epoch": 0.3479831426851294,
2029
+ "grad_norm": 0.4665164649486542,
2030
+ "learning_rate": 8.241403245061584e-07,
2031
+ "loss": 0.2816,
2032
+ "step": 2890
2033
+ },
2034
+ {
2035
+ "epoch": 0.34918723660445516,
2036
+ "grad_norm": 0.4437556266784668,
2037
+ "learning_rate": 8.225372427747813e-07,
2038
+ "loss": 0.286,
2039
+ "step": 2900
2040
+ },
2041
+ {
2042
+ "epoch": 0.35039133052378085,
2043
+ "grad_norm": 0.5280335545539856,
2044
+ "learning_rate": 8.209284623828583e-07,
2045
+ "loss": 0.2895,
2046
+ "step": 2910
2047
+ },
2048
+ {
2049
+ "epoch": 0.35159542444310654,
2050
+ "grad_norm": 0.5298367142677307,
2051
+ "learning_rate": 8.193140117546832e-07,
2052
+ "loss": 0.282,
2053
+ "step": 2920
2054
+ },
2055
+ {
2056
+ "epoch": 0.3527995183624323,
2057
+ "grad_norm": 0.7123149633407593,
2058
+ "learning_rate": 8.176939194147329e-07,
2059
+ "loss": 0.2841,
2060
+ "step": 2930
2061
+ },
2062
+ {
2063
+ "epoch": 0.354003612281758,
2064
+ "grad_norm": 0.6565315127372742,
2065
+ "learning_rate": 8.160682139871632e-07,
2066
+ "loss": 0.2793,
2067
+ "step": 2940
2068
+ },
2069
+ {
2070
+ "epoch": 0.35520770620108366,
2071
+ "grad_norm": 0.7005172967910767,
2072
+ "learning_rate": 8.144369241953032e-07,
2073
+ "loss": 0.2854,
2074
+ "step": 2950
2075
+ },
2076
+ {
2077
+ "epoch": 0.3564118001204094,
2078
+ "grad_norm": 0.7468757033348083,
2079
+ "learning_rate": 8.128000788611478e-07,
2080
+ "loss": 0.2992,
2081
+ "step": 2960
2082
+ },
2083
+ {
2084
+ "epoch": 0.3576158940397351,
2085
+ "grad_norm": 0.5055456161499023,
2086
+ "learning_rate": 8.111577069048487e-07,
2087
+ "loss": 0.2979,
2088
+ "step": 2970
2089
+ },
2090
+ {
2091
+ "epoch": 0.3588199879590608,
2092
+ "grad_norm": 0.576806366443634,
2093
+ "learning_rate": 8.095098373442027e-07,
2094
+ "loss": 0.2915,
2095
+ "step": 2980
2096
+ },
2097
+ {
2098
+ "epoch": 0.3600240818783865,
2099
+ "grad_norm": 0.5598990321159363,
2100
+ "learning_rate": 8.078564992941401e-07,
2101
+ "loss": 0.2741,
2102
+ "step": 2990
2103
+ },
2104
+ {
2105
+ "epoch": 0.3612281757977122,
2106
+ "grad_norm": 0.5614596009254456,
2107
+ "learning_rate": 8.061977219662092e-07,
2108
+ "loss": 0.2913,
2109
+ "step": 3000
2110
+ },
2111
+ {
2112
+ "epoch": 0.3624322697170379,
2113
+ "grad_norm": 0.37974095344543457,
2114
+ "learning_rate": 8.045335346680611e-07,
2115
+ "loss": 0.2787,
2116
+ "step": 3010
2117
+ },
2118
+ {
2119
+ "epoch": 0.36363636363636365,
2120
+ "grad_norm": 0.6439441442489624,
2121
+ "learning_rate": 8.028639668029309e-07,
2122
+ "loss": 0.2868,
2123
+ "step": 3020
2124
+ },
2125
+ {
2126
+ "epoch": 0.36484045755568933,
2127
+ "grad_norm": 0.46323299407958984,
2128
+ "learning_rate": 8.011890478691196e-07,
2129
+ "loss": 0.2831,
2130
+ "step": 3030
2131
+ },
2132
+ {
2133
+ "epoch": 0.3660445514750151,
2134
+ "grad_norm": 0.4963575005531311,
2135
+ "learning_rate": 7.995088074594713e-07,
2136
+ "loss": 0.2782,
2137
+ "step": 3040
2138
+ },
2139
+ {
2140
+ "epoch": 0.36724864539434077,
2141
+ "grad_norm": 0.6179429888725281,
2142
+ "learning_rate": 7.978232752608516e-07,
2143
+ "loss": 0.2703,
2144
+ "step": 3050
2145
+ },
2146
+ {
2147
+ "epoch": 0.36845273931366646,
2148
+ "grad_norm": 0.5127160549163818,
2149
+ "learning_rate": 7.961324810536223e-07,
2150
+ "loss": 0.3007,
2151
+ "step": 3060
2152
+ },
2153
+ {
2154
+ "epoch": 0.3696568332329922,
2155
+ "grad_norm": 0.45177775621414185,
2156
+ "learning_rate": 7.94436454711116e-07,
2157
+ "loss": 0.288,
2158
+ "step": 3070
2159
+ },
2160
+ {
2161
+ "epoch": 0.3708609271523179,
2162
+ "grad_norm": 0.47144508361816406,
2163
+ "learning_rate": 7.927352261991074e-07,
2164
+ "loss": 0.2901,
2165
+ "step": 3080
2166
+ },
2167
+ {
2168
+ "epoch": 0.3720650210716436,
2169
+ "grad_norm": 0.5511527061462402,
2170
+ "learning_rate": 7.910288255752844e-07,
2171
+ "loss": 0.2754,
2172
+ "step": 3090
2173
+ },
2174
+ {
2175
+ "epoch": 0.3732691149909693,
2176
+ "grad_norm": 0.5164305567741394,
2177
+ "learning_rate": 7.893172829887171e-07,
2178
+ "loss": 0.2847,
2179
+ "step": 3100
2180
+ },
2181
+ {
2182
+ "epoch": 0.374473208910295,
2183
+ "grad_norm": 0.5629504919052124,
2184
+ "learning_rate": 7.876006286793251e-07,
2185
+ "loss": 0.2953,
2186
+ "step": 3110
2187
+ },
2188
+ {
2189
+ "epoch": 0.3756773028296207,
2190
+ "grad_norm": 0.513200044631958,
2191
+ "learning_rate": 7.858788929773422e-07,
2192
+ "loss": 0.2702,
2193
+ "step": 3120
2194
+ },
2195
+ {
2196
+ "epoch": 0.37688139674894644,
2197
+ "grad_norm": 0.504371166229248,
2198
+ "learning_rate": 7.841521063027825e-07,
2199
+ "loss": 0.2873,
2200
+ "step": 3130
2201
+ },
2202
+ {
2203
+ "epoch": 0.37808549066827213,
2204
+ "grad_norm": 0.613593578338623,
2205
+ "learning_rate": 7.824202991649013e-07,
2206
+ "loss": 0.27,
2207
+ "step": 3140
2208
+ },
2209
+ {
2210
+ "epoch": 0.3792895845875978,
2211
+ "grad_norm": 0.7345304489135742,
2212
+ "learning_rate": 7.806835021616564e-07,
2213
+ "loss": 0.2895,
2214
+ "step": 3150
2215
+ },
2216
+ {
2217
+ "epoch": 0.38049367850692356,
2218
+ "grad_norm": 0.48514464497566223,
2219
+ "learning_rate": 7.789417459791681e-07,
2220
+ "loss": 0.2809,
2221
+ "step": 3160
2222
+ },
2223
+ {
2224
+ "epoch": 0.38169777242624925,
2225
+ "grad_norm": 0.4638960063457489,
2226
+ "learning_rate": 7.77195061391176e-07,
2227
+ "loss": 0.2839,
2228
+ "step": 3170
2229
+ },
2230
+ {
2231
+ "epoch": 0.38290186634557494,
2232
+ "grad_norm": 0.5008341073989868,
2233
+ "learning_rate": 7.754434792584968e-07,
2234
+ "loss": 0.2701,
2235
+ "step": 3180
2236
+ },
2237
+ {
2238
+ "epoch": 0.3841059602649007,
2239
+ "grad_norm": 0.5258957743644714,
2240
+ "learning_rate": 7.73687030528477e-07,
2241
+ "loss": 0.2709,
2242
+ "step": 3190
2243
+ },
2244
+ {
2245
+ "epoch": 0.38531005418422637,
2246
+ "grad_norm": 0.5781968832015991,
2247
+ "learning_rate": 7.719257462344481e-07,
2248
+ "loss": 0.2994,
2249
+ "step": 3200
2250
+ },
2251
+ {
2252
+ "epoch": 0.38651414810355206,
2253
+ "grad_norm": 0.5485130548477173,
2254
+ "learning_rate": 7.701596574951771e-07,
2255
+ "loss": 0.3001,
2256
+ "step": 3210
2257
+ },
2258
+ {
2259
+ "epoch": 0.3877182420228778,
2260
+ "grad_norm": 0.4708418846130371,
2261
+ "learning_rate": 7.683887955143169e-07,
2262
+ "loss": 0.2736,
2263
+ "step": 3220
2264
+ },
2265
+ {
2266
+ "epoch": 0.3889223359422035,
2267
+ "grad_norm": 0.5321612358093262,
2268
+ "learning_rate": 7.666131915798556e-07,
2269
+ "loss": 0.2892,
2270
+ "step": 3230
2271
+ },
2272
+ {
2273
+ "epoch": 0.3901264298615292,
2274
+ "grad_norm": 0.524898111820221,
2275
+ "learning_rate": 7.648328770635623e-07,
2276
+ "loss": 0.2897,
2277
+ "step": 3240
2278
+ },
2279
+ {
2280
+ "epoch": 0.3913305237808549,
2281
+ "grad_norm": 0.4973953664302826,
2282
+ "learning_rate": 7.630478834204351e-07,
