Add files using upload-large-folder tool
Browse files- config.json +33 -0
- generation_config.json +7 -0
- global_step5000/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
- global_step5000/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt +3 -0
- global_step5000/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt +3 -0
- global_step5000/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt +3 -0
- global_step5000/zero_pp_rank_0_mp_rank_00_model_states.pt +3 -0
- global_step5000/zero_pp_rank_1_mp_rank_00_model_states.pt +3 -0
- global_step5000/zero_pp_rank_2_mp_rank_00_model_states.pt +3 -0
- global_step5000/zero_pp_rank_3_mp_rank_00_model_states.pt +3 -0
- latest +1 -0
- merges.txt +0 -0
- pytorch_model-00001-of-00013.bin +3 -0
- pytorch_model-00002-of-00013.bin +3 -0
- pytorch_model-00003-of-00013.bin +3 -0
- pytorch_model-00004-of-00013.bin +3 -0
- pytorch_model-00005-of-00013.bin +3 -0
- pytorch_model-00006-of-00013.bin +3 -0
- pytorch_model-00007-of-00013.bin +3 -0
- pytorch_model-00008-of-00013.bin +3 -0
- pytorch_model-00009-of-00013.bin +3 -0
- pytorch_model-00010-of-00013.bin +3 -0
- pytorch_model-00011-of-00013.bin +3 -0
- pytorch_model-00012-of-00013.bin +3 -0
- pytorch_model-00013-of-00013.bin +3 -0
- pytorch_model.bin.index.json +250 -0
- rng_state_0.pth +3 -0
- rng_state_1.pth +3 -0
- rng_state_2.pth +3 -0
- rng_state_3.pth +3 -0
- scheduler.pt +3 -0
- special_tokens_map.json +33 -0
- tokenizer.json +0 -0
- tokenizer_config.json +787 -0
- trainer_state.json +3533 -0
- training_args.bin +3 -0
- vocab.json +0 -0
- zero_to_fp32.py +760 -0
config.json
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "/shared/ssd/models/phi-4",
|
3 |
+
"architectures": [
|
4 |
+
"Phi3ForCausalLM"
|
5 |
+
],
|
6 |
+
"attention_bias": false,
|
7 |
+
"attention_dropout": 0.0,
|
8 |
+
"auto_map": {},
|
9 |
+
"bos_token_id": 100257,
|
10 |
+
"embd_pdrop": 0.0,
|
11 |
+
"eos_token_id": 100265,
|
12 |
+
"hidden_act": "silu",
|
13 |
+
"hidden_size": 5120,
|
14 |
+
"initializer_range": 0.02,
|
15 |
+
"intermediate_size": 17920,
|
16 |
+
"max_position_embeddings": 16384,
|
17 |
+
"model_type": "phi3",
|
18 |
+
"num_attention_heads": 40,
|
19 |
+
"num_hidden_layers": 40,
|
20 |
+
"num_key_value_heads": 10,
|
21 |
+
"original_max_position_embeddings": 16384,
|
22 |
+
"pad_token_id": 100349,
|
23 |
+
"resid_pdrop": 0.0,
|
24 |
+
"rms_norm_eps": 1e-05,
|
25 |
+
"rope_scaling": null,
|
26 |
+
"rope_theta": 250000,
|
27 |
+
"sliding_window": null,
|
28 |
+
"tie_word_embeddings": false,
|
29 |
+
"torch_dtype": "bfloat16",
|
30 |
+
"transformers_version": "4.48.3",
|
31 |
+
"use_cache": false,
|
32 |
+
"vocab_size": 100352
|
33 |
+
}
|
generation_config.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 100257,
|
4 |
+
"eos_token_id": 100265,
|
5 |
+
"pad_token_id": 100349,
|
6 |
+
"transformers_version": "4.48.3"
|
7 |
+
}
|
global_step5000/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:85f92bf4b4fe0d32f13bebcf24372dbedb5b8a3e8eeeb5f665ec919a0a81159c
|
3 |
+
size 43978528138
|
global_step5000/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b3d2dbb7e0478052d1f0c9dacb0f37c045a62117b36fad19ca267cf254e53eb3
|
3 |
+
size 43978528138
|
global_step5000/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:712bde7ed0eaa90ce7cd2841a4df5fcf8bbbeb2f62533d7b32a818b52388dce3
|
3 |
+
size 43978528138
|
global_step5000/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9c6e9d5dc092f6f7e2edbb08facd4e92bc1eced0da78ce4c45e132f3a3a2eb81
|
3 |
+
size 43978528138
|
global_step5000/zero_pp_rank_0_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9795ed7d3df5a5fdfca558e5e37d290d6eb465c802969d194c2c62e52abe0e77
|
3 |
+
size 133173
|
global_step5000/zero_pp_rank_1_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6a5ad970458c3ce360ac37d5d8f8db7a6307417aad8c8ecdb1f790b5b876a69c
|
3 |
+
size 133173
|
global_step5000/zero_pp_rank_2_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b02780979d77a4fea17e63846d0643a13bb886802e5fe3ec3959ecd4995ad440
|
3 |
+
size 133173
|
global_step5000/zero_pp_rank_3_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d743be8067bf14ddf3040b22d7e0f35c25bf6ed0692c24d62e852bac13d91e4f
|
3 |
+
size 133173
|
latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step5000
|
merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
pytorch_model-00001-of-00013.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:55194ca302696ec5b5057a5ea8bf2fd7c7e1ce351c3c8c308a79a990b96f16cb
|
3 |
+
size 4886451590
|
pytorch_model-00002-of-00013.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:05a8eb5e93acbc5ad857abd12cb6441fd6fd3d8cb6bd5ed4286c209079404535
|
3 |
+
size 4980866314
|
pytorch_model-00003-of-00013.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:daa423e7701ce2d456a5cd4a0d2fadccb5af939497aea72531dfb26434165f4c
|
3 |
+
size 4718764172
|
pytorch_model-00004-of-00013.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1b6990eb45e7cd872a0a149889d9286c7bb6de1c6f773134a093f33f944e76fb
|
3 |
+
size 4823579588
|
pytorch_model-00005-of-00013.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:73591444fea6824ddfb5c0e7e5a5e3ccab48ae3910b9e93cf877ca80a58f12e6
|
3 |
+
size 4718764236
|
pytorch_model-00006-of-00013.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d94035b8024be5a5290b3015d735d87c44a7af746eb13fafb4465f8b7ae354ab
|
3 |
+
size 4823579588
|
pytorch_model-00007-of-00013.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:051181fcede6a0a133f5605dfd9d7c135880aa251d6f20a2b8b91bd9fde80127
|
3 |
+
size 4718764236
|
pytorch_model-00008-of-00013.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9bf524678963363d46561225ac6805e7033b1aa52969ff4efcefcf80d6935b0e
|
3 |
+
size 4823579588
|
pytorch_model-00009-of-00013.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5dba6d7724865f2b64bfd08dc8dd145d5f20f8080742da43c76fb0481f36310c
|
3 |
+
size 4718764236
|
pytorch_model-00010-of-00013.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a5cc4fa9e87caaa69db7d5aaffb59a0f4e3d1d78ced4f34658c75727c80ff328
|
3 |
+
size 4823579588
|
pytorch_model-00011-of-00013.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c1529fa1e6ebc49262ab9c63cef3c25bcc6d55d79f7de4373e30719cc9cbada8
|
3 |
+
size 4718764236
|
pytorch_model-00012-of-00013.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b2369fe70eeb96be659b69dd45e6a282c2299a91d9e3cc01a2f0e3678d922185
|
3 |
+
size 3827452188
|
pytorch_model-00013-of-00013.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:71bfa50e2b7259cf02cd641ae3dc71bf0c43b3bd03c805079c34af3b6f1e1594
|
3 |
+
size 2055210373
|
pytorch_model.bin.index.json
ADDED
@@ -0,0 +1,250 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 58638028800
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"lm_head.weight": "pytorch_model-00013-of-00013.bin",
|
7 |
+
"model.embed_tokens.weight": "pytorch_model-00001-of-00013.bin",
|
8 |
+
"model.layers.0.input_layernorm.weight": "pytorch_model-00001-of-00013.bin",
|
9 |
+
"model.layers.0.mlp.down_proj.weight": "pytorch_model-00001-of-00013.bin",
|
10 |
+
"model.layers.0.mlp.gate_up_proj.weight": "pytorch_model-00001-of-00013.bin",
|
11 |
+
"model.layers.0.post_attention_layernorm.weight": "pytorch_model-00001-of-00013.bin",
|
12 |
+
"model.layers.0.self_attn.o_proj.weight": "pytorch_model-00001-of-00013.bin",
|
13 |
+
"model.layers.0.self_attn.qkv_proj.weight": "pytorch_model-00001-of-00013.bin",
|
14 |
+
"model.layers.1.input_layernorm.weight": "pytorch_model-00001-of-00013.bin",
|
15 |
+
"model.layers.1.mlp.down_proj.weight": "pytorch_model-00001-of-00013.bin",
|
16 |
+
"model.layers.1.mlp.gate_up_proj.weight": "pytorch_model-00001-of-00013.bin",
|
17 |
+
"model.layers.1.post_attention_layernorm.weight": "pytorch_model-00001-of-00013.bin",
|
18 |
+
"model.layers.1.self_attn.o_proj.weight": "pytorch_model-00001-of-00013.bin",
|
19 |
+
"model.layers.1.self_attn.qkv_proj.weight": "pytorch_model-00001-of-00013.bin",
|
20 |
+
"model.layers.10.input_layernorm.weight": "pytorch_model-00004-of-00013.bin",
|
21 |
+
"model.layers.10.mlp.down_proj.weight": "pytorch_model-00004-of-00013.bin",
|
22 |
+
"model.layers.10.mlp.gate_up_proj.weight": "pytorch_model-00004-of-00013.bin",
|
23 |
+
"model.layers.10.post_attention_layernorm.weight": "pytorch_model-00004-of-00013.bin",
|
24 |
+
"model.layers.10.self_attn.o_proj.weight": "pytorch_model-00004-of-00013.bin",
|
25 |
+
"model.layers.10.self_attn.qkv_proj.weight": "pytorch_model-00004-of-00013.bin",
|
26 |
+
"model.layers.11.input_layernorm.weight": "pytorch_model-00004-of-00013.bin",
|
27 |
+
"model.layers.11.mlp.down_proj.weight": "pytorch_model-00004-of-00013.bin",
|
28 |
+
"model.layers.11.mlp.gate_up_proj.weight": "pytorch_model-00004-of-00013.bin",
|
29 |
+
"model.layers.11.post_attention_layernorm.weight": "pytorch_model-00004-of-00013.bin",
|
30 |
+
"model.layers.11.self_attn.o_proj.weight": "pytorch_model-00004-of-00013.bin",
|
31 |
+
"model.layers.11.self_attn.qkv_proj.weight": "pytorch_model-00004-of-00013.bin",
|
32 |
+
"model.layers.12.input_layernorm.weight": "pytorch_model-00005-of-00013.bin",
|
33 |
+
"model.layers.12.mlp.down_proj.weight": "pytorch_model-00005-of-00013.bin",
|
34 |
+
"model.layers.12.mlp.gate_up_proj.weight": "pytorch_model-00004-of-00013.bin",
|
35 |
+
"model.layers.12.post_attention_layernorm.weight": "pytorch_model-00005-of-00013.bin",
|
36 |
+
"model.layers.12.self_attn.o_proj.weight": "pytorch_model-00004-of-00013.bin",
|
37 |
+
"model.layers.12.self_attn.qkv_proj.weight": "pytorch_model-00004-of-00013.bin",
|
38 |
+
"model.layers.13.input_layernorm.weight": "pytorch_model-00005-of-00013.bin",
|
39 |
+
"model.layers.13.mlp.down_proj.weight": "pytorch_model-00005-of-00013.bin",
|
40 |
+
"model.layers.13.mlp.gate_up_proj.weight": "pytorch_model-00005-of-00013.bin",
|
41 |
+
"model.layers.13.post_attention_layernorm.weight": "pytorch_model-00005-of-00013.bin",
|
42 |
+
"model.layers.13.self_attn.o_proj.weight": "pytorch_model-00005-of-00013.bin",
|
43 |
+
"model.layers.13.self_attn.qkv_proj.weight": "pytorch_model-00005-of-00013.bin",
|
44 |
+
"model.layers.14.input_layernorm.weight": "pytorch_model-00005-of-00013.bin",
|
45 |
+
"model.layers.14.mlp.down_proj.weight": "pytorch_model-00005-of-00013.bin",
|
46 |
+
"model.layers.14.mlp.gate_up_proj.weight": "pytorch_model-00005-of-00013.bin",
|
47 |
+
"model.layers.14.post_attention_layernorm.weight": "pytorch_model-00005-of-00013.bin",
|
48 |
+
"model.layers.14.self_attn.o_proj.weight": "pytorch_model-00005-of-00013.bin",
|
49 |
+
"model.layers.14.self_attn.qkv_proj.weight": "pytorch_model-00005-of-00013.bin",
|
50 |
+
"model.layers.15.input_layernorm.weight": "pytorch_model-00005-of-00013.bin",
|
51 |
+
"model.layers.15.mlp.down_proj.weight": "pytorch_model-00005-of-00013.bin",
|
52 |
+
"model.layers.15.mlp.gate_up_proj.weight": "pytorch_model-00005-of-00013.bin",
|
53 |
+
"model.layers.15.post_attention_layernorm.weight": "pytorch_model-00005-of-00013.bin",
|
54 |
+
"model.layers.15.self_attn.o_proj.weight": "pytorch_model-00005-of-00013.bin",
|
55 |
+
"model.layers.15.self_attn.qkv_proj.weight": "pytorch_model-00005-of-00013.bin",
|
56 |
+
"model.layers.16.input_layernorm.weight": "pytorch_model-00006-of-00013.bin",
|
57 |
+
"model.layers.16.mlp.down_proj.weight": "pytorch_model-00006-of-00013.bin",
|
58 |
+
"model.layers.16.mlp.gate_up_proj.weight": "pytorch_model-00006-of-00013.bin",
|
59 |
+
"model.layers.16.post_attention_layernorm.weight": "pytorch_model-00006-of-00013.bin",
|
60 |
+
"model.layers.16.self_attn.o_proj.weight": "pytorch_model-00005-of-00013.bin",
|
61 |
+
"model.layers.16.self_attn.qkv_proj.weight": "pytorch_model-00005-of-00013.bin",
|
62 |
+
"model.layers.17.input_layernorm.weight": "pytorch_model-00006-of-00013.bin",
|
63 |
+
"model.layers.17.mlp.down_proj.weight": "pytorch_model-00006-of-00013.bin",
|
64 |
+
"model.layers.17.mlp.gate_up_proj.weight": "pytorch_model-00006-of-00013.bin",
|
65 |
+
"model.layers.17.post_attention_layernorm.weight": "pytorch_model-00006-of-00013.bin",
|
66 |
+
"model.layers.17.self_attn.o_proj.weight": "pytorch_model-00006-of-00013.bin",
|
67 |
+
"model.layers.17.self_attn.qkv_proj.weight": "pytorch_model-00006-of-00013.bin",
|
68 |
+
"model.layers.18.input_layernorm.weight": "pytorch_model-00006-of-00013.bin",
|
69 |
+
"model.layers.18.mlp.down_proj.weight": "pytorch_model-00006-of-00013.bin",
|
70 |
+
"model.layers.18.mlp.gate_up_proj.weight": "pytorch_model-00006-of-00013.bin",
|
71 |
+
"model.layers.18.post_attention_layernorm.weight": "pytorch_model-00006-of-00013.bin",
|
72 |
+
"model.layers.18.self_attn.o_proj.weight": "pytorch_model-00006-of-00013.bin",
|
73 |
+
"model.layers.18.self_attn.qkv_proj.weight": "pytorch_model-00006-of-00013.bin",
|
74 |
+
"model.layers.19.input_layernorm.weight": "pytorch_model-00007-of-00013.bin",
|
75 |
+
"model.layers.19.mlp.down_proj.weight": "pytorch_model-00007-of-00013.bin",
|
76 |
+
"model.layers.19.mlp.gate_up_proj.weight": "pytorch_model-00006-of-00013.bin",
|
77 |
+
"model.layers.19.post_attention_layernorm.weight": "pytorch_model-00007-of-00013.bin",
|
78 |
+
"model.layers.19.self_attn.o_proj.weight": "pytorch_model-00006-of-00013.bin",
|
79 |
+
"model.layers.19.self_attn.qkv_proj.weight": "pytorch_model-00006-of-00013.bin",
|
80 |
+
"model.layers.2.input_layernorm.weight": "pytorch_model-00002-of-00013.bin",
|
81 |
+
"model.layers.2.mlp.down_proj.weight": "pytorch_model-00002-of-00013.bin",
|
82 |
+
"model.layers.2.mlp.gate_up_proj.weight": "pytorch_model-00002-of-00013.bin",
|
83 |
+
"model.layers.2.post_attention_layernorm.weight": "pytorch_model-00002-of-00013.bin",
|
84 |
+
"model.layers.2.self_attn.o_proj.weight": "pytorch_model-00001-of-00013.bin",
|
85 |
+
"model.layers.2.self_attn.qkv_proj.weight": "pytorch_model-00002-of-00013.bin",
|
86 |
+
"model.layers.20.input_layernorm.weight": "pytorch_model-00007-of-00013.bin",
|
87 |
+
"model.layers.20.mlp.down_proj.weight": "pytorch_model-00007-of-00013.bin",
|
88 |
+
"model.layers.20.mlp.gate_up_proj.weight": "pytorch_model-00007-of-00013.bin",
|
89 |
+
"model.layers.20.post_attention_layernorm.weight": "pytorch_model-00007-of-00013.bin",
|
90 |
+
"model.layers.20.self_attn.o_proj.weight": "pytorch_model-00007-of-00013.bin",
|
91 |
+
"model.layers.20.self_attn.qkv_proj.weight": "pytorch_model-00007-of-00013.bin",
|
92 |
+
"model.layers.21.input_layernorm.weight": "pytorch_model-00007-of-00013.bin",
|
93 |
+
"model.layers.21.mlp.down_proj.weight": "pytorch_model-00007-of-00013.bin",
|
94 |
+
"model.layers.21.mlp.gate_up_proj.weight": "pytorch_model-00007-of-00013.bin",
|
95 |
+
"model.layers.21.post_attention_layernorm.weight": "pytorch_model-00007-of-00013.bin",
|
96 |
+
"model.layers.21.self_attn.o_proj.weight": "pytorch_model-00007-of-00013.bin",
|
97 |
+
"model.layers.21.self_attn.qkv_proj.weight": "pytorch_model-00007-of-00013.bin",
|
98 |
+
"model.layers.22.input_layernorm.weight": "pytorch_model-00007-of-00013.bin",
|
99 |
+
"model.layers.22.mlp.down_proj.weight": "pytorch_model-00007-of-00013.bin",
|
100 |
+
"model.layers.22.mlp.gate_up_proj.weight": "pytorch_model-00007-of-00013.bin",
|
101 |
+
"model.layers.22.post_attention_layernorm.weight": "pytorch_model-00007-of-00013.bin",
|
102 |
+
"model.layers.22.self_attn.o_proj.weight": "pytorch_model-00007-of-00013.bin",
|
103 |
+
"model.layers.22.self_attn.qkv_proj.weight": "pytorch_model-00007-of-00013.bin",
|
104 |
+
"model.layers.23.input_layernorm.weight": "pytorch_model-00008-of-00013.bin",
|
105 |
+
"model.layers.23.mlp.down_proj.weight": "pytorch_model-00008-of-00013.bin",
|
106 |
+
"model.layers.23.mlp.gate_up_proj.weight": "pytorch_model-00008-of-00013.bin",
|
107 |
+
"model.layers.23.post_attention_layernorm.weight": "pytorch_model-00008-of-00013.bin",
|
108 |
+
"model.layers.23.self_attn.o_proj.weight": "pytorch_model-00007-of-00013.bin",
|
109 |
+
"model.layers.23.self_attn.qkv_proj.weight": "pytorch_model-00007-of-00013.bin",
|
110 |
+
"model.layers.24.input_layernorm.weight": "pytorch_model-00008-of-00013.bin",
|
111 |
+
"model.layers.24.mlp.down_proj.weight": "pytorch_model-00008-of-00013.bin",
|
112 |
+
"model.layers.24.mlp.gate_up_proj.weight": "pytorch_model-00008-of-00013.bin",
|
113 |
+
"model.layers.24.post_attention_layernorm.weight": "pytorch_model-00008-of-00013.bin",
|
114 |
+
"model.layers.24.self_attn.o_proj.weight": "pytorch_model-00008-of-00013.bin",
|
115 |
+
"model.layers.24.self_attn.qkv_proj.weight": "pytorch_model-00008-of-00013.bin",
|
116 |
+
"model.layers.25.input_layernorm.weight": "pytorch_model-00008-of-00013.bin",
|
117 |
+
"model.layers.25.mlp.down_proj.weight": "pytorch_model-00008-of-00013.bin",
|
118 |
+
"model.layers.25.mlp.gate_up_proj.weight": "pytorch_model-00008-of-00013.bin",
|
119 |
+
"model.layers.25.post_attention_layernorm.weight": "pytorch_model-00008-of-00013.bin",
|
120 |
+
"model.layers.25.self_attn.o_proj.weight": "pytorch_model-00008-of-00013.bin",
|
121 |
+
"model.layers.25.self_attn.qkv_proj.weight": "pytorch_model-00008-of-00013.bin",
|
122 |
+
"model.layers.26.input_layernorm.weight": "pytorch_model-00009-of-00013.bin",
|
123 |
+
"model.layers.26.mlp.down_proj.weight": "pytorch_model-00009-of-00013.bin",
|
124 |
+
"model.layers.26.mlp.gate_up_proj.weight": "pytorch_model-00008-of-00013.bin",
|
125 |
+
"model.layers.26.post_attention_layernorm.weight": "pytorch_model-00009-of-00013.bin",
|
126 |
+
"model.layers.26.self_attn.o_proj.weight": "pytorch_model-00008-of-00013.bin",
|
127 |
+
"model.layers.26.self_attn.qkv_proj.weight": "pytorch_model-00008-of-00013.bin",
|
128 |
+
"model.layers.27.input_layernorm.weight": "pytorch_model-00009-of-00013.bin",
|
129 |
+
"model.layers.27.mlp.down_proj.weight": "pytorch_model-00009-of-00013.bin",
|
130 |
+
"model.layers.27.mlp.gate_up_proj.weight": "pytorch_model-00009-of-00013.bin",
|
131 |
+
"model.layers.27.post_attention_layernorm.weight": "pytorch_model-00009-of-00013.bin",
|
132 |
+
"model.layers.27.self_attn.o_proj.weight": "pytorch_model-00009-of-00013.bin",
|
133 |
+
"model.layers.27.self_attn.qkv_proj.weight": "pytorch_model-00009-of-00013.bin",
|
134 |
+
"model.layers.28.input_layernorm.weight": "pytorch_model-00009-of-00013.bin",
|
135 |
+
"model.layers.28.mlp.down_proj.weight": "pytorch_model-00009-of-00013.bin",
|
136 |
+
"model.layers.28.mlp.gate_up_proj.weight": "pytorch_model-00009-of-00013.bin",
|
137 |
+
"model.layers.28.post_attention_layernorm.weight": "pytorch_model-00009-of-00013.bin",
|
138 |
+
"model.layers.28.self_attn.o_proj.weight": "pytorch_model-00009-of-00013.bin",
|
139 |
+
"model.layers.28.self_attn.qkv_proj.weight": "pytorch_model-00009-of-00013.bin",
|
140 |
+
"model.layers.29.input_layernorm.weight": "pytorch_model-00009-of-00013.bin",
|
141 |
+
"model.layers.29.mlp.down_proj.weight": "pytorch_model-00009-of-00013.bin",
|
142 |
+
"model.layers.29.mlp.gate_up_proj.weight": "pytorch_model-00009-of-00013.bin",
|
143 |
+
"model.layers.29.post_attention_layernorm.weight": "pytorch_model-00009-of-00013.bin",
|
144 |
+
"model.layers.29.self_attn.o_proj.weight": "pytorch_model-00009-of-00013.bin",
|
145 |
+
"model.layers.29.self_attn.qkv_proj.weight": "pytorch_model-00009-of-00013.bin",
|
146 |
+
"model.layers.3.input_layernorm.weight": "pytorch_model-00002-of-00013.bin",
|
147 |
+
"model.layers.3.mlp.down_proj.weight": "pytorch_model-00002-of-00013.bin",
|
148 |
+
"model.layers.3.mlp.gate_up_proj.weight": "pytorch_model-00002-of-00013.bin",
|
149 |
+
"model.layers.3.post_attention_layernorm.weight": "pytorch_model-00002-of-00013.bin",
|
150 |
+
"model.layers.3.self_attn.o_proj.weight": "pytorch_model-00002-of-00013.bin",
|
151 |
+
"model.layers.3.self_attn.qkv_proj.weight": "pytorch_model-00002-of-00013.bin",
|
152 |
+
"model.layers.30.input_layernorm.weight": "pytorch_model-00010-of-00013.bin",
|
153 |
+
"model.layers.30.mlp.down_proj.weight": "pytorch_model-00010-of-00013.bin",
|
154 |
+
"model.layers.30.mlp.gate_up_proj.weight": "pytorch_model-00010-of-00013.bin",
|
155 |
+
"model.layers.30.post_attention_layernorm.weight": "pytorch_model-00010-of-00013.bin",
|
156 |
+
"model.layers.30.self_attn.o_proj.weight": "pytorch_model-00009-of-00013.bin",
|
157 |
+
"model.layers.30.self_attn.qkv_proj.weight": "pytorch_model-00009-of-00013.bin",
|
158 |
+
"model.layers.31.input_layernorm.weight": "pytorch_model-00010-of-00013.bin",
|
159 |
+
"model.layers.31.mlp.down_proj.weight": "pytorch_model-00010-of-00013.bin",
|
160 |
+
"model.layers.31.mlp.gate_up_proj.weight": "pytorch_model-00010-of-00013.bin",
|
161 |
+
"model.layers.31.post_attention_layernorm.weight": "pytorch_model-00010-of-00013.bin",
|
162 |
+
"model.layers.31.self_attn.o_proj.weight": "pytorch_model-00010-of-00013.bin",
|
163 |
+
"model.layers.31.self_attn.qkv_proj.weight": "pytorch_model-00010-of-00013.bin",
|
164 |
+
"model.layers.32.input_layernorm.weight": "pytorch_model-00010-of-00013.bin",
|
165 |
+
"model.layers.32.mlp.down_proj.weight": "pytorch_model-00010-of-00013.bin",
|
166 |
+
"model.layers.32.mlp.gate_up_proj.weight": "pytorch_model-00010-of-00013.bin",
|
167 |
+
"model.layers.32.post_attention_layernorm.weight": "pytorch_model-00010-of-00013.bin",
|
168 |
+
"model.layers.32.self_attn.o_proj.weight": "pytorch_model-00010-of-00013.bin",
|
169 |
+
"model.layers.32.self_attn.qkv_proj.weight": "pytorch_model-00010-of-00013.bin",
|
170 |
+
"model.layers.33.input_layernorm.weight": "pytorch_model-00011-of-00013.bin",
|
171 |
+
"model.layers.33.mlp.down_proj.weight": "pytorch_model-00011-of-00013.bin",
|
172 |
+
"model.layers.33.mlp.gate_up_proj.weight": "pytorch_model-00010-of-00013.bin",
|
173 |
+
"model.layers.33.post_attention_layernorm.weight": "pytorch_model-00011-of-00013.bin",
|
174 |
+
"model.layers.33.self_attn.o_proj.weight": "pytorch_model-00010-of-00013.bin",
|
175 |
+
"model.layers.33.self_attn.qkv_proj.weight": "pytorch_model-00010-of-00013.bin",
|
176 |
+
"model.layers.34.input_layernorm.weight": "pytorch_model-00011-of-00013.bin",
|
177 |
+
"model.layers.34.mlp.down_proj.weight": "pytorch_model-00011-of-00013.bin",
|
178 |
+
"model.layers.34.mlp.gate_up_proj.weight": "pytorch_model-00011-of-00013.bin",
|
179 |
+
"model.layers.34.post_attention_layernorm.weight": "pytorch_model-00011-of-00013.bin",
|
180 |
+
"model.layers.34.self_attn.o_proj.weight": "pytorch_model-00011-of-00013.bin",
|
181 |
+
"model.layers.34.self_attn.qkv_proj.weight": "pytorch_model-00011-of-00013.bin",
|
182 |
+
"model.layers.35.input_layernorm.weight": "pytorch_model-00011-of-00013.bin",
|
183 |
+
"model.layers.35.mlp.down_proj.weight": "pytorch_model-00011-of-00013.bin",
|
184 |
+
"model.layers.35.mlp.gate_up_proj.weight": "pytorch_model-00011-of-00013.bin",
|
185 |
+
"model.layers.35.post_attention_layernorm.weight": "pytorch_model-00011-of-00013.bin",
|
186 |
+
"model.layers.35.self_attn.o_proj.weight": "pytorch_model-00011-of-00013.bin",
|
187 |
+
"model.layers.35.self_attn.qkv_proj.weight": "pytorch_model-00011-of-00013.bin",
|
188 |
+
"model.layers.36.input_layernorm.weight": "pytorch_model-00011-of-00013.bin",
|
189 |
+
"model.layers.36.mlp.down_proj.weight": "pytorch_model-00011-of-00013.bin",
|
190 |
+
"model.layers.36.mlp.gate_up_proj.weight": "pytorch_model-00011-of-00013.bin",
|
191 |
+
"model.layers.36.post_attention_layernorm.weight": "pytorch_model-00011-of-00013.bin",
|
192 |
+
"model.layers.36.self_attn.o_proj.weight": "pytorch_model-00011-of-00013.bin",
|
193 |
+
"model.layers.36.self_attn.qkv_proj.weight": "pytorch_model-00011-of-00013.bin",
|
194 |
+
"model.layers.37.input_layernorm.weight": "pytorch_model-00012-of-00013.bin",
|
195 |
+
"model.layers.37.mlp.down_proj.weight": "pytorch_model-00012-of-00013.bin",
|
196 |
+
"model.layers.37.mlp.gate_up_proj.weight": "pytorch_model-00012-of-00013.bin",
|
197 |
+
"model.layers.37.post_attention_layernorm.weight": "pytorch_model-00012-of-00013.bin",
|
198 |
+
"model.layers.37.self_attn.o_proj.weight": "pytorch_model-00011-of-00013.bin",
|
199 |
+
"model.layers.37.self_attn.qkv_proj.weight": "pytorch_model-00011-of-00013.bin",
|
200 |
+
"model.layers.38.input_layernorm.weight": "pytorch_model-00012-of-00013.bin",
|
201 |
+
"model.layers.38.mlp.down_proj.weight": "pytorch_model-00012-of-00013.bin",
|
202 |
+
"model.layers.38.mlp.gate_up_proj.weight": "pytorch_model-00012-of-00013.bin",
|
203 |
+
"model.layers.38.post_attention_layernorm.weight": "pytorch_model-00012-of-00013.bin",
|
204 |
+
"model.layers.38.self_attn.o_proj.weight": "pytorch_model-00012-of-00013.bin",
|
205 |
+
"model.layers.38.self_attn.qkv_proj.weight": "pytorch_model-00012-of-00013.bin",
|
206 |
+
"model.layers.39.input_layernorm.weight": "pytorch_model-00012-of-00013.bin",
|
207 |
+
"model.layers.39.mlp.down_proj.weight": "pytorch_model-00012-of-00013.bin",
|
208 |
+
"model.layers.39.mlp.gate_up_proj.weight": "pytorch_model-00012-of-00013.bin",
|
209 |
+
"model.layers.39.post_attention_layernorm.weight": "pytorch_model-00012-of-00013.bin",
|
210 |
+
"model.layers.39.self_attn.o_proj.weight": "pytorch_model-00012-of-00013.bin",
|
211 |
+
"model.layers.39.self_attn.qkv_proj.weight": "pytorch_model-00012-of-00013.bin",
|
212 |
+
"model.layers.4.input_layernorm.weight": "pytorch_model-00002-of-00013.bin",