2283
+ "loss": 0.2804,
2284
+ "step": 3250
2285
+ },
2286
+ {
2287
+ "epoch": 0.3925346177001806,
2288
+ "grad_norm": 0.5439997315406799,
2289
+ "learning_rate": 7.612582421881423e-07,
2290
+ "loss": 0.2824,
2291
+ "step": 3260
2292
+ },
2293
+ {
2294
+ "epoch": 0.3937387116195063,
2295
+ "grad_norm": 0.5040695667266846,
2296
+ "learning_rate": 7.594639849864681e-07,
2297
+ "loss": 0.2806,
2298
+ "step": 3270
2299
+ },
2300
+ {
2301
+ "epoch": 0.39494280553883204,
2302
+ "grad_norm": 0.57867830991745,
2303
+ "learning_rate": 7.576651435167523e-07,
2304
+ "loss": 0.2788,
2305
+ "step": 3280
2306
+ },
2307
+ {
2308
+ "epoch": 0.39614689945815773,
2309
+ "grad_norm": 0.43785402178764343,
2310
+ "learning_rate": 7.558617495613304e-07,
2311
+ "loss": 0.272,
2312
+ "step": 3290
2313
+ },
2314
+ {
2315
+ "epoch": 0.3973509933774834,
2316
+ "grad_norm": 0.6042655110359192,
2317
+ "learning_rate": 7.540538349829725e-07,
2318
+ "loss": 0.2918,
2319
+ "step": 3300
2320
+ },
2321
+ {
2322
+ "epoch": 0.39855508729680916,
2323
+ "grad_norm": 0.6529451012611389,
2324
+ "learning_rate": 7.522414317243198e-07,
2325
+ "loss": 0.2882,
2326
+ "step": 3310
2327
+ },
2328
+ {
2329
+ "epoch": 0.39975918121613485,
2330
+ "grad_norm": 0.5043284296989441,
2331
+ "learning_rate": 7.50424571807321e-07,
2332
+ "loss": 0.2859,
2333
+ "step": 3320
2334
+ },
2335
+ {
2336
+ "epoch": 0.40096327513546054,
2337
+ "grad_norm": 0.44874584674835205,
2338
+ "learning_rate": 7.486032873326656e-07,
2339
+ "loss": 0.2912,
2340
+ "step": 3330
2341
+ },
2342
+ {
2343
+ "epoch": 0.4021673690547863,
2344
+ "grad_norm": 0.515211284160614,
2345
+ "learning_rate": 7.467776104792171e-07,
2346
+ "loss": 0.2747,
2347
+ "step": 3340
2348
+ },
2349
+ {
2350
+ "epoch": 0.40337146297411197,
2351
+ "grad_norm": 0.5425666570663452,
2352
+ "learning_rate": 7.449475735034453e-07,
2353
+ "loss": 0.2964,
2354
+ "step": 3350
2355
+ },
2356
+ {
2357
+ "epoch": 0.4045755568934377,
2358
+ "grad_norm": 0.5557084083557129,
2359
+ "learning_rate": 7.431132087388546e-07,
2360
+ "loss": 0.2809,
2361
+ "step": 3360
2362
+ },
2363
+ {
2364
+ "epoch": 0.4057796508127634,
2365
+ "grad_norm": 0.4438600540161133,
2366
+ "learning_rate": 7.412745485954144e-07,
2367
+ "loss": 0.269,
2368
+ "step": 3370
2369
+ },
2370
+ {
2371
+ "epoch": 0.4069837447320891,
2372
+ "grad_norm": 0.586608350276947,
2373
+ "learning_rate": 7.394316255589854e-07,
2374
+ "loss": 0.2848,
2375
+ "step": 3380
2376
+ },
2377
+ {
2378
+ "epoch": 0.40818783865141484,
2379
+ "grad_norm": 0.6429834961891174,
2380
+ "learning_rate": 7.375844721907466e-07,
2381
+ "loss": 0.2917,
2382
+ "step": 3390
2383
+ },
2384
+ {
2385
+ "epoch": 0.4093919325707405,
2386
+ "grad_norm": 0.5150188207626343,
2387
+ "learning_rate": 7.35733121126619e-07,
2388
+ "loss": 0.2772,
2389
+ "step": 3400
2390
+ },
2391
+ {
2392
+ "epoch": 0.4105960264900662,
2393
+ "grad_norm": 0.5537393093109131,
2394
+ "learning_rate": 7.338776050766896e-07,
2395
+ "loss": 0.2819,
2396
+ "step": 3410
2397
+ },
2398
+ {
2399
+ "epoch": 0.41180012040939196,
2400
+ "grad_norm": 0.4834784269332886,
2401
+ "learning_rate": 7.320179568246333e-07,
2402
+ "loss": 0.2851,
2403
+ "step": 3420
2404
+ },
2405
+ {
2406
+ "epoch": 0.41300421432871764,
2407
+ "grad_norm": 0.6806831955909729,
2408
+ "learning_rate": 7.301542092271337e-07,
2409
+ "loss": 0.2841,
2410
+ "step": 3430
2411
+ },
2412
+ {
2413
+ "epoch": 0.41420830824804333,
2414
+ "grad_norm": 0.5081019997596741,
2415
+ "learning_rate": 7.282863952133022e-07,
2416
+ "loss": 0.2763,
2417
+ "step": 3440
2418
+ },
2419
+ {
2420
+ "epoch": 0.4154124021673691,
2421
+ "grad_norm": 0.5681424140930176,
2422
+ "learning_rate": 7.264145477840974e-07,
2423
+ "loss": 0.2719,
2424
+ "step": 3450
2425
+ },
2426
+ {
2427
+ "epoch": 0.41661649608669477,
2428
+ "grad_norm": 0.6257504820823669,
2429
+ "learning_rate": 7.245387000117404e-07,
2430
+ "loss": 0.2813,
2431
+ "step": 3460
2432
+ },
2433
+ {
2434
+ "epoch": 0.41782059000602045,
2435
+ "grad_norm": 0.5195356607437134,
2436
+ "learning_rate": 7.226588850391317e-07,
2437
+ "loss": 0.2761,
2438
+ "step": 3470
2439
+ },
2440
+ {
2441
+ "epoch": 0.4190246839253462,
2442
+ "grad_norm": 0.5490323305130005,
2443
+ "learning_rate": 7.207751360792647e-07,
2444
+ "loss": 0.291,
2445
+ "step": 3480
2446
+ },
2447
+ {
2448
+ "epoch": 0.4202287778446719,
2449
+ "grad_norm": 0.6458017230033875,
2450
+ "learning_rate": 7.188874864146397e-07,
2451
+ "loss": 0.2919,
2452
+ "step": 3490
2453
+ },
2454
+ {
2455
+ "epoch": 0.4214328717639976,
2456
+ "grad_norm": 0.5081551671028137,
2457
+ "learning_rate": 7.16995969396676e-07,
2458
+ "loss": 0.2762,
2459
+ "step": 3500
2460
+ },
2461
+ {
2462
+ "epoch": 0.4226369656833233,
2463
+ "grad_norm": 0.6496263742446899,
2464
+ "learning_rate": 7.151006184451212e-07,
2465
+ "loss": 0.2766,
2466
+ "step": 3510
2467
+ },
2468
+ {
2469
+ "epoch": 0.423841059602649,
2470
+ "grad_norm": 0.6383594870567322,
2471
+ "learning_rate": 7.132014670474625e-07,
2472
+ "loss": 0.2829,
2473
+ "step": 3520
2474
+ },
2475
+ {
2476
+ "epoch": 0.4250451535219747,
2477
+ "grad_norm": 0.6374247074127197,
2478
+ "learning_rate": 7.112985487583333e-07,
2479
+ "loss": 0.2776,
2480
+ "step": 3530
2481
+ },
2482
+ {
2483
+ "epoch": 0.42624924744130044,
2484
+ "grad_norm": 0.48250874876976013,
2485
+ "learning_rate": 7.093918971989229e-07,
2486
+ "loss": 0.2794,
2487
+ "step": 3540
2488
+ },
2489
+ {
2490
+ "epoch": 0.4274533413606261,
2491
+ "grad_norm": 0.5055521726608276,
2492
+ "learning_rate": 7.07481546056379e-07,
2493
+ "loss": 0.2818,
2494
+ "step": 3550
2495
+ },
2496
+ {
2497
+ "epoch": 0.4286574352799518,
2498
+ "grad_norm": 0.558320164680481,
2499
+ "learning_rate": 7.055675290832157e-07,
2500
+ "loss": 0.29,
2501
+ "step": 3560
2502
+ },
2503
+ {
2504
+ "epoch": 0.42986152919927756,
2505
+ "grad_norm": 0.54196697473526,
2506
+ "learning_rate": 7.036498800967153e-07,
2507
+ "loss": 0.2819,
2508
+ "step": 3570
2509
+ },
2510
+ {
2511
+ "epoch": 0.43106562311860325,
2512
+ "grad_norm": 0.5442371368408203,
2513
+ "learning_rate": 7.017286329783314e-07,
2514
+ "loss": 0.3044,
2515
+ "step": 3580
2516
+ },
2517
+ {
2518
+ "epoch": 0.43226971703792894,
2519
+ "grad_norm": 0.531579315662384,
2520
+ "learning_rate": 6.9980382167309e-07,
2521
+ "loss": 0.2875,
2522
+ "step": 3590
2523
+ },
2524
+ {
2525
+ "epoch": 0.4334738109572547,
2526
+ "grad_norm": 0.6069034934043884,
2527
+ "learning_rate": 6.978754801889902e-07,
2528
+ "loss": 0.2915,
2529
+ "step": 3600
2530
+ },
2531
+ {
2532
+ "epoch": 0.43467790487658037,
2533
+ "grad_norm": 0.5376235246658325,
2534
+ "learning_rate": 6.959436425964033e-07,
2535
+ "loss": 0.2768,
2536
+ "step": 3610
2537
+ },
2538
+ {
2539
+ "epoch": 0.43588199879590606,