|
213 |
+
"model.layers.4.mlp.down_proj.weight": "pytorch_model-00002-of-00013.bin",
|
214 |
+
"model.layers.4.mlp.gate_up_proj.weight": "pytorch_model-00002-of-00013.bin",
|
215 |
+
"model.layers.4.post_attention_layernorm.weight": "pytorch_model-00002-of-00013.bin",
|
216 |
+
"model.layers.4.self_attn.o_proj.weight": "pytorch_model-00002-of-00013.bin",
|
217 |
+
"model.layers.4.self_attn.qkv_proj.weight": "pytorch_model-00002-of-00013.bin",
|
218 |
+
"model.layers.5.input_layernorm.weight": "pytorch_model-00003-of-00013.bin",
|
219 |
+
"model.layers.5.mlp.down_proj.weight": "pytorch_model-00003-of-00013.bin",
|
220 |
+
"model.layers.5.mlp.gate_up_proj.weight": "pytorch_model-00002-of-00013.bin",
|
221 |
+
"model.layers.5.post_attention_layernorm.weight": "pytorch_model-00003-of-00013.bin",
|
222 |
+
"model.layers.5.self_attn.o_proj.weight": "pytorch_model-00002-of-00013.bin",
|
223 |
+
"model.layers.5.self_attn.qkv_proj.weight": "pytorch_model-00002-of-00013.bin",
|
224 |
+
"model.layers.6.input_layernorm.weight": "pytorch_model-00003-of-00013.bin",
|
225 |
+
"model.layers.6.mlp.down_proj.weight": "pytorch_model-00003-of-00013.bin",
|
226 |
+
"model.layers.6.mlp.gate_up_proj.weight": "pytorch_model-00003-of-00013.bin",
|
227 |
+
"model.layers.6.post_attention_layernorm.weight": "pytorch_model-00003-of-00013.bin",
|
228 |
+
"model.layers.6.self_attn.o_proj.weight": "pytorch_model-00003-of-00013.bin",
|
229 |
+
"model.layers.6.self_attn.qkv_proj.weight": "pytorch_model-00003-of-00013.bin",
|
230 |
+
"model.layers.7.input_layernorm.weight": "pytorch_model-00003-of-00013.bin",
|
231 |
+
"model.layers.7.mlp.down_proj.weight": "pytorch_model-00003-of-00013.bin",
|
232 |
+
"model.layers.7.mlp.gate_up_proj.weight": "pytorch_model-00003-of-00013.bin",
|
233 |
+
"model.layers.7.post_attention_layernorm.weight": "pytorch_model-00003-of-00013.bin",
|
234 |
+
"model.layers.7.self_attn.o_proj.weight": "pytorch_model-00003-of-00013.bin",
|
235 |
+
"model.layers.7.self_attn.qkv_proj.weight": "pytorch_model-00003-of-00013.bin",
|
236 |
+
"model.layers.8.input_layernorm.weight": "pytorch_model-00003-of-00013.bin",
|
237 |
+
"model.layers.8.mlp.down_proj.weight": "pytorch_model-00003-of-00013.bin",
|
238 |
+
"model.layers.8.mlp.gate_up_proj.weight": "pytorch_model-00003-of-00013.bin",
|
239 |
+
"model.layers.8.post_attention_layernorm.weight": "pytorch_model-00003-of-00013.bin",
|
240 |
+
"model.layers.8.self_attn.o_proj.weight": "pytorch_model-00003-of-00013.bin",
|
241 |
+
"model.layers.8.self_attn.qkv_proj.weight": "pytorch_model-00003-of-00013.bin",
|
242 |
+
"model.layers.9.input_layernorm.weight": "pytorch_model-00004-of-00013.bin",
|
243 |
+
"model.layers.9.mlp.down_proj.weight": "pytorch_model-00004-of-00013.bin",
|
244 |
+
"model.layers.9.mlp.gate_up_proj.weight": "pytorch_model-00004-of-00013.bin",
|
245 |
+
"model.layers.9.post_attention_layernorm.weight": "pytorch_model-00004-of-00013.bin",
|
246 |
+
"model.layers.9.self_attn.o_proj.weight": "pytorch_model-00003-of-00013.bin",
|
247 |
+
"model.layers.9.self_attn.qkv_proj.weight": "pytorch_model-00003-of-00013.bin",
|
248 |
+
"model.norm.weight": "pytorch_model-00012-of-00013.bin"
|
249 |
+
}
|
250 |
+
}
|
rng_state_0.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:92cc13315f24c28015d695b6cde08bb1cd6fea4cbc435998485ed6fbe4c91285
|
3 |
+
size 15024
|
rng_state_1.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f4c154b6a63e0b1f98f7d2847944398f99f1657d35e8eddf7fdf0ae2c24b0552
|
3 |
+
size 15024
|
rng_state_2.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f784c6a9507b51189f2caffbd178ea9882103b75852e31c15f47fdae6a43af1d
|
3 |
+
size 15024
|
rng_state_3.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:34b023e05bc2d12b91dc436d4922b990d50ec8dc56d40dc3e36b3bb34fc81341
|
3 |
+
size 15024
|
scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1590c1c5090942d2d4d2cecd50f9e37516d1d2b965656284b2785a2acdbeeb5b
|
3 |
+
size 1064
|
special_tokens_map.json
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
{
|
4 |
+
"content": "<|im_end|>",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false
|
9 |
+
}
|
10 |
+
],
|
11 |
+
"bos_token": {
|
12 |
+
"content": "<|endoftext|>",
|
13 |
+
"lstrip": true,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": true,
|
16 |
+
"single_word": false
|
17 |
+
},
|
18 |
+
"eos_token": {
|
19 |
+
"content": "<|im_end|>",
|
20 |
+
"lstrip": true,
|
21 |
+
"normalized": false,
|
22 |
+
"rstrip": true,
|
23 |
+
"single_word": false
|
24 |
+
},
|
25 |
+
"pad_token": {
|
26 |
+
"content": "<|dummy_85|>",
|
27 |
+
"lstrip": true,
|
28 |
+
"normalized": false,
|
29 |
+
"rstrip": true,
|
30 |
+
"single_word": false
|
31 |
+
},
|
32 |
+
"unk_token": "<|endoftext|>"
|
33 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,787 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_prefix_space": false,
|
3 |
+
"added_tokens_decoder": {
|
4 |
+
"100256": {
|
5 |
+
"content": "<|dummy_0|>",
|
6 |
+
"lstrip": true,
|
7 |
+
"normalized": false,
|
8 |
+
"rstrip": true,
|
9 |
+
"single_word": false,
|
10 |
+
"special": true
|
11 |
+
},
|
12 |
+
"100257": {
|
13 |
+
"content": "<|endoftext|>",
|
14 |
+
"lstrip": true,
|
15 |
+
"normalized": false,
|
16 |
+
"rstrip": true,
|
17 |
+
"single_word": false,
|
18 |
+
"special": true
|
19 |
+
},
|
20 |
+
"100258": {
|
21 |
+
"content": "<|fim_prefix|>",
|
22 |
+
"lstrip": true,
|
23 |
+
"normalized": false,
|
24 |
+
"rstrip": true,
|
25 |
+
"single_word": false,
|
26 |
+
"special": true
|
27 |
+
},
|
28 |
+
"100259": {
|
29 |
+
"content": "<|fim_middle|>",
|
30 |
+
"lstrip": true,
|
31 |
+
"normalized": false,
|
32 |
+
"rstrip": true,
|
33 |
+
"single_word": false,
|
34 |
+
"special": true
|
35 |
+
},
|
36 |
+
"100260": {
|
37 |
+
"content": "<|fim_suffix|>",
|
38 |
+
"lstrip": true,
|
39 |
+
"normalized": false,
|
40 |
+
"rstrip": true,
|
41 |
+
"single_word": false,
|
42 |
+
"special": true
|
43 |
+
},
|
44 |
+
"100261": {
|
45 |
+
"content": "<|dummy_1|>",
|
46 |
+
"lstrip": true,
|
47 |
+
"normalized": false,
|
48 |
+
"rstrip": true,
|
49 |
+
"single_word": false,
|
50 |
+
"special": true
|
51 |
+
},
|
52 |
+
"100262": {
|
53 |
+
"content": "<|dummy_2|>",
|
54 |
+
"lstrip": true,
|
55 |
+
"normalized": false,
|
56 |
+
"rstrip": true,
|
57 |
+
"single_word": false,
|
58 |
+
"special": true
|
59 |
+
},
|
60 |
+
"100263": {
|
61 |
+
"content": "<|dummy_3|>",
|
62 |
+
"lstrip": true,
|
63 |
+
"normalized": false,
|
64 |
+
"rstrip": true,
|
65 |
+
"single_word": false,
|
66 |
+
"special": true
|
67 |
+
},
|
68 |
+
"100264": {
|
69 |
+
"content": "<|im_start|>",
|
70 |
+
"lstrip": true,
|
71 |
+
"normalized": false,
|
72 |
+
"rstrip": true,
|
73 |
+
"single_word": false,
|
74 |
+
"special": true
|
75 |
+
},
|
76 |
+
"100265": {
|
77 |
+
"content": "<|im_end|>",
|
78 |
+
"lstrip": false,
|
79 |
+
"normalized": false,
|
80 |
+
"rstrip": false,
|
81 |
+
"single_word": false,
|
82 |
+
"special": true
|
83 |
+
},
|
84 |
+
"100266": {
|
85 |
+
"content": "<|im_sep|>",
|
86 |
+
"lstrip": true,
|
87 |
+
"normalized": false,
|
88 |
+
"rstrip": true,
|
89 |
+
"single_word": false,
|
90 |
+
"special": true
|
91 |
+
},
|
92 |
+
"100267": {
|
93 |
+
"content": "<|dummy_4|>",
|
94 |
+
"lstrip": true,
|
95 |
+
"normalized": false,
|
96 |
+
"rstrip": true,
|
97 |
+
"single_word": false,
|
98 |
+
"special": true
|
99 |
+
},
|
100 |
+
"100268": {
|
101 |
+
"content": "<|dummy_5|>",
|
102 |
+
"lstrip": true,
|
103 |
+
"normalized": false,
|
104 |
+
"rstrip": true,
|
105 |
+
"single_word": false,
|
106 |
+
"special": true
|
107 |
+
},
|
108 |
+
"100269": {
|
109 |
+
"content": "<|dummy_6|>",
|
110 |
+
"lstrip": true,
|
111 |
+
"normalized": false,
|
112 |
+
"rstrip": true,
|
113 |
+
"single_word": false,
|
114 |
+
"special": true
|
115 |
+
},
|
116 |
+
"100270": {
|
117 |
+
"content": "<|dummy_7|>",
|
118 |
+
"lstrip": true,
|
119 |
+
"normalized": false,
|
120 |
+
"rstrip": true,
|
121 |
+
"single_word": false,
|
122 |
+
"special": true
|
123 |
+
},
|
124 |
+
"100271": {
|
125 |
+
"content": "<|dummy_8|>",
|
126 |
+
"lstrip": true,
|
127 |
+
"normalized": false,
|
128 |
+
"rstrip": true,
|
129 |
+
"single_word": false,
|
130 |
+
"special": true
|
131 |
+
},
|
132 |
+
"100272": {
|
133 |
+
"content": "<|dummy_9|>",
|
134 |
+
"lstrip": true,
|
135 |
+
"normalized": false,
|
136 |
+
"rstrip": true,
|
137 |
+
"single_word": false,
|
138 |
+
"special": true
|
139 |
+
},
|
140 |
+
"100273": {
|
141 |
+
"content": "<|dummy_10|>",
|
142 |
+
"lstrip": true,
|
143 |
+
"normalized": false,
|
144 |
+
"rstrip": true,
|
145 |
+
"single_word": false,
|
146 |
+
"special": true
|
147 |
+
},
|
148 |
+
"100274": {
|
149 |
+
"content": "<|dummy_11|>",
|
150 |
+
"lstrip": true,
|
151 |
+
"normalized": false,
|
152 |
+
"rstrip": true,
|
153 |
+
"single_word": false,
|
154 |
+
"special": true
|
155 |
+
},
|
156 |
+
"100275": {
|
157 |
+
"content": "<|dummy_12|>",
|
158 |
+
"lstrip": true,
|
159 |
+
"normalized": false,
|
160 |
+
"rstrip": true,
|
161 |
+
"single_word": false,
|
162 |
+
"special": true
|
163 |
+
},
|
164 |
+
"100276": {
|
165 |
+
"content": "<|endofprompt|>",
|
166 |
+
"lstrip": true,
|
167 |
+
"normalized": false,
|
168 |
+
"rstrip": true,
|
169 |
+
"single_word": false,
|
170 |
+
"special": true
|
171 |
+
},
|
172 |
+
"100277": {
|
173 |
+
"content": "<|dummy_13|>",
|
174 |
+
"lstrip": true,
|
175 |
+
"normalized": false,
|
176 |
+
"rstrip": true,
|
177 |
+
"single_word": false,
|
178 |
+
"special": true
|
179 |
+
},
|
180 |
+
"100278": {
|
181 |
+
"content": "<|dummy_14|>",
|
182 |
+
"lstrip": true,
|
183 |
+
"normalized": false,
|
184 |
+
"rstrip": true,
|
185 |
+
"single_word": false,
|
186 |
+
"special": true
|
187 |
+
},
|
188 |
+
"100279": {
|
189 |
+
"content": "<|dummy_15|>",
|
190 |
+
"lstrip": true,
|
191 |
+
"normalized": false,
|
192 |
+
"rstrip": true,
|
193 |
+
"single_word": false,
|
194 |
+
"special": true
|
195 |
+
},
|
196 |
+
"100280": {
|
197 |
+
"content": "<|dummy_16|>",
|
198 |
+
"lstrip": true,
|
199 |
+
"normalized": false,
|
200 |
+
"rstrip": true,
|
201 |
+
"single_word": false,
|
202 |
+
"special": true
|
203 |
+
},
|
204 |
+
"100281": {
|
205 |
+
"content": "<|dummy_17|>",
|
206 |
+
"lstrip": true,
|
207 |
+
"normalized": false,
|
208 |
+
"rstrip": true,
|
209 |
+
"single_word": false,
|
210 |
+
"special": true
|
211 |
+
},
|
212 |
+
"100282": {
|
213 |
+
"content": "<|dummy_18|>",
|
214 |
+
"lstrip": true,
|
215 |
+
"normalized": false,
|
216 |
+
"rstrip": true,
|
217 |
+
"single_word": false,
|
218 |
+
"special": true
|
219 |
+
},
|
220 |
+
"100283": {
|
221 |
+
"content": "<|dummy_19|>",
|
222 |
+
"lstrip": true,
|
223 |
+
"normalized": false,
|
224 |
+
"rstrip": true,
|
225 |
+
"single_word": false,
|
226 |
+
"special": true
|
227 |
+
},
|
228 |
+
"100284": {
|
229 |
+
"content": "<|dummy_20|>",
|
230 |
+
"lstrip": true,
|
231 |
+
"normalized": false,
|
232 |
+
"rstrip": true,
|
233 |
+
"single_word": false,
|
234 |
+
"special": true
|
235 |
+
},
|
236 |
+
"100285": {
|
237 |
+
"content": "<|dummy_21|>",
|
238 |
+
"lstrip": true,
|
239 |
+
"normalized": false,
|
240 |
+
"rstrip": true,
|
241 |
+
"single_word": false,
|
242 |
+
"special": true
|
243 |
+
},
|
244 |
+
"100286": {
|
245 |
+
"content": "<|dummy_22|>",
|
246 |
+
"lstrip": true,
|
247 |
+
"normalized": false,
|
248 |
+
"rstrip": true,
|
249 |
+
"single_word": false,
|
250 |
+
"special": true
|
251 |
+
},
|
252 |
+
"100287": {
|
253 |
+
"content": "<|dummy_23|>",
|
254 |
+
"lstrip": true,
|
255 |
+
"normalized": false,
|
256 |
+
"rstrip": true,
|
257 |
+
"single_word": false,
|
258 |
+
"special": true
|
259 |
+
},
|
260 |
+
"100288": {
|
261 |
+
"content": "<|dummy_24|>",
|
262 |
+
"lstrip": true,
|
263 |
+
"normalized": false,
|
264 |
+
"rstrip": true,
|
265 |
+
"single_word": false,
|
266 |
+
"special": true
|
267 |
+
},
|
268 |
+
"100289": {
|
269 |
+
"content": "<|dummy_25|>",
|
270 |
+
"lstrip": true,
|
271 |
+
"normalized": false,
|
272 |
+
"rstrip": true,
|
273 |
+
"single_word": false,
|
274 |
+
"special": true
|
275 |
+
},
|
276 |
+
"100290": {
|
277 |
+
"content": "<|dummy_26|>",
|
278 |
+
"lstrip": true,
|
279 |
+
"normalized": false,
|
280 |
+
"rstrip": true,
|
281 |
+
"single_word": false,
|
282 |
+
"special": true
|
283 |
+
},
|
284 |
+
"100291": {
|
285 |
+
"content": "<|dummy_27|>",
|
286 |
+
"lstrip": true,
|
287 |
+
"normalized": false,
|
288 |
+
"rstrip": true,
|
289 |
+
"single_word": false,
|
290 |
+
"special": true
|
291 |
+
},
|
292 |
+
"100292": {
|
293 |
+
"content": "<|dummy_28|>",
|
294 |
+
"lstrip": true,
|
295 |
+