2540
+ "grad_norm": 0.5438763499259949,
2541
+ "learning_rate": 6.9400834302747e-07,
2542
+ "loss": 0.2911,
2543
+ "step": 3620
2544
+ },
2545
+ {
2546
+ "epoch": 0.4370860927152318,
2547
+ "grad_norm": 0.4325105547904968,
2548
+ "learning_rate": 6.920696156754985e-07,
2549
+ "loss": 0.269,
2550
+ "step": 3630
2551
+ },
2552
+ {
2553
+ "epoch": 0.4382901866345575,
2554
+ "grad_norm": 0.5107905864715576,
2555
+ "learning_rate": 6.901274947943597e-07,
2556
+ "loss": 0.2754,
2557
+ "step": 3640
2558
+ },
2559
+ {
2560
+ "epoch": 0.4394942805538832,
2561
+ "grad_norm": 0.5302306413650513,
2562
+ "learning_rate": 6.881820146978822e-07,
2563
+ "loss": 0.2835,
2564
+ "step": 3650
2565
+ },
2566
+ {
2567
+ "epoch": 0.4406983744732089,
2568
+ "grad_norm": 0.5489309430122375,
2569
+ "learning_rate": 6.862332097592457e-07,
2570
+ "loss": 0.2746,
2571
+ "step": 3660
2572
+ },
2573
+ {
2574
+ "epoch": 0.4419024683925346,
2575
+ "grad_norm": 0.4515032172203064,
2576
+ "learning_rate": 6.842811144103743e-07,
2577
+ "loss": 0.2829,
2578
+ "step": 3670
2579
+ },
2580
+ {
2581
+ "epoch": 0.44310656231186035,
2582
+ "grad_norm": 0.5359588861465454,
2583
+ "learning_rate": 6.823257631413275e-07,
2584
+ "loss": 0.2826,
2585
+ "step": 3680
2586
+ },
2587
+ {
2588
+ "epoch": 0.44431065623118604,
2589
+ "grad_norm": 0.49561506509780884,
2590
+ "learning_rate": 6.803671904996916e-07,
2591
+ "loss": 0.2946,
2592
+ "step": 3690
2593
+ },
2594
+ {
2595
+ "epoch": 0.44551475015051173,
2596
+ "grad_norm": 0.43841075897216797,
2597
+ "learning_rate": 6.784054310899683e-07,
2598
+ "loss": 0.2802,
2599
+ "step": 3700
2600
+ },
2601
+ {
2602
+ "epoch": 0.4467188440698375,
2603
+ "grad_norm": 0.7528261542320251,
2604
+ "learning_rate": 6.764405195729639e-07,
2605
+ "loss": 0.2829,
2606
+ "step": 3710
2607
+ },
2608
+ {
2609
+ "epoch": 0.44792293798916316,
2610
+ "grad_norm": 1.1440777778625488,
2611
+ "learning_rate": 6.744724906651774e-07,
2612
+ "loss": 0.2665,
2613
+ "step": 3720
2614
+ },
2615
+ {
2616
+ "epoch": 0.44912703190848885,
2617
+ "grad_norm": 0.5153807997703552,
2618
+ "learning_rate": 6.72501379138186e-07,
2619
+ "loss": 0.2754,
2620
+ "step": 3730
2621
+ },
2622
+ {
2623
+ "epoch": 0.4503311258278146,
2624
+ "grad_norm": 0.582036554813385,
2625
+ "learning_rate": 6.705272198180312e-07,
2626
+ "loss": 0.2818,
2627
+ "step": 3740
2628
+ },
2629
+ {
2630
+ "epoch": 0.4515352197471403,
2631
+ "grad_norm": 0.7196856737136841,
2632
+ "learning_rate": 6.685500475846044e-07,
2633
+ "loss": 0.2744,
2634
+ "step": 3750
2635
+ },
2636
+ {
2637
+ "epoch": 0.45273931366646597,
2638
+ "grad_norm": 1.0595272779464722,
2639
+ "learning_rate": 6.665698973710288e-07,
2640
+ "loss": 0.2602,
2641
+ "step": 3760
2642
+ },
2643
+ {
2644
+ "epoch": 0.4539434075857917,
2645
+ "grad_norm": 0.4910378158092499,
2646
+ "learning_rate": 6.645868041630439e-07,
2647
+ "loss": 0.2887,
2648
+ "step": 3770
2649
+ },
2650
+ {
2651
+ "epoch": 0.4551475015051174,
2652
+ "grad_norm": 0.4395122230052948,
2653
+ "learning_rate": 6.626008029983867e-07,
2654
+ "loss": 0.2771,
2655
+ "step": 3780
2656
+ },
2657
+ {
2658
+ "epoch": 0.4563515954244431,
2659
+ "grad_norm": 0.5630185008049011,
2660
+ "learning_rate": 6.606119289661721e-07,
2661
+ "loss": 0.2976,
2662
+ "step": 3790
2663
+ },
2664
+ {
2665
+ "epoch": 0.45755568934376883,
2666
+ "grad_norm": 0.6062456965446472,
2667
+ "learning_rate": 6.58620217206274e-07,
2668
+ "loss": 0.2707,
2669
+ "step": 3800
2670
+ },
2671
+ {
2672
+ "epoch": 0.4587597832630945,
2673
+ "grad_norm": 0.6882142424583435,
2674
+ "learning_rate": 6.566257029087039e-07,
2675
+ "loss": 0.2732,
2676
+ "step": 3810
2677
+ },
2678
+ {
2679
+ "epoch": 0.4599638771824202,
2680
+ "grad_norm": 0.4631926417350769,
2681
+ "learning_rate": 6.546284213129885e-07,
2682
+ "loss": 0.2794,
2683
+ "step": 3820
2684
+ },
2685
+ {
2686
+ "epoch": 0.46116797110174595,
2687
+ "grad_norm": 0.4465793967247009,
2688
+ "learning_rate": 6.526284077075488e-07,
2689
+ "loss": 0.2809,
2690
+ "step": 3830
2691
+ },
2692
+ {
2693
+ "epoch": 0.46237206502107164,
2694
+ "grad_norm": 0.5073222517967224,
2695
+ "learning_rate": 6.506256974290747e-07,
2696
+ "loss": 0.2908,
2697
+ "step": 3840
2698
+ },
2699
+ {
2700
+ "epoch": 0.46357615894039733,
2701
+ "grad_norm": 0.5717306137084961,
2702
+ "learning_rate": 6.486203258619016e-07,
2703
+ "loss": 0.282,
2704
+ "step": 3850
2705
+ },
2706
+ {
2707
+ "epoch": 0.4647802528597231,
2708
+ "grad_norm": 0.5614638924598694,
2709
+ "learning_rate": 6.466123284373858e-07,
2710
+ "loss": 0.2764,
2711
+ "step": 3860
2712
+ },
2713
+ {
2714
+ "epoch": 0.46598434677904876,
2715
+ "grad_norm": 0.626006007194519,
2716
+ "learning_rate": 6.446017406332772e-07,
2717
+ "loss": 0.277,
2718
+ "step": 3870
2719
+ },
2720
+ {
2721
+ "epoch": 0.46718844069837445,
2722
+ "grad_norm": 0.47509709000587463,
2723
+ "learning_rate": 6.425885979730933e-07,
2724
+ "loss": 0.2828,
2725
+ "step": 3880
2726
+ },
2727
+ {
2728
+ "epoch": 0.4683925346177002,
2729
+ "grad_norm": 0.5545176267623901,
2730
+ "learning_rate": 6.405729360254914e-07,
2731
+ "loss": 0.2893,
2732
+ "step": 3890
2733
+ },
2734
+ {
2735
+ "epoch": 0.4695966285370259,
2736
+ "grad_norm": 0.4888879060745239,
2737
+ "learning_rate": 6.3855479040364e-07,
2738
+ "loss": 0.2811,
2739
+ "step": 3900
2740
+ },
2741
+ {
2742
+ "epoch": 0.4708007224563516,
2743
+ "grad_norm": 0.44063079357147217,
2744
+ "learning_rate": 6.365341967645902e-07,
2745
+ "loss": 0.2782,
2746
+ "step": 3910
2747
+ },
2748
+ {
2749
+ "epoch": 0.4720048163756773,
2750
+ "grad_norm": 0.5356207489967346,
2751
+ "learning_rate": 6.345111908086444e-07,
2752
+ "loss": 0.2658,
2753
+ "step": 3920
2754
+ },
2755
+ {
2756
+ "epoch": 0.473208910295003,
2757
+ "grad_norm": 0.5134460926055908,
2758
+ "learning_rate": 6.324858082787275e-07,
2759
+ "loss": 0.2782,
2760
+ "step": 3930
2761
+ },
2762
+ {
2763
+ "epoch": 0.4744130042143287,
2764
+ "grad_norm": 0.5685980916023254,
2765
+ "learning_rate": 6.304580849597527e-07,
2766
+ "loss": 0.2704,
2767
+ "step": 3940
2768
+ },
2769
+ {
2770
+ "epoch": 0.47561709813365444,
2771
+ "grad_norm": 0.8610411286354065,
2772
+ "learning_rate": 6.284280566779923e-07,
2773
+ "loss": 0.29,
2774
+ "step": 3950
2775
+ },
2776
+ {
2777
+ "epoch": 0.4768211920529801,
2778
+ "grad_norm": 0.5496920943260193,
2779
+ "learning_rate": 6.263957593004421e-07,
2780
+ "loss": 0.2704,
2781
+ "step": 3960
2782
+ },
2783
+ {
2784
+ "epoch": 0.4780252859723058,
2785
+ "grad_norm": 0.4593532383441925,
2786
+ "learning_rate": 6.243612287341896e-07,
2787
+ "loss": 0.2806,
2788
+ "step": 3970
2789
+ },
2790
+ {
2791
+ "epoch": 0.47922937989163156,
2792
+ "grad_norm": 0.5178139805793762,
2793
+ "learning_rate": 6.223245009257783e-07,
2794