"normalized": false,
|
296 |
+
"rstrip": true,
|
297 |
+
"single_word": false,
|
298 |
+
"special": true
|
299 |
+
},
|
300 |
+
"100293": {
|
301 |
+
"content": "<|dummy_29|>",
|
302 |
+
"lstrip": true,
|
303 |
+
"normalized": false,
|
304 |
+
"rstrip": true,
|
305 |
+
"single_word": false,
|
306 |
+
"special": true
|
307 |
+
},
|
308 |
+
"100294": {
|
309 |
+
"content": "<|dummy_30|>",
|
310 |
+
"lstrip": true,
|
311 |
+
"normalized": false,
|
312 |
+
"rstrip": true,
|
313 |
+
"single_word": false,
|
314 |
+
"special": true
|
315 |
+
},
|
316 |
+
"100295": {
|
317 |
+
"content": "<|dummy_31|>",
|
318 |
+
"lstrip": true,
|
319 |
+
"normalized": false,
|
320 |
+
"rstrip": true,
|
321 |
+
"single_word": false,
|
322 |
+
"special": true
|
323 |
+
},
|
324 |
+
"100296": {
|
325 |
+
"content": "<|dummy_32|>",
|
326 |
+
"lstrip": true,
|
327 |
+
"normalized": false,
|
328 |
+
"rstrip": true,
|
329 |
+
"single_word": false,
|
330 |
+
"special": true
|
331 |
+
},
|
332 |
+
"100297": {
|
333 |
+
"content": "<|dummy_33|>",
|
334 |
+
"lstrip": true,
|
335 |
+
"normalized": false,
|
336 |
+
"rstrip": true,
|
337 |
+
"single_word": false,
|
338 |
+
"special": true
|
339 |
+
},
|
340 |
+
"100298": {
|
341 |
+
"content": "<|dummy_34|>",
|
342 |
+
"lstrip": true,
|
343 |
+
"normalized": false,
|
344 |
+
"rstrip": true,
|
345 |
+
"single_word": false,
|
346 |
+
"special": true
|
347 |
+
},
|
348 |
+
"100299": {
|
349 |
+
"content": "<|dummy_35|>",
|
350 |
+
"lstrip": true,
|
351 |
+
"normalized": false,
|
352 |
+
"rstrip": true,
|
353 |
+
"single_word": false,
|
354 |
+
"special": true
|
355 |
+
},
|
356 |
+
"100300": {
|
357 |
+
"content": "<|dummy_36|>",
|
358 |
+
"lstrip": true,
|
359 |
+
"normalized": false,
|
360 |
+
"rstrip": true,
|
361 |
+
"single_word": false,
|
362 |
+
"special": true
|
363 |
+
},
|
364 |
+
"100301": {
|
365 |
+
"content": "<|dummy_37|>",
|
366 |
+
"lstrip": true,
|
367 |
+
"normalized": false,
|
368 |
+
"rstrip": true,
|
369 |
+
"single_word": false,
|
370 |
+
"special": true
|
371 |
+
},
|
372 |
+
"100302": {
|
373 |
+
"content": "<|dummy_38|>",
|
374 |
+
"lstrip": true,
|
375 |
+
"normalized": false,
|
376 |
+
"rstrip": true,
|
377 |
+
"single_word": false,
|
378 |
+
"special": true
|
379 |
+
},
|
380 |
+
"100303": {
|
381 |
+
"content": "<|dummy_39|>",
|
382 |
+
"lstrip": true,
|
383 |
+
"normalized": false,
|
384 |
+
"rstrip": true,
|
385 |
+
"single_word": false,
|
386 |
+
"special": true
|
387 |
+
},
|
388 |
+
"100304": {
|
389 |
+
"content": "<|dummy_40|>",
|
390 |
+
"lstrip": true,
|
391 |
+
"normalized": false,
|
392 |
+
"rstrip": true,
|
393 |
+
"single_word": false,
|
394 |
+
"special": true
|
395 |
+
},
|
396 |
+
"100305": {
|
397 |
+
"content": "<|dummy_41|>",
|
398 |
+
"lstrip": true,
|
399 |
+
"normalized": false,
|
400 |
+
"rstrip": true,
|
401 |
+
"single_word": false,
|
402 |
+
"special": true
|
403 |
+
},
|
404 |
+
"100306": {
|
405 |
+
"content": "<|dummy_42|>",
|
406 |
+
"lstrip": true,
|
407 |
+
"normalized": false,
|
408 |
+
"rstrip": true,
|
409 |
+
"single_word": false,
|
410 |
+
"special": true
|
411 |
+
},
|
412 |
+
"100307": {
|
413 |
+
"content": "<|dummy_43|>",
|
414 |
+
"lstrip": true,
|
415 |
+
"normalized": false,
|
416 |
+
"rstrip": true,
|
417 |
+
"single_word": false,
|
418 |
+
"special": true
|
419 |
+
},
|
420 |
+
"100308": {
|
421 |
+
"content": "<|dummy_44|>",
|
422 |
+
"lstrip": true,
|
423 |
+
"normalized": false,
|
424 |
+
"rstrip": true,
|
425 |
+
"single_word": false,
|
426 |
+
"special": true
|
427 |
+
},
|
428 |
+
"100309": {
|
429 |
+
"content": "<|dummy_45|>",
|
430 |
+
"lstrip": true,
|
431 |
+
"normalized": false,
|
432 |
+
"rstrip": true,
|
433 |
+
"single_word": false,
|
434 |
+
"special": true
|
435 |
+
},
|
436 |
+
"100310": {
|
437 |
+
"content": "<|dummy_46|>",
|
438 |
+
"lstrip": true,
|
439 |
+
"normalized": false,
|
440 |
+
"rstrip": true,
|
441 |
+
"single_word": false,
|
442 |
+
"special": true
|
443 |
+
},
|
444 |
+
"100311": {
|
445 |
+
"content": "<|dummy_47|>",
|
446 |
+
"lstrip": true,
|
447 |
+
"normalized": false,
|
448 |
+
"rstrip": true,
|
449 |
+
"single_word": false,
|
450 |
+
"special": true
|
451 |
+
},
|
452 |
+
"100312": {
|
453 |
+
"content": "<|dummy_48|>",
|
454 |
+
"lstrip": true,
|
455 |
+
"normalized": false,
|
456 |
+
"rstrip": true,
|
457 |
+
"single_word": false,
|
458 |
+
"special": true
|
459 |
+
},
|
460 |
+
"100313": {
|
461 |
+
"content": "<|dummy_49|>",
|
462 |
+
"lstrip": true,
|
463 |
+
"normalized": false,
|
464 |
+
"rstrip": true,
|
465 |
+
"single_word": false,
|
466 |
+
"special": true
|
467 |
+
},
|
468 |
+
"100314": {
|
469 |
+
"content": "<|dummy_50|>",
|
470 |
+
"lstrip": true,
|
471 |
+
"normalized": false,
|
472 |
+
"rstrip": true,
|
473 |
+
"single_word": false,
|
474 |
+
"special": true
|
475 |
+
},
|
476 |
+
"100315": {
|
477 |
+
"content": "<|dummy_51|>",
|
478 |
+
"lstrip": true,
|
479 |
+
"normalized": false,
|
480 |
+
"rstrip": true,
|
481 |
+
"single_word": false,
|
482 |
+
"special": true
|
483 |
+
},
|
484 |
+
"100316": {
|
485 |
+
"content": "<|dummy_52|>",
|
486 |
+
"lstrip": true,
|
487 |
+
"normalized": false,
|
488 |
+
"rstrip": true,
|
489 |
+
"single_word": false,
|
490 |
+
"special": true
|
491 |
+
},
|
492 |
+
"100317": {
|
493 |
+
"content": "<|dummy_53|>",
|
494 |
+
"lstrip": true,
|
495 |
+
"normalized": false,
|
496 |
+
"rstrip": true,
|
497 |
+
"single_word": false,
|
498 |
+
"special": true
|
499 |
+
},
|
500 |
+
"100318": {
|
501 |
+
"content": "<|dummy_54|>",
|
502 |
+
"lstrip": true,
|
503 |
+
"normalized": false,
|
504 |
+
"rstrip": true,
|
505 |
+
"single_word": false,
|
506 |
+
"special": true
|
507 |
+
},
|
508 |
+
"100319": {
|
509 |
+
"content": "<|dummy_55|>",
|
510 |
+
"lstrip": true,
|
511 |
+
"normalized": false,
|
512 |
+
"rstrip": true,
|
513 |
+
"single_word": false,
|
514 |
+
"special": true
|
515 |
+
},
|
516 |
+
"100320": {
|
517 |
+
"content": "<|dummy_56|>",
|
518 |
+
"lstrip": true,
|
519 |
+
"normalized": false,
|
520 |
+
"rstrip": true,
|
521 |
+
"single_word": false,
|
522 |
+
"special": true
|
523 |
+
},
|
524 |
+
"100321": {
|
525 |
+
"content": "<|dummy_57|>",
|
526 |
+
"lstrip": true,
|
527 |
+
"normalized": false,
|
528 |
+
"rstrip": true,
|
529 |
+
"single_word": false,
|
530 |
+
"special": true
|
531 |
+
},
|
532 |
+
"100322": {
|
533 |
+
"content": "<|dummy_58|>",
|
534 |
+
"lstrip": true,
|
535 |
+
"normalized": false,
|
536 |
+
"rstrip": true,
|
537 |
+
"single_word": false,
|
538 |
+
"special": true
|
539 |
+
},
|
540 |
+
"100323": {
|
541 |
+
"content": "<|dummy_59|>",
|
542 |
+
"lstrip": true,
|
543 |
+
"normalized": false,
|
544 |
+
"rstrip": true,
|
545 |
+
"single_word": false,
|
546 |
+
"special": true
|
547 |
+
},
|
548 |
+
"100324": {
|
549 |
+
"content": "<|dummy_60|>",
|
550 |
+
"lstrip": true,
|
551 |
+
"normalized": false,
|
552 |
+
"rstrip": true,
|
553 |
+
"single_word": false,
|
554 |
+
"special": true
|
555 |
+
},
|
556 |
+
"100325": {
|
557 |
+
"content": "<|dummy_61|>",
|
558 |
+
"lstrip": true,
|
559 |
+
"normalized": false,
|
560 |
+
"rstrip": true,
|
561 |
+
"single_word": false,
|
562 |
+
"special": true
|
563 |
+
},
|
564 |
+
"100326": {
|
565 |
+
"content": "<|dummy_62|>",
|
566 |
+
"lstrip": true,
|
567 |
+
"normalized": false,
|
568 |
+
"rstrip": true,
|
569 |
+
"single_word": false,
|
570 |
+
"special": true
|
571 |
+
},
|
572 |
+
"100327": {
|
573 |
+
"content": "<|dummy_63|>",
|
574 |
+
"lstrip": true,
|
575 |
+
"normalized": false,
|
576 |
+
"rstrip": true,
|
577 |
+
"single_word": false,
|
578 |
+
"special": true
|
579 |
+
},
|
580 |
+
"100328": {
|
581 |
+
"content": "<|dummy_64|>",
|
582 |
+
"lstrip": true,
|
583 |
+
"normalized": false,
|
584 |
+
"rstrip": true,
|
585 |
+
"single_word": false,
|
586 |
+
"special": true
|
587 |
+
},
|
588 |
+
"100329": {
|
589 |
+
"content": "<|dummy_65|>",
|
590 |
+
"lstrip": true,
|
591 |
+
"normalized": false,
|
592 |
+
"rstrip": true,
|
593 |
+
"single_word": false,
|
594 |
+
"special": true
|
595 |
+
},
|
596 |
+
"100330": {
|
597 |
+
"content": "<|dummy_66|>",
|
598 |
+
"lstrip": true,
|
599 |
+
"normalized": false,
|
600 |
+
"rstrip": true,
|
601 |
+
"single_word": false,
|
602 |
+
"special": true
|
603 |
+
},
|
604 |
+
"100331": {
|
605 |
+
"content": "<|dummy_67|>",
|
606 |
+
"lstrip": true,
|
607 |
+
"normalized": false,
|
608 |
+
"rstrip": true,
|
609 |
+
"single_word": false,
|
610 |
+
"special": true
|
611 |
+
},
|
612 |
+
"100332": {
|
613 |
+
"content": "<|dummy_68|>",
|
614 |
+
"lstrip": true,
|
615 |
+
"normalized": false,
|
616 |
+
"rstrip": true,
|
617 |
+
"single_word": false,
|
618 |
+
"special": true
|
619 |
+
},
|
620 |
+
"100333": {
|
621 |
+
"content": "<|dummy_69|>",
|
622 |
+
"lstrip": true,
|
623 |
+
"normalized": false,
|
624 |
+
"rstrip": true,
|
625 |
+
"single_word": false,
|
626 |
+
"special": true
|
627 |
+
},
|
628 |
+
"100334": {
|
629 |
+
"content": "<|dummy_70|>",
|
630 |
+
"lstrip": true,
|
631 |
+
"normalized": false,
|
632 |
+
"rstrip": true,
|
633 |
+
"single_word": false,
|
634 |
+
"special": true
|
635 |
+
},
|
636 |
+
"100335": {
|
637 |
+
"content": "<|dummy_71|>",
|
638 |
+
"lstrip": true,
|
639 |
+
"normalized": false,
|
640 |
+
"rstrip": true,
|
641 |
+
"single_word": false,
|
642 |
+
"special": true
|
643 |
+
},
|
644 |
+
"100336": {
|
645 |
+
"content": "<|dummy_72|>",
|
646 |
+
"lstrip": true,
|
647 |
+
"normalized": false,
|
648 |
+
"rstrip": true,
|
649 |
+
"single_word": false,
|
650 |
+
"special": true
|
651 |
+
},
|
652 |
+
"100337": {
|
653 |
+
"content": "<|dummy_73|>",
|
654 |
+
"lstrip": true,
|
655 |
+
"normalized": false,
|
656 |
+
"rstrip": true,
|
657 |
+
"single_word": false,
|
658 |
+
"special": true
|
659 |
+
},
|
660 |
+
"100338": {
|
661 |
+
"content": "<|dummy_74|>",
|
662 |
+
"lstrip": true,
|
663 |
+
"normalized": false,
|
664 |
+
"rstrip": true,
|
665 |
+
"single_word": false,
|
666 |
+
"special": true
|
667 |
+
},
|
668 |
+
"100339": {
|
669 |
+
"content": "<|dummy_75|>",
|
670 |
+
"lstrip": true,
|
671 |
+
"normalized": false,
|
672 |
+
"rstrip": true,
|
673 |
+
"single_word": false,
|
674 |
+
"special": true
|
675 |
+
},
|
676 |
+
"100340": {
|
677 |
+
"content": "<|dummy_76|>",
|
678 |
+
"lstrip": true,
|
679 |
+
"normalized": false,
|
680 |
+
"rstrip": true,
|
681 |
+
"single_word": false,
|
682 |
+
"special": true
|
683 |
+
},
|
684 |
+
"100341": {
|
685 |
+
"content": "<|dummy_77|>",
|
686 |
+
"lstrip": true,
|
687 |
+
"normalized": false,
|
688 |
+
"rstrip": true,
|
689 |
+
"single_word": false,
|
690 |
+
"special": true
|
691 |
+
},
|
692 |
+
"100342": {
|
693 |
+
"content": "<|dummy_78|>",
|
694 |
+
"lstrip": true,
|
695 |
+
"normalized": false,
|
696 |
+
"rstrip": true,
|
697 |
+
"single_word": false,
|
698 |
+
"special": true
|
699 |
+
},
|
700 |
+
"100343": {
|
701 |
+
"content": "<|dummy_79|>",
|
702 |
+
"lstrip": true,
|
703 |
+
"normalized": false,
|
704 |
+
"rstrip": true,
|
705 |
+
"single_word": false,
|
706 |
+
"special": true
|
707 |
+
},
|
708 |
+
"100344": {
|
709 |
+
"content": "<|dummy_80|>",
|
710 |
+
"lstrip": true,
|
711 |
+
"normalized": false,
|
712 |
+
"rstrip": true,
|
713 |
+
"single_word": false,
|
714 |
+
"special": true
|
715 |
+
},
|
716 |
+
"100345": {
|
717 |
+
"content": "<|dummy_81|>",
|
718 |
+
"lstrip": true,
|
719 |
+
"normalized": false,
|
720 |
+
"rstrip": true,
|
721 |
+
"single_word": false,
|
722 |
+
"special": true
|
723 |
+
},
|
724 |
+
"100346": {
|
725 |
+
"content": "<|dummy_82|>",
|
726 |
+
"lstrip": true,
|
727 |
+
"normalized": false,
|
728 |
+
"rstrip": true,
|
729 |
+
"single_word": false,
|
730 |
+
"special": true
|
731 |
+
},
|
732 |
+
"100347": {
|
733 |
+
"content": "<|dummy_83|>",
|
734 |
+
"lstrip": true,
|
735 |
+
"normalized": false,
|
736 |
+
"rstrip": true,
|
737 |
+
"single_word": false,
|
738 |
+
"special": true
|
739 |
+
},
|
740 |
+
"100348": {
|
741 |
+
"content": "<|dummy_84|>",
|
742 |
+
"lstrip": true,
|
743 |
+
"normalized": false,
|
744 |
+
"rstrip": true,
|
745 |
+
"single_word": false,
|
746 |
+
"special": true
|
747 |
+
},
|
748 |
+
"100349": {
|
749 |
+
"content": "<|dummy_85|>",
|
750 |
+
"lstrip": true,
|
751 |
+
"normalized": false,
|
752 |
+
"rstrip": true,
|
753 |
+
"single_word": false,
|
754 |
+
"special": true
|
755 |
+
},
|
756 |
+
"100350": {
|
757 |
+
"content": "<|dummy_86|>",
|
758 |
+
"lstrip": true,
|
759 |
+
"normalized": false,
|
760 |
+
"rstrip": true,
|
761 |
+
"single_word": false,
|
762 |
+
"special": true
|
763 |
+
},
|
764 |
+
"100351": {
|
765 |
+
"content": "<|dummy_87|>",
|
766 |
+
"lstrip": true,
|
767 |
+
"normalized": false,
|
768 |
+