+ "loss": 0.2683,
2795
+ "step": 3980
2796
+ },
2797
+ {
2798
+ "epoch": 0.48043347381095725,
2799
+ "grad_norm": 0.6350088119506836,
2800
+ "learning_rate": 6.20285611860573e-07,
2801
+ "loss": 0.2796,
2802
+ "step": 3990
2803
+ },
2804
+ {
2805
+ "epoch": 0.481637567730283,
2806
+ "grad_norm": 0.4848230183124542,
2807
+ "learning_rate": 6.182445975621246e-07,
2808
+ "loss": 0.2727,
2809
+ "step": 4000
2810
+ },
2811
+ {
2812
+ "epoch": 0.4828416616496087,
2813
+ "grad_norm": 0.6039783358573914,
2814
+ "learning_rate": 6.162014940915323e-07,
2815
+ "loss": 0.295,
2816
+ "step": 4010
2817
+ },
2818
+ {
2819
+ "epoch": 0.48404575556893437,
2820
+ "grad_norm": 0.5623034834861755,
2821
+ "learning_rate": 6.141563375468082e-07,
2822
+ "loss": 0.2843,
2823
+ "step": 4020
2824
+ },
2825
+ {
2826
+ "epoch": 0.4852498494882601,
2827
+ "grad_norm": 0.5298231244087219,
2828
+ "learning_rate": 6.12109164062238e-07,
2829
+ "loss": 0.2685,
2830
+ "step": 4030
2831
+ },
2832
+ {
2833
+ "epoch": 0.4864539434075858,
2834
+ "grad_norm": 0.49439486861228943,
2835
+ "learning_rate": 6.100600098077431e-07,
2836
+ "loss": 0.2588,
2837
+ "step": 4040
2838
+ },
2839
+ {
2840
+ "epoch": 0.4876580373269115,
2841
+ "grad_norm": 0.4667768180370331,
2842
+ "learning_rate": 6.080089109882418e-07,
2843
+ "loss": 0.275,
2844
+ "step": 4050
2845
+ },
2846
+ {
2847
+ "epoch": 0.48886213124623723,
2848
+ "grad_norm": 0.5490863919258118,
2849
+ "learning_rate": 6.059559038430094e-07,
2850
+ "loss": 0.2837,
2851
+ "step": 4060
2852
+ },
2853
+ {
2854
+ "epoch": 0.4900662251655629,
2855
+ "grad_norm": 0.467192143201828,
2856
+ "learning_rate": 6.039010246450376e-07,
2857
+ "loss": 0.2733,
2858
+ "step": 4070
2859
+ },
2860
+ {
2861
+ "epoch": 0.4912703190848886,
2862
+ "grad_norm": 0.49663642048835754,
2863
+ "learning_rate": 6.018443097003945e-07,
2864
+ "loss": 0.2738,
2865
+ "step": 4080
2866
+ },
2867
+ {
2868
+ "epoch": 0.49247441300421435,
2869
+ "grad_norm": 0.501777708530426,
2870
+ "learning_rate": 5.997857953475823e-07,
2871
+ "loss": 0.2743,
2872
+ "step": 4090
2873
+ },
2874
+ {
2875
+ "epoch": 0.49367850692354004,
2876
+ "grad_norm": 0.5064652562141418,
2877
+ "learning_rate": 5.977255179568955e-07,
2878
+ "loss": 0.2748,
2879
+ "step": 4100
2880
+ },
2881
+ {
2882
+ "epoch": 0.4948826008428657,
2883
+ "grad_norm": 0.6248656511306763,
2884
+ "learning_rate": 5.956635139297783e-07,
2885
+ "loss": 0.2765,
2886
+ "step": 4110
2887
+ },
2888
+ {
2889
+ "epoch": 0.49608669476219147,
2890
+ "grad_norm": 0.45688706636428833,
2891
+ "learning_rate": 5.935998196981817e-07,
2892
+ "loss": 0.271,
2893
+ "step": 4120
2894
+ },
2895
+ {
2896
+ "epoch": 0.49729078868151716,
2897
+ "grad_norm": 0.7225250601768494,
2898
+ "learning_rate": 5.915344717239197e-07,
2899
+ "loss": 0.2853,
2900
+ "step": 4130
2901
+ },
2902
+ {
2903
+ "epoch": 0.49849488260084285,
2904
+ "grad_norm": 0.5863081812858582,
2905
+ "learning_rate": 5.894675064980246e-07,
2906
+ "loss": 0.2685,
2907
+ "step": 4140
2908
+ },
2909
+ {
2910
+ "epoch": 0.4996989765201686,
2911
+ "grad_norm": 0.5770187973976135,
2912
+ "learning_rate": 5.87398960540103e-07,
2913
+ "loss": 0.2774,
2914
+ "step": 4150
2915
+ },
2916
+ {
2917
+ "epoch": 0.5009030704394943,
2918
+ "grad_norm": 0.41943806409835815,
2919
+ "learning_rate": 5.8532887039769e-07,
2920
+ "loss": 0.2622,
2921
+ "step": 4160
2922
+ },
2923
+ {
2924
+ "epoch": 0.50210716435882,
2925
+ "grad_norm": 0.6374907493591309,
2926
+ "learning_rate": 5.832572726456039e-07,
2927
+ "loss": 0.2858,
2928
+ "step": 4170
2929
+ },
2930
+ {
2931
+ "epoch": 0.5033112582781457,
2932
+ "grad_norm": 0.5210843086242676,
2933
+ "learning_rate": 5.811842038852996e-07,
2934
+ "loss": 0.2706,
2935
+ "step": 4180
2936
+ },
2937
+ {
2938
+ "epoch": 0.5045153521974715,
2939
+ "grad_norm": 0.596387505531311,
2940
+ "learning_rate": 5.791097007442222e-07,
2941
+ "loss": 0.2823,
2942
+ "step": 4190
2943
+ },
2944
+ {
2945
+ "epoch": 0.5057194461167971,
2946
+ "grad_norm": 0.6676878929138184,
2947
+ "learning_rate": 5.7703379987516e-07,
2948
+ "loss": 0.2848,
2949
+ "step": 4200
2950
+ },
2951
+ {
2952
+ "epoch": 0.5069235400361228,
2953
+ "grad_norm": 0.6097555160522461,
2954
+ "learning_rate": 5.749565379555961e-07,
2955
+ "loss": 0.2766,
2956
+ "step": 4210
2957
+ },
2958
+ {
2959
+ "epoch": 0.5081276339554486,
2960
+ "grad_norm": 0.6043739318847656,
2961
+ "learning_rate": 5.728779516870615e-07,
2962
+ "loss": 0.2885,
2963
+ "step": 4220
2964
+ },
2965
+ {
2966
+ "epoch": 0.5093317278747742,
2967
+ "grad_norm": 0.5565124750137329,
2968
+ "learning_rate": 5.707980777944859e-07,
2969
+ "loss": 0.2643,
2970
+ "step": 4230
2971
+ },
2972
+ {
2973
+ "epoch": 0.5105358217941,
2974
+ "grad_norm": 0.49649959802627563,
2975
+ "learning_rate": 5.687169530255487e-07,
2976
+ "loss": 0.2672,
2977
+ "step": 4240
2978
+ },
2979
+ {
2980
+ "epoch": 0.5117399157134257,
2981
+ "grad_norm": 0.49968451261520386,
2982
+ "learning_rate": 5.666346141500307e-07,
2983
+ "loss": 0.2754,
2984
+ "step": 4250
2985
+ },
2986
+ {
2987
+ "epoch": 0.5129440096327513,
2988
+ "grad_norm": 0.4982677698135376,
2989
+ "learning_rate": 5.645510979591634e-07,
2990
+ "loss": 0.2785,
2991
+ "step": 4260
2992
+ },
2993
+ {
2994
+ "epoch": 0.5141481035520771,
2995
+ "grad_norm": 0.904083251953125,
2996
+ "learning_rate": 5.624664412649797e-07,
2997
+ "loss": 0.2833,
2998
+ "step": 4270
2999
+ },
3000
+ {
3001
+ "epoch": 0.5153521974714028,
3002
+ "grad_norm": 0.5038682222366333,
3003
+ "learning_rate": 5.603806808996625e-07,
3004
+ "loss": 0.2746,
3005
+ "step": 4280
3006
+ },
3007
+ {
3008
+ "epoch": 0.5165562913907285,
3009
+ "grad_norm": 0.7115175724029541,
3010
+ "learning_rate": 5.58293853714895e-07,
3011
+ "loss": 0.2712,
3012
+ "step": 4290
3013
+ },
3014
+ {
3015
+ "epoch": 0.5177603853100542,
3016
+ "grad_norm": 0.5522176027297974,
3017
+ "learning_rate": 5.562059965812097e-07,
3018
+ "loss": 0.2869,
3019
+ "step": 4300
3020
+ },
3021
+ {
3022
+ "epoch": 0.5189644792293799,
3023
+ "grad_norm": 0.6081178784370422,
3024
+ "learning_rate": 5.541171463873357e-07,
3025
+ "loss": 0.2751,
3026
+ "step": 4310
3027
+ },
3028
+ {
3029
+ "epoch": 0.5201685731487056,
3030
+ "grad_norm": 0.5689599514007568,
3031
+ "learning_rate": 5.52027340039548e-07,
3032
+ "loss": 0.2875,
3033
+ "step": 4320
3034
+ },
3035
+ {
3036
+ "epoch": 0.5213726670680313,
3037
+ "grad_norm": 0.43370601534843445,
3038
+ "learning_rate": 5.499366144610153e-07,
3039
+ "loss": 0.2673,
3040
+ "step": 4330
3041
+ },
3042
+ {
3043
+ "epoch": 0.5225767609873571,
3044
+ "grad_norm": 0.5115625262260437,
3045
+ "learning_rate": 5.478450065911473e-07,
3046
+ "loss": 0.2791,
3047
+ "step": 4340
3048
+ },
3049
+ {
3050
+ "epoch": 0.5237808549066827,
3051
+ "grad_norm": 0.518798291683197,
3052
+ "learning_rate": 5.45752553384942e-07,
3053
+ "loss": 0.277,
3054
+ "step": 4350
3055
+ },
3056
+ {
3057
+ "epoch": 0.5249849488260084,
3058
+ "grad_norm": 0.5628324151039124,
3059
+ "learning_rate": 5.436592918123337e-07,
3060
+ "loss": 0.2884,
3061
+ "step": 4360
3062
+ },
3063
+ {
3064
+ "epoch": 0.5261890427453342,
3065
+ "grad_norm": 0.47458890080451965,
3066
+ "learning_rate": 5.415652588575385e-07,
3067
+ "loss": 0.27,
3068
+ "step": 4370
3069
+ },
3070
+ {
3071
+ "epoch": 0.5273931366646598,
3072
+ "grad_norm": 0.6163709759712219,
3073
+ "learning_rate": 5.394704915184014e-07,
3074
+ "loss": 0.2643,
3075
+ "step": 4380
3076
+ },
3077
+ {
3078
+ "epoch": 0.5285972305839856,
3079
+ "grad_norm": 0.44985631108283997,
3080
+ "learning_rate": 5.373750268057431e-07,
3081
+ "loss": 0.2774,
3082
+ "step": 4390
3083
+ },
3084
+ {
3085
+ "epoch": 0.5298013245033113,
3086
+ "grad_norm": 0.47572416067123413,
3087
+ "learning_rate": 5.352789017427052e-07,
3088
+ "loss": 0.278,
3089
+ "step": 4400
3090
+ },
3091
+ {
3092
+ "epoch": 0.5310054184226369,
3093
+ "grad_norm": 0.5311432480812073,
3094
+ "learning_rate": 5.33182153364097e-07,
3095
+ "loss": 0.283,
3096
+ "step": 4410
3097
+ },
3098
+ {
3099
+ "epoch": 0.5322095123419627,
3100
+ "grad_norm": 0.5810163617134094,
3101
+ "learning_rate": 5.310848187157403e-07,
3102
+ "loss": 0.257,
3103
+ "step": 4420
3104
+ },
3105
+ {
3106
+ "epoch": 0.5334136062612884,
3107
+ "grad_norm": 0.8989514708518982,
3108
+ "learning_rate": 5.289869348538153e-07,
3109
+ "loss": 0.2846,
3110
+ "step": 4430
3111
+ },
3112
+ {
3113
+ "epoch": 0.534617700180614,
3114
+ "grad_norm": 0.4534051716327667,
3115
+ "learning_rate": 5.26888538844206e-07,
3116
+ "loss": 0.2836,
3117
+ "step": 4440
3118
+ },
3119
+ {
3120
+ "epoch": 0.5358217940999398,
3121
+ "grad_norm": 0.4670819938182831,
3122
+ "learning_rate": 5.247896677618452e-07,
3123
+ "loss": 0.2614,
3124
+ "step": 4450
3125
+ },
3126
+ {
3127
+ "epoch": 0.5370258880192655,
3128
+ "grad_norm": 0.5935913324356079,
3129
+ "learning_rate": 5.226903586900587e-07,
3130
+ "loss": 0.2826,
3131
+ "step": 4460
3132
+ },
3133
+ {
3134
+ "epoch": 0.5382299819385912,
3135
+ "grad_norm": 0.45839351415634155,
3136
+ "learning_rate": 5.205906487199119e-07,
3137
+ "loss": 0.2514,
3138
+ "step": 4470
3139
+ },
3140
+ {
3141
+ "epoch": 0.5394340758579169,
3142
+ "grad_norm": 0.4929831624031067,
3143
+ "learning_rate": 5.184905749495525e-07,
3144
+ "loss": 0.2815,
3145
+ "step": 4480
3146
+ },
3147
+ {
3148
+ "epoch": 0.5406381697772427,
3149
+ "grad_norm": 0.529437780380249,
3150
+ "learning_rate": 5.163901744835564e-07,
3151
+ "loss": 0.2744,
3152
+ "step": 4490
3153
+ },
3154
+ {
3155
+ "epoch": 0.5418422636965683,
3156
+ "grad_norm": 0.44370970129966736,
3157
+ "learning_rate": 5.14289484432271e-07,
3158
+ "loss": 0.2837,
3159
+ "step": 4500
3160
+ },
3161
+ {
3162
+ "epoch": 0.543046357615894,
3163
+ "grad_norm": 0.46680358052253723,
3164
+ "learning_rate": 5.121885419111611e-07,
3165
+ "loss": 0.2833,
3166
+ "step": 4510
3167
+ },
3168
+ {
3169
+ "epoch": 0.5442504515352198,
3170
+ "grad_norm": 0.5581067204475403,
3171
+ "learning_rate": 5.100873840401513e-07,
3172
+ "loss": 0.2846,
3173
+ "step": 4520
3174
+ },
3175
+ {
3176
+ "epoch": 0.5454545454545454,
3177
+ "grad_norm": 0.4683559238910675,
3178
+ "learning_rate": 5.079860479429718e-07,
3179
+ "loss": 0.2666,
3180
+ "step": 4530
3181
+ },
3182
+ {
3183
+ "epoch": 0.5466586393738712,
3184
+ "grad_norm": 0.464067280292511,
3185
+ "learning_rate": 5.058845707465009e-07,
3186
+ "loss": 0.2693,
3187
+ "step": 4540
3188
+ },
3189
+ {
3190
+ "epoch": 0.5478627332931969,
3191
+ "grad_norm": 0.5715063214302063,
3192
+ "learning_rate": 5.037829895801106e-07,
3193
+ "loss": 0.2746,
3194
+ "step": 4550
3195
+ },
3196
+ {
3197
+ "epoch": 0.5490668272125225,
3198
+ "grad_norm": 0.585356593132019,
3199
+ "learning_rate": 5.016813415750097e-07,
3200
+ "loss": 0.281,
3201
+ "step": 4560
3202
+ },
3203
+ {
3204
+ "epoch": 0.5502709211318483,
3205
+ "grad_norm": 0.4893047511577606,
3206
+ "learning_rate": 4.995796638635875e-07,
3207
+ "loss": 0.2799,
3208
+ "step": 4570
3209
+ },
3210
+ {
3211
+ "epoch": 0.551475015051174,
3212
+ "grad_norm": 1.0689632892608643,
3213
+ "learning_rate": 4.974779935787589e-07,
3214
+ "loss": 0.2574,
3215
+ "step": 4580
3216
+ },
3217
+ {
3218
+ "epoch": 0.5526791089704997,
3219
+ "grad_norm": 0.6054455637931824,
3220
+ "learning_rate": 4.953763678533068e-07,
3221
+ "loss": 0.2635,
3222
+ "step": 4590
3223
+ },
3224
+ {
3225
+ "epoch": 0.5538832028898254,
3226
+ "grad_norm": 0.46325477957725525,
3227
+ "learning_rate": 4.932748238192273e-07,
3228
+ "loss": 0.2769,
3229
+ "step": 4600
3230
+ },
3231
+ {
3232
+ "epoch": 0.5550872968091511,
3233
+ "grad_norm": 0.5770764350891113,
3234
+ "learning_rate": 4.911733986070735e-07,
3235
+ "loss": 0.2671,
3236
+ "step": 4610
3237
+ },
3238
+ {
3239
+ "epoch": 0.5562913907284768,
3240
+ "grad_norm": 0.5715611577033997,
3241
+ "learning_rate": 4.890721293452979e-07,
3242
+ "loss": 0.2917,
3243
+ "step": 4620
3244
+ },
3245
+ {
3246
+ "epoch": 0.5574954846478025,
3247
+ "grad_norm": 0.5384266972541809,
3248
+ "learning_rate": 4.869710531595988e-07,
3249
+ "loss": 0.2771,
3250
+ "step": 4630
3251
+ },
3252
+ {
3253
+ "epoch": 0.5586995785671283,
3254
+ "grad_norm": 0.4611688256263733,
3255
+ "learning_rate": 4.848702071722629e-07,
3256
+ "loss": 0.2828,
3257
+ "step": 4640
3258
+ },
3259
+ {
3260
+ "epoch": 0.5599036724864539,
3261
+ "grad_norm": 0.6118834018707275,
3262
+ "learning_rate": 4.827696285015094e-07,
3263
+ "loss": 0.2832,
3264
+ "step": 4650
3265
+ },
3266
+ {
3267
+ "epoch": 0.5611077664057796,
3268
+ "grad_norm": 0.5026919841766357,
3269
+ "learning_rate": 4.806693542608348e-07,
3270
+ "loss": 0.2735,
3271
+ "step": 4660
3272
+ },
3273
+ {
3274
+ "epoch": 0.5623118603251054,
3275
+ "grad_norm": 0.548273503780365,
3276
+ "learning_rate": 4.785694215583566e-07,
3277
+ "loss": 0.2742,
3278
+ "step": 4670
3279
+ },
3280
+ {
3281
+ "epoch": 0.563515954244431,
3282
+ "grad_norm": 0.6186013221740723,
3283
+ "learning_rate": 4.764698674961581e-07,
3284
+ "loss": 0.2784,
3285
+ "step": 4680
3286
+ },
3287
+ {
3288
+ "epoch": 0.5647200481637568,
3289
+ "grad_norm": 0.45300328731536865,
3290
+ "learning_rate": 4.743707291696329e-07,
3291
+ "loss": 0.2786,
3292
+ "step": 4690
3293
+ },
3294
+ {
3295
+ "epoch": 0.5659241420830825,
3296
+ "grad_norm": 0.49064886569976807,
3297
+ "learning_rate": 4.7227204366682873e-07,
3298
+ "loss": 0.2747,
3299
+ "step": 4700
3300
+ },
3301
+ {
3302
+ "epoch": 0.5671282360024081,
3303
+ "grad_norm": 0.5186241865158081,
3304
+ "learning_rate": 4.7017384806779336e-07,
3305
+ "loss": 0.2788,
3306
+ "step": 4710
3307
+ },
3308
+ {