"rstrip": true,
|
769 |
+
"single_word": false,
|
770 |
+
"special": true
|
771 |
+
}
|
772 |
+
},
|
773 |
+
"additional_special_tokens": [
|
774 |
+
"<|im_end|>"
|
775 |
+
],
|
776 |
+
"bos_token": "<|endoftext|>",
|
777 |
+
"chat_template": "{% for message in messages %}{% if (message['role'] == 'system') %}{{'<|im_start|>system<|im_sep|>' + message['content'] + '<|im_end|>'}}{% elif (message['role'] == 'user') %}{{'<|im_start|>user<|im_sep|>' + message['content'] + '<|im_end|>'}}{% elif (message['role'] == 'assistant') %}{{'<|im_start|>assistant<|im_sep|>' + message['content'] + '<|im_end|>'}}{% endif %}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant<|im_sep|>' }}{% endif %}",
|
778 |
+
"clean_up_tokenization_spaces": false,
|
779 |
+
"eos_token": "<|im_end|>",
|
780 |
+
"extra_special_tokens": {},
|
781 |
+
"model_max_length": 16384,
|
782 |
+
"pad_token": "<|dummy_85|>",
|
783 |
+
"padding_side": "right",
|
784 |
+
"split_special_tokens": false,
|
785 |
+
"tokenizer_class": "GPT2Tokenizer",
|
786 |
+
"unk_token": "<|endoftext|>"
|
787 |
+
}
|
trainer_state.json
ADDED
@@ -0,0 +1,3533 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 0.6020469596628537,
|
5 |
+
"eval_steps": 500,
|
6 |
+
"global_step": 5000,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.0012040939193257074,
|
13 |
+
"grad_norm": 2.0694425106048584,
|
14 |
+
"learning_rate": 1.2033694344163658e-08,
|
15 |
+
"loss": 0.6897,
|
16 |
+
"step": 10
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.002408187838651415,
|
20 |
+
"grad_norm": 2.151496171951294,
|
21 |
+
"learning_rate": 2.4067388688327316e-08,
|
22 |
+
"loss": 0.6787,
|
23 |
+
"step": 20
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"epoch": 0.003612281757977122,
|
27 |
+
"grad_norm": 2.640268564224243,
|
28 |
+
"learning_rate": 3.610108303249097e-08,
|
29 |
+
"loss": 0.6639,
|
30 |
+
"step": 30
|
31 |
+
},
|
32 |
+
{
|
33 |
+
"epoch": 0.00481637567730283,
|
34 |
+
"grad_norm": 2.6572210788726807,
|
35 |
+
"learning_rate": 4.813477737665463e-08,
|
36 |
+
"loss": 0.7152,
|
37 |
+
"step": 40
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"epoch": 0.006020469596628537,
|
41 |
+
"grad_norm": 1.7933714389801025,
|
42 |
+
"learning_rate": 6.016847172081829e-08,
|
43 |
+
"loss": 0.6503,
|
44 |
+
"step": 50
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"epoch": 0.007224563515954244,
|
48 |
+
"grad_norm": 2.3688879013061523,
|
49 |
+
"learning_rate": 7.220216606498194e-08,
|
50 |
+
"loss": 0.6827,
|
51 |
+
"step": 60
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"epoch": 0.008428657435279952,
|
55 |
+
"grad_norm": 2.220139265060425,
|
56 |
+
"learning_rate": 8.42358604091456e-08,
|
57 |
+
"loss": 0.6443,
|
58 |
+
"step": 70
|
59 |
+
},
|
60 |
+
{
|
61 |
+
"epoch": 0.00963275135460566,
|
62 |
+
"grad_norm": 2.4725093841552734,
|
63 |
+
"learning_rate": 9.626955475330927e-08,
|
64 |
+
"loss": 0.6681,
|
65 |
+
"step": 80
|
66 |
+
},
|
67 |
+
{
|
68 |
+
"epoch": 0.010836845273931367,
|
69 |
+
"grad_norm": 1.4149224758148193,
|
70 |
+
"learning_rate": 1.0830324909747292e-07,
|
71 |
+
"loss": 0.5592,
|
72 |
+
"step": 90
|
73 |
+
},
|
74 |
+
{
|
75 |
+
"epoch": 0.012040939193257074,
|
76 |
+
"grad_norm": 0.9355699419975281,
|
77 |
+
"learning_rate": 1.2033694344163658e-07,
|
78 |
+
"loss": 0.5802,
|
79 |
+
"step": 100
|
80 |
+
},
|
81 |
+
{
|
82 |
+
"epoch": 0.013245033112582781,
|
83 |
+
"grad_norm": 1.0211461782455444,
|
84 |
+
"learning_rate": 1.3237063778580024e-07,
|
85 |
+
"loss": 0.5589,
|
86 |
+
"step": 110
|
87 |
+
},
|
88 |
+
{
|
89 |
+
"epoch": 0.014449127031908489,
|
90 |
+
"grad_norm": 1.0006492137908936,
|
91 |
+
"learning_rate": 1.4440433212996388e-07,
|
92 |
+
"loss": 0.5421,
|
93 |
+
"step": 120
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"epoch": 0.015653220951234198,
|
97 |
+
"grad_norm": 0.8444674015045166,
|
98 |
+
"learning_rate": 1.5643802647412754e-07,
|
99 |
+
"loss": 0.5079,
|
100 |
+
"step": 130
|
101 |
+
},
|
102 |
+
{
|
103 |
+
"epoch": 0.016857314870559904,
|
104 |
+
"grad_norm": 0.7920398712158203,
|
105 |
+
"learning_rate": 1.684717208182912e-07,
|
106 |
+
"loss": 0.4898,
|
107 |
+
"step": 140
|
108 |
+
},
|
109 |
+
{
|
110 |
+
"epoch": 0.018061408789885613,
|
111 |
+
"grad_norm": 0.6817948818206787,
|
112 |
+
"learning_rate": 1.8050541516245487e-07,
|
113 |
+
"loss": 0.4645,
|
114 |
+
"step": 150
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 0.01926550270921132,
|
118 |
+
"grad_norm": 0.9353106021881104,
|
119 |
+
"learning_rate": 1.9253910950661853e-07,
|
120 |
+
"loss": 0.485,
|
121 |
+
"step": 160
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"epoch": 0.020469596628537028,
|
125 |
+
"grad_norm": 0.6695616841316223,
|
126 |
+
"learning_rate": 2.045728038507822e-07,
|
127 |
+
"loss": 0.4647,
|
128 |
+
"step": 170
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"epoch": 0.021673690547862733,
|
132 |
+
"grad_norm": 0.6993837952613831,
|
133 |
+
"learning_rate": 2.1660649819494583e-07,
|
134 |
+
"loss": 0.4378,
|
135 |
+
"step": 180
|
136 |
+
},
|
137 |
+
{
|
138 |
+
"epoch": 0.022877784467188442,
|
139 |
+
"grad_norm": 0.7333642244338989,
|
140 |
+
"learning_rate": 2.286401925391095e-07,
|
141 |
+
"loss": 0.4288,
|
142 |
+
"step": 190
|
143 |
+
},
|
144 |
+
{
|
145 |
+
"epoch": 0.024081878386514148,
|
146 |
+
"grad_norm": 0.707914412021637,
|
147 |
+
"learning_rate": 2.4067388688327316e-07,
|
148 |
+
"loss": 0.4601,
|
149 |
+
"step": 200
|
150 |
+
},
|
151 |
+
{
|
152 |
+
"epoch": 0.025285972305839857,
|
153 |
+
"grad_norm": 0.7626605033874512,
|
154 |
+
"learning_rate": 2.527075812274368e-07,
|
155 |
+
"loss": 0.4454,
|
156 |
+
"step": 210
|
157 |
+
},
|
158 |
+
{
|
159 |
+
"epoch": 0.026490066225165563,
|
160 |
+
"grad_norm": 1.2267224788665771,
|
161 |
+
"learning_rate": 2.647412755716005e-07,
|
162 |
+
"loss": 0.4398,
|
163 |
+
"step": 220
|
164 |
+
},
|
165 |
+
{
|
166 |
+
"epoch": 0.027694160144491272,
|
167 |
+
"grad_norm": 0.7376552224159241,
|
168 |
+
"learning_rate": 2.767749699157641e-07,
|
169 |
+
"loss": 0.4275,
|
170 |
+
"step": 230
|
171 |
+
},
|
172 |
+
{
|
173 |
+
"epoch": 0.028898254063816978,
|
174 |
+
"grad_norm": 0.7109339237213135,
|
175 |
+
"learning_rate": 2.8880866425992776e-07,
|
176 |
+
"loss": 0.3996,
|
177 |
+
"step": 240
|
178 |
+
},
|
179 |
+
{
|
180 |
+
"epoch": 0.030102347983142687,
|
181 |
+
"grad_norm": 0.6406791806221008,
|
182 |
+
"learning_rate": 3.008423586040915e-07,
|
183 |
+
"loss": 0.4337,
|
184 |
+
"step": 250
|
185 |
+
},
|
186 |
+
{
|
187 |
+
"epoch": 0.031306441902468396,
|
188 |
+
"grad_norm": 0.6780328154563904,
|
189 |
+
"learning_rate": 3.128760529482551e-07,
|
190 |
+
"loss": 0.4296,
|
191 |
+
"step": 260
|
192 |
+
},
|
193 |
+
{
|
194 |
+
"epoch": 0.0325105358217941,
|
195 |
+
"grad_norm": 0.5574681162834167,
|
196 |
+
"learning_rate": 3.2490974729241875e-07,
|
197 |
+
"loss": 0.4123,
|
198 |
+
"step": 270
|
199 |
+
},
|
200 |
+
{
|
201 |
+
"epoch": 0.03371462974111981,
|
202 |
+
"grad_norm": 0.6190093755722046,
|
203 |
+
"learning_rate": 3.369434416365824e-07,
|
204 |
+
"loss": 0.3959,
|
205 |
+
"step": 280
|
206 |
+
},
|
207 |
+
{
|
208 |
+
"epoch": 0.034918723660445516,
|
209 |
+
"grad_norm": 0.6488677859306335,
|
210 |
+
"learning_rate": 3.4897713598074607e-07,
|
211 |
+
"loss": 0.3883,
|
212 |
+
"step": 290
|
213 |
+
},
|
214 |
+
{
|
215 |
+
"epoch": 0.036122817579771226,
|
216 |
+
"grad_norm": 0.6014848351478577,
|
217 |
+
"learning_rate": 3.6101083032490974e-07,
|
218 |
+
"loss": 0.4222,
|
219 |
+
"step": 300
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 0.03732691149909693,
|
223 |
+
"grad_norm": 0.5347362160682678,
|
224 |
+
"learning_rate": 3.730445246690734e-07,
|
225 |
+
"loss": 0.3929,
|
226 |
+
"step": 310
|
227 |
+
},
|
228 |
+
{
|
229 |
+
"epoch": 0.03853100541842264,
|
230 |
+
"grad_norm": 1.4445090293884277,
|
231 |
+
"learning_rate": 3.8507821901323706e-07,
|
232 |
+
"loss": 0.3798,
|
233 |
+
"step": 320
|
234 |
+
},
|
235 |
+
{
|
236 |
+
"epoch": 0.039735099337748346,
|
237 |
+
"grad_norm": 0.6319730877876282,
|
238 |
+
"learning_rate": 3.9711191335740067e-07,
|
239 |
+
"loss": 0.386,
|
240 |
+
"step": 330
|
241 |
+
},
|
242 |
+
{
|
243 |
+
"epoch": 0.040939193257074055,
|
244 |
+
"grad_norm": 0.9257851243019104,
|
245 |
+
"learning_rate": 4.091456077015644e-07,
|
246 |
+
"loss": 0.393,
|
247 |
+
"step": 340
|
248 |
+
},
|
249 |
+
{
|
250 |
+
"epoch": 0.04214328717639976,
|
251 |
+
"grad_norm": 0.5936801433563232,
|
252 |
+
"learning_rate": 4.2117930204572805e-07,
|
253 |
+
"loss": 0.3912,
|
254 |
+
"step": 350
|
255 |
+
},
|
256 |
+
{
|
257 |
+
"epoch": 0.04334738109572547,
|
258 |
+
"grad_norm": 0.686888575553894,
|
259 |
+
"learning_rate": 4.3321299638989166e-07,
|
260 |
+
"loss": 0.4015,
|
261 |
+
"step": 360
|
262 |
+
},
|
263 |
+
{
|
264 |
+
"epoch": 0.044551475015051176,
|
265 |
+
"grad_norm": 0.5986278653144836,
|
266 |
+
"learning_rate": 4.452466907340554e-07,
|
267 |
+
"loss": 0.3622,
|
268 |
+
"step": 370
|
269 |
+
},
|
270 |
+
{
|
271 |
+
"epoch": 0.045755568934376885,
|
272 |
+
"grad_norm": 0.5603286623954773,
|
273 |
+
"learning_rate": 4.57280385078219e-07,
|
274 |
+
"loss": 0.3774,
|
275 |
+
"step": 380
|
276 |
+
},
|
277 |
+
{
|
278 |
+
"epoch": 0.04695966285370259,
|
279 |
+
"grad_norm": 1.2507776021957397,
|
280 |
+
"learning_rate": 4.6931407942238265e-07,
|
281 |
+
"loss": 0.3681,
|
282 |
+
"step": 390
|
283 |
+
},
|
284 |
+
{
|
285 |
+
"epoch": 0.048163756773028296,
|
286 |
+
"grad_norm": 0.5886845588684082,
|
287 |
+
"learning_rate": 4.813477737665463e-07,
|
288 |
+
"loss": 0.371,
|
289 |
+
"step": 400
|
290 |
+
},
|
291 |
+
{
|
292 |
+
"epoch": 0.049367850692354005,
|
293 |
+
"grad_norm": 0.5690301656723022,
|
294 |
+
"learning_rate": 4.9338146811071e-07,
|
295 |
+
"loss": 0.3454,
|
296 |
+
"step": 410
|
297 |
+
},
|
298 |
+
{
|
299 |
+
"epoch": 0.050571944611679714,
|
300 |
+
"grad_norm": 0.6363804340362549,
|
301 |
+
"learning_rate": 5.054151624548736e-07,
|
302 |
+
"loss": 0.3477,
|
303 |
+
"step": 420
|
304 |
+
},
|
305 |
+
{
|
306 |
+
"epoch": 0.05177603853100542,
|
307 |
+
"grad_norm": 0.49289166927337646,
|
308 |
+
"learning_rate": 5.174488567990373e-07,
|
309 |
+
"loss": 0.352,
|
310 |
+
"step": 430
|
311 |
+
},
|
312 |
+
{
|
313 |
+
"epoch": 0.052980132450331126,
|
314 |
+
"grad_norm": 0.5901724696159363,
|
315 |
+
"learning_rate": 5.29482551143201e-07,
|
316 |
+
"loss": 0.3514,
|
317 |
+
"step": 440
|
318 |
+
},
|
319 |
+
{
|
320 |
+
"epoch": 0.054184226369656835,
|
321 |
+
"grad_norm": 0.6019484996795654,
|
322 |
+
"learning_rate": 5.415162454873646e-07,
|
323 |
+
"loss": 0.3713,
|
324 |
+
"step": 450
|
325 |
+
},
|
326 |
+
{
|
327 |
+
"epoch": 0.055388320288982544,
|
328 |
+
"grad_norm": 0.5057175755500793,
|
329 |
+
"learning_rate": 5.535499398315282e-07,
|
330 |
+
"loss": 0.3346,
|
331 |
+
"step": 460
|
332 |
+
},
|
333 |
+
{
|
334 |
+
"epoch": 0.056592414208308246,
|
335 |
+
"grad_norm": 0.4834252893924713,
|
336 |
+
"learning_rate": 5.655836341756919e-07,
|
337 |
+
"loss": 0.3638,
|
338 |
+
"step": 470
|
339 |
+
},
|
340 |
+
{
|
341 |
+
"epoch": 0.057796508127633955,
|
342 |
+
"grad_norm": 0.6098750233650208,
|
343 |
+
"learning_rate": 5.776173285198555e-07,
|
344 |
+
"loss": 0.3622,
|
345 |
+
"step": 480
|
346 |
+
},
|
347 |
+
{
|
348 |
+
"epoch": 0.059000602046959665,
|
349 |
+
"grad_norm": 0.6201721429824829,
|
350 |
+
"learning_rate": 5.896510228640193e-07,
|
351 |
+
"loss": 0.3329,
|
352 |
+
"step": 490
|
353 |
+
},
|
354 |
+
{
|
355 |
+
"epoch": 0.060204695966285374,
|
356 |
+
"grad_norm": 0.7006021738052368,
|
357 |
+
"learning_rate": 6.01684717208183e-07,
|
358 |
+
"loss": 0.3487,
|
359 |
+
"step": 500
|
360 |
+
},
|
361 |
+
{
|
362 |
+
"epoch": 0.061408789885611076,
|
363 |
+
"grad_norm": 0.708990216255188,
|
364 |
+
"learning_rate": 6.137184115523465e-07,
|
365 |
+
"loss": 0.3448,
|
366 |
+
"step": 510
|
367 |
+
},
|
368 |
+
{
|
369 |
+
"epoch": 0.06261288380493679,
|
370 |
+
"grad_norm": 0.7767229676246643,
|
371 |
+
"learning_rate": 6.257521058965102e-07,
|
372 |
+
"loss": 0.3751,
|
373 |
+
"step": 520
|
374 |
+
},
|
375 |
+
{
|
376 |
+
"epoch": 0.0638169777242625,
|
377 |
+
"grad_norm": 0.6051218509674072,
|
378 |
+
"learning_rate": 6.377858002406738e-07,
|
379 |
+
"loss": 0.3502,
|
380 |
+
"step": 530
|
381 |
+
},
|
382 |
+
{
|
383 |
+
"epoch": 0.0650210716435882,
|
384 |
+
"grad_norm": 0.7111226916313171,
|
385 |
+
"learning_rate": 6.498194945848375e-07,
|
386 |
+
"loss": 0.3625,
|
387 |
+
"step": 540
|
388 |
+
},
|
389 |
+
{
|
390 |
+
"epoch": 0.06622516556291391,
|
391 |
+
"grad_norm": 0.7441733479499817,
|
392 |
+
"learning_rate": 6.618531889290013e-07,
|
393 |
+
"loss": 0.3269,
|
394 |
+
"step": 550
|
395 |
+
},
|
396 |
+
{
|
397 |
+
"epoch": 0.06742925948223961,
|
398 |
+
"grad_norm": 0.6909326910972595,
|
399 |
+
"learning_rate": 6.738868832731648e-07,
|
400 |
+
"loss": 0.3302,
|
401 |
+
"step": 560
|
402 |
+
},
|
403 |
+
{
|
404 |
+
"epoch": 0.06863335340156532,
|
405 |
+
"grad_norm": 0.7504749298095703,
|
406 |
+
"learning_rate": 6.859205776173285e-07,
|
407 |
+
"loss": 0.3425,
|
408 |
+
"step": 570
|
409 |
+
},
|
410 |
+
{
|
411 |
+
"epoch": 0.06983744732089103,
|
412 |
+
"grad_norm": 0.5878099799156189,
|
413 |
+
"learning_rate": 6.979542719614921e-07,
|
414 |
+
"loss": 0.3504,
|
415 |
+
"step": 580
|
416 |
+
},
|
417 |
+
{
|
418 |
+
"epoch": 0.07104154124021674,
|
419 |
+
"grad_norm": 0.5515761971473694,
|
420 |
+
"learning_rate": 7.099879663056558e-07,
|
421 |
+
"loss": 0.3409,
|
422 |
+
"step": 590
|
423 |
+
},
|
424 |
+
{
|
425 |
+
"epoch": 0.07224563515954245,
|
426 |
+
"grad_norm": 0.57797771692276,
|
427 |
+
"learning_rate": 7.220216606498195e-07,
|
428 |
+
"loss": 0.3416,
|
429 |
+
"step": 600
|
430 |
+
},
|
431 |
+
{
|
432 |
+
"epoch": 0.07344972907886815,
|
433 |
+
"grad_norm": 0.4524708390235901,
|
434 |
+
"learning_rate": 7.34055354993983e-07,
|
435 |
+
"loss": 0.3581,
|
436 |
+
"step": 610
|
437 |
+
},
|
438 |
+
{
|
439 |
+
"epoch": 0.07465382299819386,
|
440 |
+
"grad_norm": 0.718927800655365,
|
441 |
+
"learning_rate": 7.460890493381468e-07,
|
442 |
+
"loss": 0.3609,
|
443 |
+
"step": 620
|
444 |
+
},
|
445 |
+
{
|
446 |
+
"epoch": 0.07585791691751957,
|
447 |
+
"grad_norm": 0.5666077733039856,
|
448 |
+
"learning_rate": 7.581227436823105e-07,
|
449 |
+
"loss": 0.335,
|
450 |
+
"step": 630
|
451 |
+
},
|
452 |
+
{
|
453 |
+
"epoch": 0.07706201083684527,
|
454 |
+
"grad_norm": 0.5896601676940918,
|
455 |
+
"learning_rate": 7.701564380264741e-07,
|
456 |
+
"loss": 0.3274,
|
457 |
+
"step": 640
|
458 |
+
},
|
459 |
+
{
|
460 |
+
"epoch": 0.07826610475617098,
|
461 |
+
"grad_norm": 0.6044319868087769,
|
462 |
+
"learning_rate": 7.821901323706378e-07,
|
463 |
+
"loss": 0.3407,
|
464 |
+
"step": 650
|
465 |
+
},
|
466 |
+
{
|
467 |
+
"epoch": 0.07947019867549669,
|
468 |
+
"grad_norm": 0.6831541061401367,
|
469 |
+
"learning_rate": 7.942238267148013e-07,
|
470 |
+
"loss": 0.3333,
|
471 |
+
"step": 660
|
472 |
+
},
|
473 |
+
{
|
474 |
+
"epoch": 0.0806742925948224,
|
475 |
+
"grad_norm": 0.7124572396278381,
|
476 |
+
"learning_rate": 8.06257521058965e-07,
|
477 |
+
"loss": 0.3326,
|
478 |
+
"step": 670
|
479 |
+
},
|
480 |
+
{
|
481 |
+
"epoch": 0.08187838651414811,
|
482 |
+
"grad_norm": 0.732711136341095,
|
483 |
+
"learning_rate": 8.182912154031288e-07,
|
484 |
+
"loss": 0.3487,
|
485 |
+
"step": 680
|
486 |
+
},
|
487 |
+
{
|
488 |
+
"epoch": 0.08308248043347381,
|
489 |
+
"grad_norm": 0.7555579543113708,
|
490 |
+
"learning_rate": 8.303249097472924e-07,
|
491 |
+
"loss": 0.3218,
|
492 |
+
"step": 690
|
493 |
+
},
|
494 |
+
{
|
495 |
+
"epoch": 0.08428657435279951,
|
496 |
+
"grad_norm": 0.7618419528007507,
|
497 |
+
"learning_rate": 8.423586040914561e-07,
|
498 |
+
"loss": 0.3231,
|
499 |
+
"step": 700
|
500 |
+
},
|
501 |
+
{
|
502 |
+
"epoch": 0.08549066827212523,
|
503 |
+
"grad_norm": 0.7383216023445129,
|
504 |
+
"learning_rate": 8.543922984356197e-07,
|
505 |
+
"loss": 0.3218,
|
506 |
+
"step": 710
|
507 |
+
},
|
508 |
+
{
|
509 |
+
"epoch": 0.08669476219145093,
|
510 |
+
"grad_norm": 0.5902182459831238,
|
511 |
+
"learning_rate": 8.664259927797833e-07,
|
512 |
+
"loss": 0.3367,
|
513 |
+
"step": 720
|
514 |
+
},
|
515 |
+
{
|
516 |
+
"epoch": 0.08789885611077664,
|
517 |
+
"grad_norm": 0.6107906103134155,
|
518 |
+
"learning_rate": 8.78459687123947e-07,
|
519 |
+
"loss": 0.3331,
|
520 |
+
"step": 730
|
521 |
+
},
|
522 |
+
{
|
523 |
+
"epoch": 0.08910295003010235,
|
524 |
+
"grad_norm": 0.7179387211799622,
|
525 |
+
"learning_rate": 8.904933814681108e-07,
|
526 |
+
"loss": 0.3347,
|
527 |
+
"step": 740
|
528 |
+
},
|
529 |
+
{
|
530 |
+
"epoch": 0.09030704394942805,
|
531 |
+
"grad_norm": 0.8263080716133118,
|
532 |
+
"learning_rate": 9.025270758122743e-07,
|
533 |
+
"loss": 0.3247,
|
534 |
+
"step": 750
|
535 |
+
},
|
536 |
+
{
|
537 |
+
"epoch": 0.09151113786875377,
|
538 |
+
"grad_norm": 0.8549688458442688,
|
539 |
+
"learning_rate": 9.14560770156438e-07,
|
540 |
+
"loss": 0.3239,
|
541 |
+
"step": 760
|
542 |
+
},
|
543 |
+
{
|
544 |
+
"epoch": 0.09271523178807947,
|
545 |
+
"grad_norm": 0.6674267053604126,
|
546 |
+
"learning_rate": 9.265944645006016e-07,
|
547 |
+
"loss": 0.333,
|
548 |
+
"step": 770
|
549 |
+
},
|
550 |
+
{
|
551 |
+
"epoch": 0.09391932570740517,
|
552 |
+
"grad_norm": 0.5892189741134644,
|
553 |
+
"learning_rate": 9.386281588447653e-07,
|
554 |
+
"loss": 0.322,
|
555 |
+
"step": 780
|
556 |
+
},
|
557 |
+
{
|
558 |
+
"epoch": 0.09512341962673089,
|
559 |
+
"grad_norm": 0.7087513208389282,
|
560 |
+
"learning_rate": 9.50661853188929e-07,
|
561 |
+
"loss": 0.327,
|
562 |
+
"step": 790
|
563 |
+
},
|
564 |
+
{
|
565 |
+
"epoch": 0.09632751354605659,
|
566 |
+
"grad_norm": 0.6016402840614319,
|
567 |
+
"learning_rate": 9.626955475330926e-07,
|
568 |
+
"loss": 0.3255,
|
569 |
+
"step": 800
|
570 |
+
},
|
571 |
+
{
|
572 |
+
"epoch": 0.0975316074653823,
|
573 |
+
"grad_norm": 0.5783524513244629,
|
574 |
+
"learning_rate": 9.747292418772562e-07,
|
575 |
+
"loss": 0.3128,
|
576 |
+
"step": 810
|
577 |
+
},
|
578 |
+
{
|
579 |
+
"epoch": 0.09873570138470801,
|
580 |
+
"grad_norm": 0.6049711108207703,
|
581 |
+
"learning_rate": 9.8676293622142e-07,
|
582 |
+
"loss": 0.3257,
|
583 |
+
"step": 820
|
584 |
+
},
|
585 |
+
{
|
586 |
+
"epoch": 0.09993979530403371,
|
587 |
+
"grad_norm": 0.6259274482727051,
|
588 |
+
"learning_rate": 9.987966305655835e-07,
|
589 |
+
"loss": 0.3318,
|
590 |
+
"step": 830
|
591 |
+
},
|
592 |
+
{
|
593 |
+
"epoch": 0.10114388922335943,
|
594 |
+
"grad_norm": 0.5331777930259705,
|
595 |
+
"learning_rate": 9.999964221834556e-07,
|
596 |
+
"loss": 0.3133,
|
597 |
+
"step": 840
|
598 |
+
},
|
599 |
+
{
|
600 |
+
"epoch": 0.10234798314268513,
|
601 |
+
"grad_norm": 0.5190764665603638,
|
602 |
+
"learning_rate": 9.999840544882987e-07,
|
603 |
+
"loss": 0.3349,
|
604 |
+
"step": 850
|
605 |
+
},
|
606 |
+
{
|
607 |
+
"epoch": 0.10355207706201083,
|
608 |
+
"grad_norm": 0.5867928862571716,
|
609 |
+
"learning_rate": 9.99962852962418e-07,
|
610 |
+
"loss": 0.3252,
|
611 |
+
"step": 860
|
612 |
+
},
|
613 |
+
{
|
614 |
+
"epoch": 0.10475617098133655,
|
615 |
+
"grad_norm": 0.7667666673660278,
|
616 |
+
"learning_rate": 9.999328179804064e-07,
|
617 |
+
"loss": 0.3269,
|
618 |
+
"step": 870
|
619 |
+
},
|
620 |
+
{
|
621 |
+
"epoch": 0.10596026490066225,
|
622 |
+
"grad_norm": 0.5684708952903748,
|
623 |
+
"learning_rate": 9.998939500729291e-07,
|
624 |
+
"loss": 0.3204,
|
625 |
+
"step": 880
|
626 |
+
},
|
627 |
+
{
|
628 |
+
"epoch": 0.10716435881998795,
|
629 |
+
"grad_norm": 0.5369793772697449,
|
630 |
+
"learning_rate": 9.99846249926713e-07,
|
631 |
+
"loss": 0.2997,
|
632 |
+
"step": 890
|
633 |
+
},
|
634 |
+
{
|
635 |
+
"epoch": 0.10836845273931367,
|
636 |
+
"grad_norm": 0.5773791074752808,
|
637 |
+
"learning_rate": 9.997897183845347e-07,
|
638 |
+
"loss": 0.3147,
|
639 |
+
"step": 900
|
640 |
+
},
|
641 |
+
{
|
642 |
+
"epoch": 0.10957254665863937,
|
643 |
+
"grad_norm": 0.571826159954071,
|
644 |
+
"learning_rate": 9.997243564452064e-07,
|
645 |
+
"loss": 0.32,
|
646 |
+
"step": 910
|
647 |
+
},
|
648 |
+
{
|
649 |
+
"epoch": 0.11077664057796509,
|
650 |
+
"grad_norm": 0.420244961977005,
|
651 |
+
"learning_rate": 9.996501652635578e-07,
|
652 |
+
"loss": 0.3141,
|
653 |
+
"step": 920
|
654 |
+
},
|
655 |
+
{
|
656 |
+
"epoch": 0.11198073449729079,
|
657 |
+
"grad_norm": 0.5253920555114746,
|
658 |
+
"learning_rate": 9.99567146150415e-07,
|
659 |
+
"loss": 0.3201,
|
660 |
+
"step": 930
|
661 |
+
},
|
662 |
+
{
|
663 |
+
"epoch": 0.11318482841661649,
|
664 |
+
"grad_norm": 0.49279969930648804,
|
665 |
+
"learning_rate": 9.994753005725785e-07,
|
666 |
+
"loss": 0.3076,
|
667 |
+
"step": 940
|
668 |
+
},
|
669 |
+
{
|
670 |
+
"epoch": 0.11438892233594221,
|
671 |
+
"grad_norm": 0.6114805936813354,
|
672 |
+
"learning_rate": 9.993746301527965e-07,
|
673 |
+
"loss": 0.3209,
|
674 |
+
"step": 950
|
675 |
+
},
|
676 |
+
{
|
677 |
+
"epoch": 0.11559301625526791,
|
678 |
+
"grad_norm": 1.6514418125152588,
|
679 |
+
"learning_rate": 9.99265136669737e-07,
|
680 |
+
"loss": 0.319,
|
681 |
+
"step": 960
|
682 |
+
},
|
683 |
+
{
|
684 |
+
"epoch": 0.11679711017459361,
|
685 |
+
"grad_norm": 0.6415925621986389,
|
686 |
+
"learning_rate": 9.99146822057955e-07,
|
687 |
+
"loss": 0.3268,
|
688 |
+
"step": 970
|
689 |
+
},
|
690 |
+
{
|
691 |
+
"epoch": 0.11800120409391933,
|
692 |
+
"grad_norm": 0.5680079460144043,
|
693 |
+
"learning_rate": 9.990196884078599e-07,
|
694 |
+
"loss": 0.3139,
|
695 |
+
"step": 980
|
696 |
+
},
|
697 |
+
{
|
698 |
+
"epoch": 0.11920529801324503,
|
699 |
+
"grad_norm": 0.715497612953186,
|
700 |
+
"learning_rate": 9.988837379656778e-07,
|
701 |
+
"loss": 0.3143,
|
702 |
+
"step": 990
|
703 |
+
},
|
704 |
+
{
|
705 |
+
"epoch": 0.12040939193257075,
|
706 |
+
"grad_norm": 0.6379466652870178,
|
707 |
+
"learning_rate": 9.987389731334112e-07,
|
708 |
+
"loss": 0.3037,
|
709 |
+
"step": 1000
|
710 |
+
},
|
711 |
+
{
|
712 |
+
"epoch": 0.12161348585189645,
|
713 |
+
"grad_norm": 0.5227240920066833,
|
714 |
+
"learning_rate": 9.985853964687985e-07,
|
715 |
+
"loss": 0.3202,
|
716 |
+
"step": 1010
|
717 |
+
},
|
718 |
+
{
|
719 |
+
"epoch": 0.12281757977122215,
|
720 |
+
"grad_norm": 0.5148226022720337,
|
721 |
+
"learning_rate": 9.984230106852658e-07,
|
722 |
+
"loss": 0.3089,
|
723 |
+
"step": 1020
|
724 |
+
},
|
725 |
+
{
|
726 |
+
"epoch": 0.12402167369054787,
|
727 |
+
"grad_norm": 0.8337252140045166,
|
728 |
+
"learning_rate": 9.982518186518824e-07,
|
729 |
+
"loss": 0.3093,
|
730 |
+
"step": 1030
|
731 |
+
},
|
732 |
+
{
|
733 |
+
"epoch": 0.12522576760987358,
|
734 |
+
"grad_norm": 0.5874176621437073,
|
735 |
+
"learning_rate": 9.980718233933072e-07,
|
736 |
+
"loss": 0.3257,
|
737 |
+
"step": 1040
|
738 |
+
},
|
739 |
+
{
|
740 |
+
"epoch": 0.12642986152919927,
|
741 |
+
"grad_norm": 0.6203235983848572,
|
742 |
+
"learning_rate": 9.978830280897373e-07,
|
743 |
+
"loss": 0.3094,
|
744 |
+
"step": 1050
|
745 |
+
},
|
746 |
+
{
|
747 |
+
"epoch": 0.127633955448525,
|
748 |
+
"grad_norm": 0.7386701107025146,
|
749 |
+
"learning_rate": 9.976854360768501e-07,
|
750 |
+
"loss": 0.3283,
|
751 |
+
"step": 1060
|
752 |
+
},
|
753 |
+
{
|
754 |
+
"epoch": 0.1288380493678507,
|
755 |
+
"grad_norm": 0.7480394244194031,
|
756 |
+
"learning_rate": 9.97479050845746e-07,
|
757 |
+
"loss": 0.322,
|
758 |
+
"step": 1070
|
759 |
+
},
|
760 |
+
{
|
761 |
+
"epoch": 0.1300421432871764,
|
762 |
+
"grad_norm": 0.6779530048370361,
|
763 |
+
"learning_rate": 9.97263876042886e-07,
|
764 |
+
"loss": 0.3263,
|
765 |
+
"step": 1080
|
766 |
+
},
|
767 |
+
{
|
768 |
+
"epoch": 0.1312462372065021,
|
769 |
+
"grad_norm": 1.0457607507705688,
|
770 |
+
"learning_rate": 9.970399154700262e-07,
|
771 |
+
"loss": 0.324,
|
772 |
+
"step": 1090
|
773 |
+
},
|
774 |
+
{
|
775 |
+
"epoch": 0.13245033112582782,
|
776 |
+
"grad_norm": 0.4574492871761322,
|
777 |
+
"learning_rate": 9.96807173084153e-07,
|
778 |
+
"loss": 0.3033,
|
779 |
+
"step": 1100
|
780 |
+
},
|
781 |
+
{
|
782 |
+
"epoch": 0.1336544250451535,
|
783 |
+
"grad_norm": 0.4800940454006195,
|
784 |
+
"learning_rate": 9.965656529974108e-07,
|
785 |
+
"loss": 0.3076,
|
786 |
+
"step": 1110
|
787 |
+
},
|
788 |
+
{
|
789 |
+
"epoch": 0.13485851896447923,
|
790 |
+
"grad_norm": 0.5336936116218567,
|
791 |
+
"learning_rate": 9.96315359477031e-07,
|
792 |
+
"loss": 0.3029,
|
793 |
+
"step": 1120
|
794 |
+
},
|
795 |
+
{
|
796 |
+
"epoch": 0.13606261288380495,
|
797 |
+
"grad_norm": 0.9403670430183411,
|
798 |
+
"learning_rate": 9.960562969452559e-07,
|
799 |
+
"loss": 0.3019,
|
800 |
+
"step": 1130
|
801 |
+
},
|
802 |
+
{
|
803 |
+
"epoch": 0.13726670680313063,
|
804 |
+
"grad_norm": 0.6152085661888123,
|
805 |
+
"learning_rate": 9.957884699792604e-07,
|
806 |
+
"loss": 0.3051,
|
807 |
+
"step": 1140
|
808 |
+
},
|
809 |
+
{
|
810 |
+
"epoch": 0.13847080072245635,
|
811 |
+
"grad_norm": 0.7313536405563354,
|
812 |
+
"learning_rate": 9.955118833110716e-07,
|
813 |
+
"loss": 0.3137,
|
814 |
+
"step": 1150
|
815 |
+
},
|
816 |
+
{
|
817 |
+
"epoch": 0.13967489464178207,
|
818 |
+
"grad_norm": 0.47397103905677795,
|
819 |
+
"learning_rate": 9.95226541827485e-07,