3309
+ "epoch": 0.5683323299217339,
3310
+ "grad_norm": 0.5284368395805359,
3311
+ "learning_rate": 4.6807617944391843e-07,
3312
+ "loss": 0.264,
3313
+ "step": 4720
3314
+ },
3315
+ {
3316
+ "epoch": 0.5695364238410596,
3317
+ "grad_norm": 0.5770208239555359,
3318
+ "learning_rate": 4.6597907485728477e-07,
3319
+ "loss": 0.2759,
3320
+ "step": 4730
3321
+ },
3322
+ {
3323
+ "epoch": 0.5707405177603853,
3324
+ "grad_norm": 0.5039085149765015,
3325
+ "learning_rate": 4.6388257136000807e-07,
3326
+ "loss": 0.2807,
3327
+ "step": 4740
3328
+ },
3329
+ {
3330
+ "epoch": 0.571944611679711,
3331
+ "grad_norm": 1.2547776699066162,
3332
+ "learning_rate": 4.617867059935838e-07,
3333
+ "loss": 0.2651,
3334
+ "step": 4750
3335
+ },
3336
+ {
3337
+ "epoch": 0.5731487055990367,
3338
+ "grad_norm": 0.5457895398139954,
3339
+ "learning_rate": 4.5969151578823224e-07,
3340
+ "loss": 0.27,
3341
+ "step": 4760
3342
+ },
3343
+ {
3344
+ "epoch": 0.5743527995183624,
3345
+ "grad_norm": 0.4974658787250519,
3346
+ "learning_rate": 4.5759703776224555e-07,
3347
+ "loss": 0.2794,
3348
+ "step": 4770
3349
+ },
3350
+ {
3351
+ "epoch": 0.5755568934376881,
3352
+ "grad_norm": 0.5161871314048767,
3353
+ "learning_rate": 4.555033089213321e-07,
3354
+ "loss": 0.2816,
3355
+ "step": 4780
3356
+ },
3357
+ {
3358
+ "epoch": 0.5767609873570139,
3359
+ "grad_norm": 0.43015995621681213,
3360
+ "learning_rate": 4.534103662579642e-07,
3361
+ "loss": 0.267,
3362
+ "step": 4790
3363
+ },
3364
+ {
3365
+ "epoch": 0.5779650812763396,
3366
+ "grad_norm": 0.4864785969257355,
3367
+ "learning_rate": 4.5131824675072364e-07,
3368
+ "loss": 0.2793,
3369
+ "step": 4800
3370
+ },
3371
+ {
3372
+ "epoch": 0.5791691751956652,
3373
+ "grad_norm": 0.6006112694740295,
3374
+ "learning_rate": 4.492269873636482e-07,
3375
+ "loss": 0.2689,
3376
+ "step": 4810
3377
+ },
3378
+ {
3379
+ "epoch": 0.580373269114991,
3380
+ "grad_norm": 0.4434204399585724,
3381
+ "learning_rate": 4.4713662504557927e-07,
3382
+ "loss": 0.2876,
3383
+ "step": 4820
3384
+ },
3385
+ {
3386
+ "epoch": 0.5815773630343167,
3387
+ "grad_norm": 0.565077543258667,
3388
+ "learning_rate": 4.450471967295083e-07,
3389
+ "loss": 0.2658,
3390
+ "step": 4830
3391
+ },
3392
+ {
3393
+ "epoch": 0.5827814569536424,
3394
+ "grad_norm": 0.5381281971931458,
3395
+ "learning_rate": 4.429587393319246e-07,
3396
+ "loss": 0.2715,
3397
+ "step": 4840
3398
+ },
3399
+ {
3400
+ "epoch": 0.5839855508729681,
3401
+ "grad_norm": 0.49021026492118835,
3402
+ "learning_rate": 4.408712897521633e-07,
3403
+ "loss": 0.2688,
3404
+ "step": 4850
3405
+ },
3406
+ {
3407
+ "epoch": 0.5851896447922939,
3408
+ "grad_norm": 0.5293102264404297,
3409
+ "learning_rate": 4.3878488487175323e-07,
3410
+ "loss": 0.2604,
3411
+ "step": 4860
3412
+ },
3413
+ {
3414
+ "epoch": 0.5863937387116195,
3415
+ "grad_norm": 0.6353856921195984,
3416
+ "learning_rate": 4.3669956155376476e-07,
3417
+ "loss": 0.2586,
3418
+ "step": 4870
3419
+ },
3420
+ {
3421
+ "epoch": 0.5875978326309452,
3422
+ "grad_norm": 0.5306446552276611,
3423
+ "learning_rate": 4.3461535664215923e-07,
3424
+ "loss": 0.2624,
3425
+ "step": 4880
3426
+ },
3427
+ {
3428
+ "epoch": 0.588801926550271,
3429
+ "grad_norm": 0.5957462191581726,
3430
+ "learning_rate": 4.325323069611383e-07,
3431
+ "loss": 0.2731,
3432
+ "step": 4890
3433
+ },
3434
+ {
3435
+ "epoch": 0.5900060204695966,
3436
+ "grad_norm": 0.6803829073905945,
3437
+ "learning_rate": 4.3045044931449156e-07,
3438
+ "loss": 0.2779,
3439
+ "step": 4900
3440
+ },
3441
+ {
3442
+ "epoch": 0.5912101143889223,
3443
+ "grad_norm": 0.5501326322555542,
3444
+ "learning_rate": 4.2836982048494854e-07,
3445
+ "loss": 0.2675,
3446
+ "step": 4910
3447
+ },
3448
+ {
3449
+ "epoch": 0.5924142083082481,
3450
+ "grad_norm": 0.49481987953186035,
3451
+ "learning_rate": 4.262904572335272e-07,
3452
+ "loss": 0.2725,
3453
+ "step": 4920
3454
+ },
3455
+ {
3456
+ "epoch": 0.5936183022275737,
3457
+ "grad_norm": 0.5254814028739929,
3458
+ "learning_rate": 4.242123962988851e-07,
3459
+ "loss": 0.2804,
3460
+ "step": 4930
3461
+ },
3462
+ {
3463
+ "epoch": 0.5948223961468995,
3464
+ "grad_norm": 0.5598310232162476,
3465
+ "learning_rate": 4.2213567439667037e-07,
3466
+ "loss": 0.2703,
3467
+ "step": 4940
3468
+ },
3469
+ {
3470
+ "epoch": 0.5960264900662252,
3471
+ "grad_norm": 0.5715354681015015,
3472
+ "learning_rate": 4.200603282188724e-07,
3473
+ "loss": 0.2799,
3474
+ "step": 4950
3475
+ },
3476
+ {
3477
+ "epoch": 0.5972305839855508,
3478
+ "grad_norm": 0.6474336981773376,
3479
+ "learning_rate": 4.179863944331743e-07,
3480
+ "loss": 0.2799,
3481
+ "step": 4960
3482
+ },
3483
+ {
3484
+ "epoch": 0.5984346779048766,
3485
+ "grad_norm": 0.47116249799728394,
3486
+ "learning_rate": 4.15913909682305e-07,
3487
+ "loss": 0.2751,
3488
+ "step": 4970
3489
+ },
3490
+ {
3491
+ "epoch": 0.5996387718242023,
3492
+ "grad_norm": 0.5750442147254944,
3493
+ "learning_rate": 4.138429105833906e-07,
3494
+ "loss": 0.2719,
3495
+ "step": 4980
3496
+ },
3497
+ {
3498
+ "epoch": 0.600842865743528,
3499
+ "grad_norm": 0.5243822932243347,
3500
+ "learning_rate": 4.1177343372730923e-07,
3501
+ "loss": 0.2709,
3502
+ "step": 4990
3503
+ },
3504
+ {
3505
+ "epoch": 0.6020469596628537,
3506
+ "grad_norm": 0.5334904789924622,
3507
+ "learning_rate": 4.097055156780437e-07,
3508
+ "loss": 0.272,
3509
+ "step": 5000
3510
+ }
3511
+ ],
3512
+ "logging_steps": 10,
3513
+ "max_steps": 8305,
3514
+ "num_input_tokens_seen": 0,
3515
+ "num_train_epochs": 1,
3516
+ "save_steps": 1000,
3517
+ "stateful_callbacks": {
3518
+ "TrainerControl": {
3519
+ "args": {
3520
+ "should_epoch_stop": false,
3521
+ "should_evaluate": false,
3522
+ "should_log": false,
3523
+ "should_save": true,
3524
+ "should_training_stop": false
3525
+ },
3526
+ "attributes": {}
3527
+ }
3528
+ },
3529
+ "total_flos": 1967389652549632.0,
3530
+ "train_batch_size": 1,
3531
+ "trial_name": null,
3532
+ "trial_params": null
3533
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1bf150d820bfae61b431f78524e1ada6e18847a6a0b58efeab889334baf2b6e5
3
+ size 7672
vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
zero_to_fp32.py ADDED
@@ -0,0 +1,760 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example:
14
+ # python zero_to_fp32.py . output_dir/
15
+ # or
16
+ # python zero_to_fp32.py . output_dir/ --safe_serialization
17
+
18
+ import argparse
19
+ import torch
20
+ import glob
21
+ import math
22
+ import os
23
+ import re
24
+ import gc
25
+ import json
26
+ import numpy as np
27
+ from tqdm import tqdm
28
+ from collections import OrderedDict
29
+ from dataclasses import dataclass
30
+
31
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
32
+ # DeepSpeed data structures it has to be available in the current python environment.