|
820 |
+
"loss": 0.3214,
|
821 |
+
"step": 1160
|
822 |
+
},
|
823 |
+
{
|
824 |
+
"epoch": 0.14087898856110775,
|
825 |
+
"grad_norm": 0.4812333881855011,
|
826 |
+
"learning_rate": 9.949324505699782e-07,
|
827 |
+
"loss": 0.3164,
|
828 |
+
"step": 1170
|
829 |
+
},
|
830 |
+
{
|
831 |
+
"epoch": 0.14208308248043347,
|
832 |
+
"grad_norm": 0.6729305386543274,
|
833 |
+
"learning_rate": 9.946296147346215e-07,
|
834 |
+
"loss": 0.2946,
|
835 |
+
"step": 1180
|
836 |
+
},
|
837 |
+
{
|
838 |
+
"epoch": 0.1432871763997592,
|
839 |
+
"grad_norm": 0.6568790078163147,
|
840 |
+
"learning_rate": 9.943180396719867e-07,
|
841 |
+
"loss": 0.2929,
|
842 |
+
"step": 1190
|
843 |
+
},
|
844 |
+
{
|
845 |
+
"epoch": 0.1444912703190849,
|
846 |
+
"grad_norm": 0.5633556842803955,
|
847 |
+
"learning_rate": 9.939977308870518e-07,
|
848 |
+
"loss": 0.3073,
|
849 |
+
"step": 1200
|
850 |
+
},
|
851 |
+
{
|
852 |
+
"epoch": 0.1456953642384106,
|
853 |
+
"grad_norm": 1.1128957271575928,
|
854 |
+
"learning_rate": 9.936686940391048e-07,
|
855 |
+
"loss": 0.3264,
|
856 |
+
"step": 1210
|
857 |
+
},
|
858 |
+
{
|
859 |
+
"epoch": 0.1468994581577363,
|
860 |
+
"grad_norm": 0.5192599892616272,
|
861 |
+
"learning_rate": 9.933309349416428e-07,
|
862 |
+
"loss": 0.3064,
|
863 |
+
"step": 1220
|
864 |
+
},
|
865 |
+
{
|
866 |
+
"epoch": 0.14810355207706202,
|
867 |
+
"grad_norm": 0.49194392561912537,
|
868 |
+
"learning_rate": 9.92984459562269e-07,
|
869 |
+
"loss": 0.302,
|
870 |
+
"step": 1230
|
871 |
+
},
|
872 |
+
{
|
873 |
+
"epoch": 0.1493076459963877,
|
874 |
+
"grad_norm": 0.5606468915939331,
|
875 |
+
"learning_rate": 9.926292740225888e-07,
|
876 |
+
"loss": 0.3037,
|
877 |
+
"step": 1240
|
878 |
+
},
|
879 |
+
{
|
880 |
+
"epoch": 0.15051173991571343,
|
881 |
+
"grad_norm": 0.544266939163208,
|
882 |
+
"learning_rate": 9.922653845981e-07,
|
883 |
+
"loss": 0.3025,
|
884 |
+
"step": 1250
|
885 |
+
},
|
886 |
+
{
|
887 |
+
"epoch": 0.15171583383503914,
|
888 |
+
"grad_norm": 1.0137197971343994,
|
889 |
+
"learning_rate": 9.918927977180826e-07,
|
890 |
+
"loss": 0.2998,
|
891 |
+
"step": 1260
|
892 |
+
},
|
893 |
+
{
|
894 |
+
"epoch": 0.15291992775436483,
|
895 |
+
"grad_norm": 0.4881134629249573,
|
896 |
+
"learning_rate": 9.91511519965486e-07,
|
897 |
+
"loss": 0.2975,
|
898 |
+
"step": 1270
|
899 |
+
},
|
900 |
+
{
|
901 |
+
"epoch": 0.15412402167369055,
|
902 |
+
"grad_norm": 0.4854426383972168,
|
903 |
+
"learning_rate": 9.911215580768106e-07,
|
904 |
+
"loss": 0.3109,
|
905 |
+
"step": 1280
|
906 |
+
},
|
907 |
+
{
|
908 |
+
"epoch": 0.15532811559301626,
|
909 |
+
"grad_norm": 0.5056730508804321,
|
910 |
+
"learning_rate": 9.90722918941991e-07,
|
911 |
+
"loss": 0.3121,
|
912 |
+
"step": 1290
|
913 |
+
},
|
914 |
+
{
|
915 |
+
"epoch": 0.15653220951234195,
|
916 |
+
"grad_norm": 0.5286668539047241,
|
917 |
+
"learning_rate": 9.903156096042734e-07,
|
918 |
+
"loss": 0.2982,
|
919 |
+
"step": 1300
|
920 |
+
},
|
921 |
+
{
|
922 |
+
"epoch": 0.15773630343166767,
|
923 |
+
"grad_norm": 0.5490984916687012,
|
924 |
+
"learning_rate": 9.898996372600903e-07,
|
925 |
+
"loss": 0.3115,
|
926 |
+
"step": 1310
|
927 |
+
},
|
928 |
+
{
|
929 |
+
"epoch": 0.15894039735099338,
|
930 |
+
"grad_norm": 0.614521861076355,
|
931 |
+
"learning_rate": 9.894750092589349e-07,
|
932 |
+
"loss": 0.2985,
|
933 |
+
"step": 1320
|
934 |
+
},
|
935 |
+
{
|
936 |
+
"epoch": 0.16014449127031907,
|
937 |
+
"grad_norm": 0.5678403973579407,
|
938 |
+
"learning_rate": 9.8904173310323e-07,
|
939 |
+
"loss": 0.3046,
|
940 |
+
"step": 1330
|
941 |
+
},
|
942 |
+
{
|
943 |
+
"epoch": 0.1613485851896448,
|
944 |
+
"grad_norm": 0.5179656147956848,
|
945 |
+
"learning_rate": 9.885998164481966e-07,
|
946 |
+
"loss": 0.3053,
|
947 |
+
"step": 1340
|
948 |
+
},
|
949 |
+
{
|
950 |
+
"epoch": 0.1625526791089705,
|
951 |
+
"grad_norm": 0.526849091053009,
|
952 |
+
"learning_rate": 9.881492671017172e-07,
|
953 |
+
"loss": 0.3143,
|
954 |
+
"step": 1350
|
955 |
+
},
|
956 |
+
{
|
957 |
+
"epoch": 0.16375677302829622,
|
958 |
+
"grad_norm": 0.5683344006538391,
|
959 |
+
"learning_rate": 9.876900930241991e-07,
|
960 |
+
"loss": 0.3031,
|
961 |
+
"step": 1360
|
962 |
+
},
|
963 |
+
{
|
964 |
+
"epoch": 0.1649608669476219,
|
965 |
+
"grad_norm": 0.5243839621543884,
|
966 |
+
"learning_rate": 9.872223023284333e-07,
|
967 |
+
"loss": 0.312,
|
968 |
+
"step": 1370
|
969 |
+
},
|
970 |
+
{
|
971 |
+
"epoch": 0.16616496086694763,
|
972 |
+
"grad_norm": 0.5260365605354309,
|
973 |
+
"learning_rate": 9.867459032794508e-07,
|
974 |
+
"loss": 0.3037,
|
975 |
+
"step": 1380
|
976 |
+
},
|
977 |
+
{
|
978 |
+
"epoch": 0.16736905478627334,
|
979 |
+
"grad_norm": 0.4755154252052307,
|
980 |
+
"learning_rate": 9.86260904294377e-07,
|
981 |
+
"loss": 0.2916,
|
982 |
+
"step": 1390
|
983 |
+
},
|
984 |
+
{
|
985 |
+
"epoch": 0.16857314870559903,
|
986 |
+
"grad_norm": 0.5555715560913086,
|
987 |
+
"learning_rate": 9.857673139422833e-07,
|
988 |
+
"loss": 0.3135,
|
989 |
+
"step": 1400
|
990 |
+
},
|
991 |
+
{
|
992 |
+
"epoch": 0.16977724262492475,
|
993 |
+
"grad_norm": 0.5810279250144958,
|
994 |
+
"learning_rate": 9.85265140944035e-07,
|
995 |
+
"loss": 0.3104,
|
996 |
+
"step": 1410
|
997 |
+
},
|
998 |
+
{
|
999 |
+
"epoch": 0.17098133654425046,
|
1000 |
+
"grad_norm": 0.48022618889808655,
|
1001 |
+
"learning_rate": 9.847543941721379e-07,
|
1002 |
+
"loss": 0.3022,
|
1003 |
+
"step": 1420
|
1004 |
+
},
|
1005 |
+
{
|
1006 |
+
"epoch": 0.17218543046357615,
|
1007 |
+
"grad_norm": 0.5191965103149414,
|
1008 |
+
"learning_rate": 9.842350826505802e-07,
|
1009 |
+
"loss": 0.3018,
|
1010 |
+
"step": 1430
|
1011 |
+
},
|
1012 |
+
{
|
1013 |
+
"epoch": 0.17338952438290187,
|
1014 |
+
"grad_norm": 1.2972302436828613,
|
1015 |
+
"learning_rate": 9.837072155546753e-07,
|
1016 |
+
"loss": 0.3026,
|
1017 |
+
"step": 1440
|
1018 |
+
},
|
1019 |
+
{
|
1020 |
+
"epoch": 0.17459361830222758,
|
1021 |
+
"grad_norm": 0.47315987944602966,
|
1022 |
+
"learning_rate": 9.831708022108972e-07,
|
1023 |
+
"loss": 0.311,
|
1024 |
+
"step": 1450
|
1025 |
+
},
|
1026 |
+
{
|
1027 |
+
"epoch": 0.17579771222155327,
|
1028 |
+
"grad_norm": 0.5953189134597778,
|
1029 |
+
"learning_rate": 9.826258520967177e-07,
|
1030 |
+
"loss": 0.3071,
|
1031 |
+
"step": 1460
|
1032 |
+
},
|
1033 |
+
{
|
1034 |
+
"epoch": 0.177001806140879,
|
1035 |
+
"grad_norm": 0.5407562851905823,
|
1036 |
+
"learning_rate": 9.820723748404382e-07,
|
1037 |
+
"loss": 0.31,
|
1038 |
+
"step": 1470
|
1039 |
+
},
|
1040 |
+
{
|
1041 |
+
"epoch": 0.1782059000602047,
|
1042 |
+
"grad_norm": 0.5249618291854858,
|
1043 |
+
"learning_rate": 9.815103802210193e-07,
|
1044 |
+
"loss": 0.2898,
|
1045 |
+
"step": 1480
|
1046 |
+
},
|
1047 |
+
{
|
1048 |
+
"epoch": 0.1794099939795304,
|
1049 |
+
"grad_norm": 0.5347439646720886,
|
1050 |
+
"learning_rate": 9.80939878167908e-07,
|
1051 |
+
"loss": 0.2944,
|
1052 |
+
"step": 1490
|
1053 |
+
},
|
1054 |
+
{
|
1055 |
+
"epoch": 0.1806140878988561,
|
1056 |
+
"grad_norm": 0.49509304761886597,
|
1057 |
+
"learning_rate": 9.80360878760863e-07,
|
1058 |
+
"loss": 0.3073,
|
1059 |
+
"step": 1500
|
1060 |
+
},
|
1061 |
+
{
|
1062 |
+
"epoch": 0.18181818181818182,
|
1063 |
+
"grad_norm": 0.5182557106018066,
|
1064 |
+
"learning_rate": 9.79773392229776e-07,
|
1065 |
+
"loss": 0.3092,
|
1066 |
+
"step": 1510
|
1067 |
+
},
|
1068 |
+
{
|
1069 |
+
"epoch": 0.18302227573750754,
|
1070 |
+
"grad_norm": 0.5343918204307556,
|
1071 |
+
"learning_rate": 9.79177428954492e-07,
|
1072 |
+
"loss": 0.3058,
|
1073 |
+
"step": 1520
|
1074 |
+
},
|
1075 |
+
{
|
1076 |
+
"epoch": 0.18422636965683323,
|
1077 |
+
"grad_norm": 0.42448320984840393,
|
1078 |
+
"learning_rate": 9.785729994646228e-07,
|
1079 |
+
"loss": 0.2966,
|
1080 |
+
"step": 1530
|
1081 |
+
},
|
1082 |
+
{
|
1083 |
+
"epoch": 0.18543046357615894,
|
1084 |
+
"grad_norm": 0.514305055141449,
|
1085 |
+
"learning_rate": 9.779601144393655e-07,
|
1086 |
+
"loss": 0.3063,
|
1087 |
+
"step": 1540
|
1088 |
+
},
|
1089 |
+
{
|
1090 |
+
"epoch": 0.18663455749548466,
|
1091 |
+
"grad_norm": 0.559808075428009,
|
1092 |
+
"learning_rate": 9.773387847073102e-07,
|
1093 |
+
"loss": 0.3103,
|
1094 |
+
"step": 1550
|
1095 |
+
},
|
1096 |
+
{
|
1097 |
+
"epoch": 0.18783865141481035,
|
1098 |
+
"grad_norm": 0.5099034905433655,
|
1099 |
+
"learning_rate": 9.767090212462506e-07,
|
1100 |
+
"loss": 0.3045,
|
1101 |
+
"step": 1560
|
1102 |
+
},
|
1103 |
+
{
|
1104 |
+
"epoch": 0.18904274533413606,
|
1105 |
+
"grad_norm": 0.5309582352638245,
|
1106 |
+
"learning_rate": 9.76070835182989e-07,
|
1107 |
+
"loss": 0.3198,
|
1108 |
+
"step": 1570
|
1109 |
+
},
|
1110 |
+
{
|
1111 |
+
"epoch": 0.19024683925346178,
|
1112 |
+
"grad_norm": 0.5174340605735779,
|
1113 |
+
"learning_rate": 9.754242377931402e-07,
|
1114 |
+
"loss": 0.3019,
|
1115 |
+
"step": 1580
|
1116 |
+
},
|
1117 |
+
{
|
1118 |
+
"epoch": 0.19145093317278747,
|
1119 |
+
"grad_norm": 0.47818174958229065,
|
1120 |
+
"learning_rate": 9.747692405009327e-07,
|
1121 |
+
"loss": 0.2885,
|
1122 |
+
"step": 1590
|
1123 |
+
},
|
1124 |
+
{
|
1125 |
+
"epoch": 0.19265502709211318,
|
1126 |
+
"grad_norm": 0.4435511529445648,
|
1127 |
+
"learning_rate": 9.741058548790055e-07,
|
1128 |
+
"loss": 0.2716,
|
1129 |
+
"step": 1600
|
1130 |
+
},
|
1131 |
+
{
|
1132 |
+
"epoch": 0.1938591210114389,
|
1133 |
+
"grad_norm": 0.47226864099502563,
|
1134 |
+
"learning_rate": 9.734340926482052e-07,
|
1135 |
+
"loss": 0.2911,
|
1136 |
+
"step": 1610
|
1137 |
+
},
|
1138 |
+
{
|
1139 |
+
"epoch": 0.1950632149307646,
|
1140 |
+
"grad_norm": 0.4990203082561493,
|
1141 |
+
"learning_rate": 9.72753965677378e-07,
|
1142 |
+
"loss": 0.3119,
|
1143 |
+
"step": 1620
|
1144 |
+
},
|
1145 |
+
{
|
1146 |
+
"epoch": 0.1962673088500903,
|
1147 |
+
"grad_norm": 0.6255252957344055,
|
1148 |
+
"learning_rate": 9.7206548598316e-07,
|
1149 |
+
"loss": 0.2902,
|
1150 |
+
"step": 1630
|
1151 |
+
},
|
1152 |
+
{
|
1153 |
+
"epoch": 0.19747140276941602,
|
1154 |
+
"grad_norm": 0.5827116370201111,
|
1155 |
+
"learning_rate": 9.713686657297655e-07,
|
1156 |
+
"loss": 0.3079,
|
1157 |
+
"step": 1640
|
1158 |
+
},
|
1159 |
+
{
|
1160 |
+
"epoch": 0.1986754966887417,
|
1161 |
+
"grad_norm": 0.5475650429725647,
|
1162 |
+
"learning_rate": 9.706635172287715e-07,
|
1163 |
+
"loss": 0.3095,
|
1164 |
+
"step": 1650
|
1165 |
+
},
|
1166 |
+
{
|
1167 |
+
"epoch": 0.19987959060806743,
|
1168 |
+
"grad_norm": 0.674460768699646,
|
1169 |
+
"learning_rate": 9.699500529389001e-07,
|
1170 |
+
"loss": 0.2953,
|
1171 |
+
"step": 1660
|
1172 |
+
},
|
1173 |
+
{
|
1174 |
+
"epoch": 0.20108368452739314,
|
1175 |
+
"grad_norm": 0.5000407695770264,
|
1176 |
+
"learning_rate": 9.692282854657989e-07,
|
1177 |
+
"loss": 0.3055,
|
1178 |
+
"step": 1670
|
1179 |
+
},
|
1180 |
+
{
|
1181 |
+
"epoch": 0.20228777844671886,
|
1182 |
+
"grad_norm": 0.5063086748123169,
|
1183 |
+
"learning_rate": 9.684982275618178e-07,
|
1184 |
+
"loss": 0.2952,
|
1185 |
+
"step": 1680
|
1186 |
+
},
|
1187 |
+
{
|
1188 |
+
"epoch": 0.20349187236604455,
|
1189 |
+
"grad_norm": 0.6266674399375916,
|
1190 |
+
"learning_rate": 9.677598921257842e-07,
|
1191 |
+
"loss": 0.3028,
|
1192 |
+
"step": 1690
|
1193 |
+
},
|
1194 |
+
{
|
1195 |
+
"epoch": 0.20469596628537026,
|
1196 |
+
"grad_norm": 1.3428351879119873,
|
1197 |
+
"learning_rate": 9.67013292202775e-07,
|
1198 |
+
"loss": 0.3165,
|
1199 |
+
"step": 1700
|
1200 |
+
},
|
1201 |
+
{
|
1202 |
+
"epoch": 0.20590006020469598,
|
1203 |
+
"grad_norm": 0.6307231187820435,
|
1204 |
+
"learning_rate": 9.66258440983885e-07,
|
1205 |
+
"loss": 0.3112,
|
1206 |
+
"step": 1710
|
1207 |
+
},
|
1208 |
+
{
|
1209 |
+
"epoch": 0.20710415412402167,
|
1210 |
+
"grad_norm": 0.5176913738250732,
|
1211 |
+
"learning_rate": 9.654953518059953e-07,
|
1212 |
+
"loss": 0.3042,
|
1213 |
+
"step": 1720
|
1214 |
+
},
|
1215 |
+
{
|
1216 |
+
"epoch": 0.20830824804334738,
|
1217 |
+
"grad_norm": 0.4618211090564728,
|
1218 |
+
"learning_rate": 9.647240381515376e-07,
|
1219 |
+
"loss": 0.3107,
|
1220 |
+
"step": 1730
|
1221 |
+
},
|
1222 |
+
{
|
1223 |
+
"epoch": 0.2095123419626731,
|
1224 |
+
"grad_norm": 0.4354129135608673,
|
1225 |
+
"learning_rate": 9.639445136482546e-07,
|
1226 |
+
"loss": 0.2932,
|
1227 |
+
"step": 1740
|
1228 |
+
},
|
1229 |
+
{
|
1230 |
+
"epoch": 0.2107164358819988,
|
1231 |
+
"grad_norm": 0.6150096654891968,
|
1232 |
+
"learning_rate": 9.631567920689607e-07,
|
1233 |
+
"loss": 0.2898,
|
1234 |
+
"step": 1750
|
1235 |
+
},
|
1236 |
+
{
|
1237 |
+
"epoch": 0.2119205298013245,
|
1238 |
+
"grad_norm": 0.4629852771759033,
|
1239 |
+