33
+ from deepspeed.utils import logger
34
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
35
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
36
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
37
+
38
+
39
+ @dataclass
40
+ class zero_model_state:
41
+ buffers: dict()
42
+ param_shapes: dict()
43
+ shared_params: list
44
+ ds_version: int
45
+ frozen_param_shapes: dict()
46
+ frozen_param_fragments: dict()
47
+
48
+
49
+ debug = 0
50
+
51
+ # load to cpu
52
+ device = torch.device('cpu')
53
+
54
+
55
+ def atoi(text):
56
+ return int(text) if text.isdigit() else text
57
+
58
+
59
+ def natural_keys(text):
60
+ '''
61
+ alist.sort(key=natural_keys) sorts in human order
62
+ http://nedbatchelder.com/blog/200712/human_sorting.html
63
+ (See Toothy's implementation in the comments)
64
+ '''
65
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
66
+
67
+
68
+ def get_model_state_file(checkpoint_dir, zero_stage):
69
+ if not os.path.isdir(checkpoint_dir):
70
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
71
+
72
+ # there should be only one file
73
+ if zero_stage <= 2:
74
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
75
+ elif zero_stage == 3:
76
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
77
+
78
+ if not os.path.exists(file):
79
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
80
+
81
+ return file
82
+
83
+
84
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
85
+ # XXX: need to test that this simple glob rule works for multi-node setup too
86
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
87
+
88
+ if len(ckpt_files) == 0:
89
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
90
+
91
+ return ckpt_files
92
+
93
+
94
+ def get_optim_files(checkpoint_dir):
95
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
96
+
97
+
98
+ def get_model_state_files(checkpoint_dir):
99
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
100
+
101
+
102
+ def parse_model_states(files):
103
+ zero_model_states = []
104
+ for file in files:
105
+ state_dict = torch.load(file, map_location=device, weights_only=False)
106
+
107
+ if BUFFER_NAMES not in state_dict:
108
+ raise ValueError(f"{file} is not a model state checkpoint")
109
+ buffer_names = state_dict[BUFFER_NAMES]
110
+ if debug:
111
+ print("Found buffers:", buffer_names)
112
+
113
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
114
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
115
+ param_shapes = state_dict[PARAM_SHAPES]
116
+
117
+ # collect parameters that are included in param_shapes
118
+ param_names = []
119
+ for s in param_shapes:
120
+ for name in s.keys():
121
+ param_names.append(name)
122
+
123
+ # update with frozen parameters
124
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
125
+ if frozen_param_shapes is not None:
126
+ if debug:
127
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
128
+ param_names += list(frozen_param_shapes.keys())
129
+
130
+ # handle shared params
131
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
132
+
133
+ ds_version = state_dict.get(DS_VERSION, None)
134
+
135
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
136
+
137
+ z_model_state = zero_model_state(buffers=buffers,
138
+ param_shapes=param_shapes,
139
+ shared_params=shared_params,
140
+ ds_version=ds_version,
141
+ frozen_param_shapes=frozen_param_shapes,
142
+ frozen_param_fragments=frozen_param_fragments)
143
+ zero_model_states.append(z_model_state)
144
+
145
+ return zero_model_states
146
+
147
+
148
+ def parse_optim_states(files, ds_checkpoint_dir):
149
+ total_files = len(files)
150
+ state_dicts = []
151
+ for f in tqdm(files, desc='Loading checkpoint shards'):
152
+ state_dict = torch.load(f, map_location=device, mmap=True, weights_only=False)
153
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
154
+ # and also handle the case where it was already removed by another helper script
155
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
156
+ state_dicts.append(state_dict)
157
+
158
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
159
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
160
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
161
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
162
+
163
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
164
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
165
+ # use the max of the partition_count to get the dp world_size.
166
+
167
+ if type(world_size) is list:
168
+ world_size = max(world_size)
169
+
170
+ if world_size != total_files:
171
+ raise ValueError(
172
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
173
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
174
+ )
175
+
176
+ # the groups are named differently in each stage
177
+ if zero_stage <= 2:
178
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
179
+ elif zero_stage == 3:
180
+ fp32_groups_key = FP32_FLAT_GROUPS
181
+ else:
182
+ raise ValueError(f"unknown zero stage {zero_stage}")
183
+
184
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
185
+ return zero_stage, world_size, fp32_flat_groups
186
+
187
+
188
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
189
+ """
190
+ Returns fp32 state_dict reconstructed from ds checkpoint
191
+
192
+ Args:
193
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
194
+
195
+ """
196
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
197
+
198
+ optim_files = get_optim_files(ds_checkpoint_dir)
199
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
200
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
201
+
202
+ model_files = get_model_state_files(ds_checkpoint_dir)
203
+
204
+ zero_model_states = parse_model_states(model_files)
205
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
206
+
207
+ if zero_stage <= 2:
208
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
209
+ exclude_frozen_parameters)
210
+ elif zero_stage == 3:
211
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
212
+ exclude_frozen_parameters)
213
+
214
+
215
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
216
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
217
+ return
218
+
219
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
220
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
221
+
222
+ if debug:
223
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
224
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
225
+
226
+ wanted_params = len(frozen_param_shapes)
227
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
228
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
229
+ print(f'Frozen params: Have {avail_numel} numels to process.')
230
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
231
+
232
+ total_params = 0
233
+ total_numel = 0
234
+ for name, shape in frozen_param_shapes.items():
235
+ total_params += 1
236
+ unpartitioned_numel = shape.numel()
237
+ total_numel += unpartitioned_numel
238
+
239
+ state_dict[name] = frozen_param_fragments[name]
240
+
241
+ if debug:
242
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
243
+
244
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
245
+
246
+
247
+ def _has_callable(obj, fn):
248
+ attr = getattr(obj, fn, None)
249
+ return callable(attr)
250
+
251
+
252
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
253
+ param_shapes = zero_model_states[0].param_shapes
254
+
255
+ # Reconstruction protocol:
256
+ #
257
+ # XXX: document this
258
+
259
+ if debug:
260
+ for i in range(world_size):
261
+ for j in range(len(fp32_flat_groups[0])):
262
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
263
+
264
+ # XXX: memory usage doubles here (zero2)
265
+ num_param_groups = len(fp32_flat_groups[0])
266
+ merged_single_partition_of_fp32_groups = []
267
+ for i in range(num_param_groups):
268
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
269
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
270
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
271
+ avail_numel = sum(
272
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
273
+
274
+ if debug:
275
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
276
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
277
+ # not asserting if there is a mismatch due to possible padding
278
+ print(f"Have {avail_numel} numels to process.")
279
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
280
+
281
+ # params
282
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
283
+ # out-of-core computing solution
284
+ total_numel = 0
285
+ total_params = 0
286
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
287
+ offset = 0
288
+ avail_numel = full_single_fp32_vector.numel()
289
+ for name, shape in shapes.items():
290
+
291
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
292
+ total_numel += unpartitioned_numel
293
+ total_params += 1
294
+
295
+ if debug:
296
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
297
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
298
+ offset += unpartitioned_numel
299
+
300
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
301
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
302
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
303
+ # live optimizer object, so we are checking that the numbers are within the right range
304
+ align_to = 2 * world_size
305
+
306
+ def zero2_align(x):
307
+ return align_to * math.ceil(x / align_to)
308
+
309
+ if debug:
310
+ print(f"original offset={offset}, avail_numel={avail_numel}")
311
+
312
+ offset = zero2_align(offset)
313
+ avail_numel = zero2_align(avail_numel)
314
+
315
+ if debug:
316
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
317
+
318
+ # Sanity check
319
+ if offset != avail_numel:
320
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
321
+
322
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
323
+
324
+
325
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
326
+ exclude_frozen_parameters):
327
+ state_dict = OrderedDict()
328
+
329
+ # buffers
330
+ buffers = zero_model_states[0].buffers
331
+ state_dict.update(buffers)
332
+ if debug:
333
+ print(f"added {len(buffers)} buffers")
334
+
335
+ if not exclude_frozen_parameters:
336
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
337
+
338
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
339
+
340
+ # recover shared parameters
341
+ for pair in zero_model_states[0].shared_params:
342
+ if pair[1] in state_dict:
343
+ state_dict[pair[0]] = state_dict[pair[1]]
344
+
345
+ return state_dict
346
+
347
+
348
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
349
+ remainder = unpartitioned_numel % world_size
350
+ padding_numel = (world_size - remainder) if remainder else 0
351
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
352
+ return partitioned_numel, padding_numel
353
+
354
+
355
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
356
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
357
+ return
358
+
359
+ if debug:
360
+ for i in range(world_size):
361
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
362
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
363
+
364
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
365
+ wanted_params = len(frozen_param_shapes)
366
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
367
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
368
+ print(f'Frozen params: Have {avail_numel} numels to process.')
369
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
370
+
371
+ total_params = 0
372
+ total_numel = 0
373
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
374
+ total_params += 1
375
+ unpartitioned_numel = shape.numel()
376
+ total_numel += unpartitioned_numel
377
+
378
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
379
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
380
+
381
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
382
+
383
+ if debug:
384
+ print(
385
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
386
+ )
387
+
388
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
389
+
390
+
391
+ class GatheredTensor:
392
+ """
393
+ A pseudo tensor that collects partitioned weights.
394
+ It is more memory efficient when there are multiple groups.
395
+ """
396
+
397
+ def __init__(self, flat_groups, flat_groups_offset, offset, partitioned_numel, shape):
398
+ self.flat_groups = flat_groups
399
+ self.flat_groups_offset = flat_groups_offset
400
+ self.offset = offset
401
+ self.partitioned_numel = partitioned_numel
402
+ self.shape = shape
403
+ self.dtype = self.flat_groups[0][0].dtype
404
+
405
+ def contiguous(self):
406
+ """
407
+ Merge partitioned weights from flat_groups into a single tensor.
408
+ """
409
+ end_idx = self.offset + self.partitioned_numel
410
+ world_size = len(self.flat_groups)
411
+ pad_flat_param_chunks = []
412
+
413
+ for rank_i in range(world_size):
414
+ # for each rank, we need to collect weights from related group/groups
415
+ flat_groups_at_rank_i = self.flat_groups[rank_i]
416
+ start_group_id = None
417
+ end_group_id = None
418
+ for group_id in range(len(self.flat_groups_offset)):
419
+ if self.flat_groups_offset[group_id] <= self.offset < self.flat_groups_offset[group_id + 1]:
420
+ start_group_id = group_id
421
+ if self.flat_groups_offset[group_id] < end_idx <= self.flat_groups_offset[group_id + 1]:
422
+ end_group_id = group_id
423
+ break
424
+ # collect weights from related group/groups
425
+ for group_id in range(start_group_id, end_group_id + 1):
426
+ flat_tensor = flat_groups_at_rank_i[group_id]
427
+ start_offset = self.offset - self.flat_groups_offset[group_id]
428
+ end_offset = min(end_idx, self.flat_groups_offset[group_id + 1]) - self.flat_groups_offset[group_id]
429
+ pad_flat_param_chunks.append(flat_tensor[start_offset:end_offset])
430
+
431
+ # collect weights from all ranks
432
+ pad_flat_param = torch.cat(pad_flat_param_chunks, dim=0)
433
+ param = pad_flat_param[:self.shape.numel()].view(self.shape).contiguous()
434
+ return param
435
+
436
+
437
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
438
+ param_shapes = zero_model_states[0].param_shapes
439
+ avail_numel = sum([flat_group.numel() for flat_group in fp32_flat_groups[0]]) * world_size
440
+
441
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
442
+ # param, re-consolidating each param, while dealing with padding if any
443
+
444
+ # merge list of dicts, preserving order
445
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
446
+
447
+ if debug:
448
+ for i in range(world_size):
449
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
450
+
451
+ wanted_params = len(param_shapes)
452
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
453
+ # not asserting if there is a mismatch due to possible padding
454
+ avail_numel = fp32_flat_groups[0].numel() * world_size
455
+ print(f"Trainable params: Have {avail_numel} numels to process.")
456
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
457
+
458
+ # params
459
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
460
+ # out-of-core computing solution
461
+ offset = 0
462
+ total_numel = 0
463
+ total_params = 0
464
+ flat_groups_offset = [0] + list(np.cumsum([flat_tensor.numel() for flat_tensor in fp32_flat_groups[0]]))
465
+ for name, shape in tqdm(param_shapes.items(), desc='Gathering sharded weights'):
466
+ unpartitioned_numel = shape.numel()
467
+ total_numel += unpartitioned_numel
468
+ total_params += 1
469
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
470
+
471
+ if debug:
472
+ print(
473
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
474
+ )
475
+
476
+ # memory efficient tensor
477
+ tensor = GatheredTensor(fp32_flat_groups, flat_groups_offset, offset, partitioned_numel, shape)
478
+ state_dict[name] = tensor
479
+ offset += partitioned_numel
480
+
481
+ offset *= world_size
482
+
483
+ # Sanity check
484
+ if offset != avail_numel:
485
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
486
+
487
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
488
+
489
+
490
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
491
+ exclude_frozen_parameters):
492
+ state_dict = OrderedDict()
493
+
494
+ # buffers
495
+ buffers = zero_model_states[0].buffers
496
+ state_dict.update(buffers)
497
+ if debug:
498
+ print(f"added {len(buffers)} buffers")
499
+
500
+ if not exclude_frozen_parameters:
501
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
502
+
503
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
504
+
505
+ # recover shared parameters
506
+ for pair in zero_model_states[0].shared_params:
507
+ if pair[1] in state_dict:
508
+ state_dict[pair[0]] = state_dict[pair[1]]
509
+
510
+ return state_dict
511
+
512
+
513
+ def to_torch_tensor(state_dict, return_empty_tensor=False):
514
+ """
515
+ Convert state_dict of GatheredTensor to torch tensor
516
+ """
517
+ torch_state_dict = {}
518
+ converted_tensors = {}
519
+ for name, tensor in state_dict.items():
520
+ tensor_id = id(tensor)
521
+ if tensor_id in converted_tensors: # shared tensors
522
+ shared_tensor = torch_state_dict[converted_tensors[tensor_id]]
523
+ torch_state_dict[name] = shared_tensor
524
+ else:
525
+ converted_tensors[tensor_id] = name
526
+ if return_empty_tensor:
527
+ torch_state_dict[name] = torch.empty(tensor.shape, dtype=tensor.dtype)
528
+ else:
529
+ torch_state_dict[name] = tensor.contiguous()
530
+ return torch_state_dict
531
+
532
+
533
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
534
+ tag=None,
535
+ exclude_frozen_parameters=False,
536
+ lazy_mode=False):
537
+ """
538
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
539
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
540
+ via a model hub.
541
+
542
+ Args:
543
+ - ``checkpoint_dir``: path to the desired checkpoint folder
544
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
545
+ - ``exclude_frozen_parameters``: exclude frozen parameters
546
+ - ``lazy_mode``: get state_dict in lazy mode. It returns a dict of pesduo tensor instead of torch tensor, which is more memory efficient.
547
+ Convert the pesduo tensor to torch tensor by ``.contiguous()``
548
+
549
+ Returns:
550
+ - pytorch ``state_dict``
551
+
552
+ A typical usage might be ::
553
+
554
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
555
+ # do the training and checkpoint saving
556
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
557
+ model = model.cpu() # move to cpu
558
+ model.load_state_dict(state_dict)
559
+ # submit to model hub or save the model to share with others
560
+
561
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
562
+ application. i.e. you will need to re-initialize the deepspeed engine, since
563
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
564
+
565
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
566
+
567
+ Note: the above usage may not work if your application doesn't have sufficient free CPU memory.
568
+ You may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
569
+ the checkpoint. Or you can load state_dict in lazy mode ::
570
+
571
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
572
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, lazy_mode=True) # not on cpu
573
+ for name, lazy_tensor in state_dict.item():
574
+ tensor = lazy_tensor.contiguous() # to cpu
575
+ print(name, tensor)
576
+ # del tensor to release memory if it no longer in use
577
+ """
578
+ if tag is None:
579
+ latest_path = os.path.join(checkpoint_dir, 'latest')
580
+ if os.path.isfile(latest_path):
581
+ with open(latest_path, 'r') as fd:
582
+ tag = fd.read().strip()
583
+ else:
584
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
585
+
586
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
587
+
588
+ if not os.path.isdir(ds_checkpoint_dir):
589
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
590
+
591
+ state_dict = _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
592
+ if lazy_mode:
593
+ return state_dict
594
+ else:
595
+ return to_torch_tensor(state_dict)
596
+
597
+
598
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
599
+ output_dir,
600
+ max_shard_size="5GB",
601
+ safe_serialization=False,
602
+ tag=None,
603
+ exclude_frozen_parameters=False):
604
+ """
605
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
606
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
607
+
608
+ Args:
609
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
610
+ - ``output_dir``: directory to the pytorch fp32 state_dict output files
611
+ - ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
612
+ - ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
613
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
614
+ - ``exclude_frozen_parameters``: exclude frozen parameters
615
+ """
616
+
617
+ # Dependency pre-check
618
+ if safe_serialization:
619
+ try:
620
+ from safetensors.torch import save_file
621
+ except ImportError:
622
+ print('If you want to use `safe_serialization`, please `pip install safetensors`')
623
+ raise
624
+ if max_shard_size is not None:
625
+ try:
626
+ from huggingface_hub import split_torch_state_dict_into_shards
627
+ except ImportError:
628
+ print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
629
+ raise
630
+
631
+ # Convert zero checkpoint to state_dict
632
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
633
+ tag,
634
+ exclude_frozen_parameters,
635
+ lazy_mode=True)
636
+
637
+ # Shard the model if it is too big.
638
+ weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
639
+ if max_shard_size is not None:
640
+ filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
641
+ # an memory-efficient approach for sharding
642
+ empty_state_dict = to_torch_tensor(state_dict, return_empty_tensor=True)
643
+ state_dict_split = split_torch_state_dict_into_shards(empty_state_dict,
644
+ filename_pattern=filename_pattern,
645
+ max_shard_size=max_shard_size)
646
+ else:
647
+ from collections import namedtuple
648
+ StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
649
+ state_dict_split = StateDictSplit(is_sharded=False,
650
+ filename_to_tensors={weights_name: list(state_dict.keys())})
651
+
652
+ # Save the model by shard
653
+ os.makedirs(output_dir, exist_ok=True)
654
+ filename_to_tensors = state_dict_split.filename_to_tensors.items()
655
+ for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
656
+ shard_state_dict = {tensor_name: state_dict[tensor_name] for tensor_name in tensors}
657
+ shard_state_dict = to_torch_tensor(shard_state_dict)
658
+ output_path = os.path.join(output_dir, shard_file)
659
+ if safe_serialization:
660
+ save_file(shard_state_dict, output_path, metadata={"format": "pt"})
661
+ else:
662
+ torch.save(shard_state_dict, output_path)
663
+ # release the memory of current shard
664
+ for tensor_name in list(shard_state_dict.keys()):
665
+ del state_dict[tensor_name]
666
+ del shard_state_dict[tensor_name]
667
+ del shard_state_dict
668
+ gc.collect()
669
+
670
+ # Save index if sharded
671
+ if state_dict_split.is_sharded:
672
+ index = {
673
+ "metadata": state_dict_split.metadata,
674
+ "weight_map": state_dict_split.tensor_to_filename,
675
+ }
676
+ save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
677
+ save_index_file = os.path.join(output_dir, save_index_file)
678
+ with open(save_index_file, "w", encoding="utf-8") as f:
679
+ content = json.dumps(index, indent=2, sort_keys=True) + "\n"
680
+ f.write(content)
681
+
682
+
683
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
684
+ """
685
+ 1. Put the provided model to cpu
686
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
687
+ 3. Load it into the provided model
688
+
689
+ Args:
690
+ - ``model``: the model object to update
691
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
692
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
693
+
694
+ Returns:
695
+ - ``model`: modified model
696
+
697
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
698
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
699
+ conveniently placed for you in the checkpoint folder.
700
+
701
+ A typical usage might be ::
702
+
703
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
704
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
705
+ # submit to model hub or save the model to share with others
706
+
707
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
708
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
709
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
710
+
711
+ """
712
+ logger.info(f"Extracting fp32 weights")
713
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
714
+
715
+ logger.info(f"Overwriting model with fp32 weights")
716
+ model = model.cpu()
717
+ model.load_state_dict(state_dict, strict=False)
718
+
719
+ return model
720
+
721
+
722
+ if __name__ == "__main__":
723
+ parser = argparse.ArgumentParser()
724
+ parser.add_argument("checkpoint_dir",
725
+ type=str,
726
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
727
+ parser.add_argument("output_dir",
728
+ type=str,
729
+ help="directory to the pytorch fp32 state_dict output files"
730
+ "(e.g. path/checkpoint-12-output/)")
731
+ parser.add_argument(
732
+ "--max_shard_size",
733
+ type=str,
734
+ default="5GB",
735
+ help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
736
+ "lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
737
+ "We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
738
+ "without CPU OOM issues.")
739
+ parser.add_argument(
740
+ "--safe_serialization",
741
+ default=False,
742
+ action='store_true',
743
+ help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
744
+ parser.add_argument("-t",
745
+ "--tag",
746
+ type=str,
747
+ default=None,
748
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
749
+ parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
750
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
751
+ args = parser.parse_args()
752
+
753
+ debug = args.debug
754
+
755
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
756
+ args.output_dir,
757
+ max_shard_size=args.max_shard_size,
758
+ safe_serialization=args.safe_serialization,
759
+ tag=args.tag,
760
+ exclude_frozen_parameters=args.exclude_frozen_parameters)