"learning_rate": 9.623608873312979e-07,
|
1240 |
+
"loss": 0.2969,
|
1241 |
+
"step": 1760
|
1242 |
+
},
|
1243 |
+
{
|
1244 |
+
"epoch": 0.21312462372065022,
|
1245 |
+
"grad_norm": 0.4912186563014984,
|
1246 |
+
"learning_rate": 9.615568134974902e-07,
|
1247 |
+
"loss": 0.3037,
|
1248 |
+
"step": 1770
|
1249 |
+
},
|
1250 |
+
{
|
1251 |
+
"epoch": 0.2143287176399759,
|
1252 |
+
"grad_norm": 0.5452593564987183,
|
1253 |
+
"learning_rate": 9.607445847740946e-07,
|
1254 |
+
"loss": 0.3011,
|
1255 |
+
"step": 1780
|
1256 |
+
},
|
1257 |
+
{
|
1258 |
+
"epoch": 0.21553281155930162,
|
1259 |
+
"grad_norm": 0.5524305701255798,
|
1260 |
+
"learning_rate": 9.599242155117514e-07,
|
1261 |
+
"loss": 0.3056,
|
1262 |
+
"step": 1790
|
1263 |
+
},
|
1264 |
+
{
|
1265 |
+
"epoch": 0.21673690547862734,
|
1266 |
+
"grad_norm": 0.4734737277030945,
|
1267 |
+
"learning_rate": 9.590957202049288e-07,
|
1268 |
+
"loss": 0.2937,
|
1269 |
+
"step": 1800
|
1270 |
+
},
|
1271 |
+
{
|
1272 |
+
"epoch": 0.21794099939795303,
|
1273 |
+
"grad_norm": 0.5050627589225769,
|
1274 |
+
"learning_rate": 9.582591134916683e-07,
|
1275 |
+
"loss": 0.2964,
|
1276 |
+
"step": 1810
|
1277 |
+
},
|
1278 |
+
{
|
1279 |
+
"epoch": 0.21914509331727874,
|
1280 |
+
"grad_norm": 0.5784972310066223,
|
1281 |
+
"learning_rate": 9.574144101533258e-07,
|
1282 |
+
"loss": 0.3126,
|
1283 |
+
"step": 1820
|
1284 |
+
},
|
1285 |
+
{
|
1286 |
+
"epoch": 0.22034918723660446,
|
1287 |
+
"grad_norm": 0.67679762840271,
|
1288 |
+
"learning_rate": 9.565616251143093e-07,
|
1289 |
+
"loss": 0.2997,
|
1290 |
+
"step": 1830
|
1291 |
+
},
|
1292 |
+
{
|
1293 |
+
"epoch": 0.22155328115593018,
|
1294 |
+
"grad_norm": 0.730844259262085,
|
1295 |
+
"learning_rate": 9.55700773441817e-07,
|
1296 |
+
"loss": 0.2992,
|
1297 |
+
"step": 1840
|
1298 |
+
},
|
1299 |
+
{
|
1300 |
+
"epoch": 0.22275737507525586,
|
1301 |
+
"grad_norm": 0.511701226234436,
|
1302 |
+
"learning_rate": 9.5483187034557e-07,
|
1303 |
+
"loss": 0.2843,
|
1304 |
+
"step": 1850
|
1305 |
+
},
|
1306 |
+
{
|
1307 |
+
"epoch": 0.22396146899458158,
|
1308 |
+
"grad_norm": 0.49653661251068115,
|
1309 |
+
"learning_rate": 9.539549311775434e-07,
|
1310 |
+
"loss": 0.3003,
|
1311 |
+
"step": 1860
|
1312 |
+
},
|
1313 |
+
{
|
1314 |
+
"epoch": 0.2251655629139073,
|
1315 |
+
"grad_norm": 0.479397714138031,
|
1316 |
+
"learning_rate": 9.530699714316955e-07,
|
1317 |
+
"loss": 0.3007,
|
1318 |
+
"step": 1870
|
1319 |
+
},
|
1320 |
+
{
|
1321 |
+
"epoch": 0.22636965683323299,
|
1322 |
+
"grad_norm": 0.5917854905128479,
|
1323 |
+
"learning_rate": 9.521770067436944e-07,
|
1324 |
+
"loss": 0.2818,
|
1325 |
+
"step": 1880
|
1326 |
+
},
|
1327 |
+
{
|
1328 |
+
"epoch": 0.2275737507525587,
|
1329 |
+
"grad_norm": 0.4750485420227051,
|
1330 |
+
"learning_rate": 9.512760528906409e-07,
|
1331 |
+
"loss": 0.3107,
|
1332 |
+
"step": 1890
|
1333 |
+
},
|
1334 |
+
{
|
1335 |
+
"epoch": 0.22877784467188442,
|
1336 |
+
"grad_norm": 0.5081465244293213,
|
1337 |
+
"learning_rate": 9.503671257907905e-07,
|
1338 |
+
"loss": 0.3003,
|
1339 |
+
"step": 1900
|
1340 |
+
},
|
1341 |
+
{
|
1342 |
+
"epoch": 0.2299819385912101,
|
1343 |
+
"grad_norm": 0.7816819548606873,
|
1344 |
+
"learning_rate": 9.494502415032714e-07,
|
1345 |
+
"loss": 0.2898,
|
1346 |
+
"step": 1910
|
1347 |
+
},
|
1348 |
+
{
|
1349 |
+
"epoch": 0.23118603251053582,
|
1350 |
+
"grad_norm": 0.600690484046936,
|
1351 |
+
"learning_rate": 9.485254162278013e-07,
|
1352 |
+
"loss": 0.2975,
|
1353 |
+
"step": 1920
|
1354 |
+
},
|
1355 |
+
{
|
1356 |
+
"epoch": 0.23239012642986154,
|
1357 |
+
"grad_norm": 0.6016291379928589,
|
1358 |
+
"learning_rate": 9.475926663044016e-07,
|
1359 |
+
"loss": 0.2895,
|
1360 |
+
"step": 1930
|
1361 |
+
},
|
1362 |
+
{
|
1363 |
+
"epoch": 0.23359422034918723,
|
1364 |
+
"grad_norm": 0.5959491729736328,
|
1365 |
+
"learning_rate": 9.466520082131074e-07,
|
1366 |
+
"loss": 0.293,
|
1367 |
+
"step": 1940
|
1368 |
+
},
|
1369 |
+
{
|
1370 |
+
"epoch": 0.23479831426851294,
|
1371 |
+
"grad_norm": 0.5337576270103455,
|
1372 |
+
"learning_rate": 9.457034585736776e-07,
|
1373 |
+
"loss": 0.2954,
|
1374 |
+
"step": 1950
|
1375 |
+
},
|
1376 |
+
{
|
1377 |
+
"epoch": 0.23600240818783866,
|
1378 |
+
"grad_norm": 0.5701966881752014,
|
1379 |
+
"learning_rate": 9.447470341453003e-07,
|
1380 |
+
"loss": 0.3016,
|
1381 |
+
"step": 1960
|
1382 |
+
},
|
1383 |
+
{
|
1384 |
+
"epoch": 0.23720650210716435,
|
1385 |
+
"grad_norm": 0.48122677206993103,
|
1386 |
+
"learning_rate": 9.437827518262976e-07,
|
1387 |
+
"loss": 0.2834,
|
1388 |
+
"step": 1970
|
1389 |
+
},
|
1390 |
+
{
|
1391 |
+
"epoch": 0.23841059602649006,
|
1392 |
+
"grad_norm": 0.6107509732246399,
|
1393 |
+
"learning_rate": 9.428106286538263e-07,
|
1394 |
+
"loss": 0.2865,
|
1395 |
+
"step": 1980
|
1396 |
+
},
|
1397 |
+
{
|
1398 |
+
"epoch": 0.23961468994581578,
|
1399 |
+
"grad_norm": 0.4537561237812042,
|
1400 |
+
"learning_rate": 9.418306818035773e-07,
|
1401 |
+
"loss": 0.2981,
|
1402 |
+
"step": 1990
|
1403 |
+
},
|
1404 |
+
{
|
1405 |
+
"epoch": 0.2408187838651415,
|
1406 |
+
"grad_norm": 0.6205712556838989,
|
1407 |
+
"learning_rate": 9.408429285894721e-07,
|
1408 |
+
"loss": 0.3099,
|
1409 |
+
"step": 2000
|
1410 |
+
},
|
1411 |
+
{
|
1412 |
+
"epoch": 0.24202287778446718,
|
1413 |
+
"grad_norm": 0.4940670132637024,
|
1414 |
+
"learning_rate": 9.398473864633564e-07,
|
1415 |
+
"loss": 0.2942,
|
1416 |
+
"step": 2010
|
1417 |
+
},
|
1418 |
+
{
|
1419 |
+
"epoch": 0.2432269717037929,
|
1420 |
+
"grad_norm": 0.45464888215065,
|
1421 |
+
"learning_rate": 9.388440730146923e-07,
|
1422 |
+
"loss": 0.2875,
|
1423 |
+
"step": 2020
|
1424 |
+
},
|
1425 |
+
{
|
1426 |
+
"epoch": 0.24443106562311862,
|
1427 |
+
"grad_norm": 0.4339371919631958,
|
1428 |
+
"learning_rate": 9.378330059702479e-07,
|
1429 |
+
"loss": 0.284,
|
1430 |
+
"step": 2030
|
1431 |
+
},
|
1432 |
+
{
|
1433 |
+
"epoch": 0.2456351595424443,
|
1434 |
+
"grad_norm": 0.6798887848854065,
|
1435 |
+
"learning_rate": 9.368142031937826e-07,
|
1436 |
+
"loss": 0.3079,
|
1437 |
+
"step": 2040
|
1438 |
+
},
|
1439 |
+
{
|
1440 |
+
"epoch": 0.24683925346177002,
|
1441 |
+
"grad_norm": 0.504805326461792,
|
1442 |
+
"learning_rate": 9.357876826857334e-07,
|
1443 |
+
"loss": 0.2942,
|
1444 |
+
"step": 2050
|
1445 |
+
},
|
1446 |
+
{
|
1447 |
+
"epoch": 0.24804334738109574,
|
1448 |
+
"grad_norm": 1.0256134271621704,
|
1449 |
+
"learning_rate": 9.347534625828955e-07,
|
1450 |
+
"loss": 0.2958,
|
1451 |
+
"step": 2060
|
1452 |
+
},
|
1453 |
+
{
|
1454 |
+
"epoch": 0.24924744130042142,
|
1455 |
+
"grad_norm": 0.7034043073654175,
|
1456 |
+
"learning_rate": 9.337115611581019e-07,
|
1457 |
+
"loss": 0.2977,
|
1458 |
+
"step": 2070
|
1459 |
+
},
|
1460 |
+
{
|
1461 |
+
"epoch": 0.25045153521974717,
|
1462 |
+
"grad_norm": 0.6767880916595459,
|
1463 |
+
"learning_rate": 9.326619968199016e-07,
|
1464 |
+
"loss": 0.2843,
|
1465 |
+
"step": 2080
|
1466 |
+
},
|
1467 |
+
{
|
1468 |
+
"epoch": 0.25165562913907286,
|
1469 |
+
"grad_norm": 0.5257042050361633,
|
1470 |
+
"learning_rate": 9.316047881122334e-07,
|
1471 |
+
"loss": 0.2869,
|
1472 |
+
"step": 2090
|
1473 |
+
},
|
1474 |
+
{
|
1475 |
+
"epoch": 0.25285972305839854,
|
1476 |
+
"grad_norm": 0.5919986963272095,
|
1477 |
+
"learning_rate": 9.305399537140983e-07,
|
1478 |
+
"loss": 0.3009,
|
1479 |
+
"step": 2100
|
1480 |
+
},
|
1481 |
+
{
|
1482 |
+
"epoch": 0.2540638169777243,
|
1483 |
+
"grad_norm": 0.5936114192008972,
|
1484 |
+
"learning_rate": 9.294675124392302e-07,
|
1485 |
+
"loss": 0.2863,
|
1486 |
+
"step": 2110
|
1487 |
+
},
|
1488 |
+
{
|
1489 |
+
"epoch": 0.25526791089705,
|
1490 |
+
"grad_norm": 1.1754176616668701,
|
1491 |
+
"learning_rate": 9.283874832357625e-07,
|
1492 |
+
"loss": 0.2808,
|
1493 |
+
"step": 2120
|
1494 |
+
},
|
1495 |
+
{
|
1496 |
+
"epoch": 0.25647200481637566,
|
1497 |
+
"grad_norm": 0.6144666075706482,
|
1498 |
+
"learning_rate": 9.272998851858943e-07,
|
1499 |
+
"loss": 0.2854,
|
1500 |
+
"step": 2130
|
1501 |
+
},
|
1502 |
+
{
|
1503 |
+
"epoch": 0.2576760987357014,
|
1504 |
+
"grad_norm": 0.47984328866004944,
|
1505 |
+
"learning_rate": 9.262047375055524e-07,
|
1506 |
+
"loss": 0.2978,
|
1507 |
+
"step": 2140
|
1508 |
+
},
|
1509 |
+
{
|
1510 |
+
"epoch": 0.2588801926550271,
|
1511 |
+
"grad_norm": 0.6158226728439331,
|
1512 |
+
"learning_rate": 9.251020595440524e-07,
|
1513 |
+
"loss": 0.3072,
|
1514 |
+
"step": 2150
|
1515 |
+
},
|
1516 |
+
{
|
1517 |
+
"epoch": 0.2600842865743528,
|
1518 |
+
"grad_norm": 0.6357386708259583,
|
1519 |
+
"learning_rate": 9.239918707837564e-07,
|
1520 |
+
"loss": 0.2927,
|
1521 |
+
"step": 2160
|
1522 |
+
},
|
1523 |
+
{
|
1524 |
+
"epoch": 0.26128838049367853,
|
1525 |
+
"grad_norm": 0.6893799901008606,
|
1526 |
+
"learning_rate": 9.228741908397293e-07,
|
1527 |
+
"loss": 0.2988,
|
1528 |
+
"step": 2170
|
1529 |
+
},
|
1530 |
+
{
|
1531 |
+
"epoch": 0.2624924744130042,
|
1532 |
+
"grad_norm": 0.5763195157051086,
|
1533 |
+
"learning_rate": 9.217490394593914e-07,
|
1534 |
+
"loss": 0.3049,
|
1535 |
+
"step": 2180
|
1536 |
+
},
|
1537 |
+
{
|
1538 |
+
"epoch": 0.2636965683323299,
|
1539 |
+
"grad_norm": 0.5649781823158264,
|
1540 |
+
"learning_rate": 9.206164365221706e-07,
|
1541 |
+
"loss": 0.3083,
|
1542 |
+
"step": 2190
|
1543 |
+
},
|
1544 |
+
{
|
1545 |
+
"epoch": 0.26490066225165565,
|
1546 |
+
"grad_norm": 0.4519605040550232,
|
1547 |
+
"learning_rate": 9.194764020391506e-07,
|
1548 |
+
"loss": 0.274,
|
1549 |
+
"step": 2200
|
1550 |
+
},
|
1551 |
+
{
|
1552 |
+
"epoch": 0.26610475617098134,
|
1553 |
+
"grad_norm": 0.5203403830528259,
|
1554 |
+
"learning_rate": 9.183289561527164e-07,
|
1555 |
+
"loss": 0.2823,
|
1556 |
+
"step": 2210
|
1557 |
+
},
|
1558 |
+
{
|
1559 |
+
"epoch": 0.267308850090307,
|
1560 |
+
"grad_norm": 0.525934100151062,
|
1561 |
+
"learning_rate": 9.171741191362005e-07,
|
1562 |
+
"loss": 0.2928,
|
1563 |
+
"step": 2220
|
1564 |
+
},
|
1565 |
+
{
|
1566 |
+
"epoch": 0.26851294400963277,
|
1567 |
+
"grad_norm": 0.5151864290237427,
|
1568 |
+
"learning_rate": 9.160119113935227e-07,
|
1569 |
+
"loss": 0.2914,
|
1570 |
+
"step": 2230
|
1571 |
+
},
|
1572 |
+
{
|
1573 |
+
"epoch": 0.26971703792895846,
|
1574 |
+
"grad_norm": 0.663339376449585,
|
1575 |
+
"learning_rate": 9.14842353458831e-07,
|
1576 |
+
"loss": 0.301,
|
1577 |
+
"step": 2240
|
1578 |
+
},
|
1579 |
+
{
|
1580 |
+
"epoch": 0.27092113184828415,
|
1581 |
+
"grad_norm": 0.5526972413063049,
|
1582 |
+
"learning_rate": 9.136654659961381e-07,
|
1583 |
+
"loss": 0.2931,
|
1584 |
+
"step": 2250
|
1585 |
+
},
|
1586 |
+
{
|
1587 |
+
"epoch": 0.2721252257676099,
|
1588 |
+
"grad_norm": 0.6518740057945251,
|
1589 |
+
"learning_rate": 9.12481269798956e-07,
|
1590 |
+
"loss": 0.2772,
|
1591 |
+
"step": 2260
|
1592 |
+
},
|
1593 |
+
{
|
1594 |
+
"epoch": 0.2733293196869356,
|
1595 |
+
"grad_norm": 0.5191295742988586,
|
1596 |
+
"learning_rate": 9.112897857899298e-07,
|
1597 |
+
"loss": 0.2933,
|
1598 |
+
"step": 2270
|
1599 |
+
},
|
1600 |
+
{
|
1601 |
+
"epoch": 0.27453341360626127,
|
1602 |
+
"grad_norm": 1.087936282157898,
|
1603 |
+
"learning_rate": 9.100910350204669e-07,
|
1604 |
+
"loss": 0.2956,
|
1605 |
+
"step": 2280
|
1606 |
+
},
|
1607 |
+
{
|
1608 |
+
"epoch": 0.275737507525587,
|
1609 |
+
"grad_norm": 0.5870952010154724,
|
1610 |
+
"learning_rate": 9.088850386703653e-07,
|
1611 |
+
"loss": 0.2857,
|
1612 |
+
"step": 2290
|
1613 |
+
},
|
1614 |
+
{
|
1615 |
+
"epoch": 0.2769416014449127,
|
1616 |
+
"grad_norm": 0.5123207569122314,
|
1617 |
+
"learning_rate": 9.076718180474399e-07,
|
1618 |
+
"loss": 0.3005,
|
1619 |
+
"step": 2300
|
1620 |
+
},
|
1621 |
+
{
|
1622 |
+
"epoch": 0.2781456953642384,
|
1623 |
+
"grad_norm": 0.47658002376556396,
|
1624 |
+
"learning_rate": 9.064513945871457e-07,
|
1625 |
+
"loss": 0.2889,
|
1626 |
+
"step": 2310
|
1627 |
+
},
|
1628 |
+
{
|
1629 |
+
"epoch": 0.27934978928356413,
|
1630 |
+
"grad_norm": 0.564738929271698,
|
1631 |
+
"learning_rate": 9.052237898521984e-07,
|
1632 |
+
"loss": 0.2929,
|
1633 |
+
"step": 2320
|
1634 |
+
},
|
1635 |
+
{
|
1636 |
+
"epoch": 0.2805538832028898,
|
1637 |
+
"grad_norm": 0.47116583585739136,
|
1638 |
+
"learning_rate": 9.03989025532195e-07,
|
1639 |
+
"loss": 0.2942,
|
1640 |
+
"step": 2330
|
1641 |
+
},
|
1642 |
+
{
|
1643 |
+
"epoch": 0.2817579771222155,
|
1644 |
+
"grad_norm": 0.5838178396224976,
|
1645 |
+
"learning_rate": 9.027471234432292e-07,
|
1646 |
+
"loss": 0.2883,
|
1647 |
+
"step": 2340
|
1648 |
+
},
|
1649 |
+
{
|
1650 |
+
"epoch": 0.28296207104154125,
|
1651 |
+
"grad_norm": 0.48679229617118835,
|
1652 |
+
"learning_rate": 9.014981055275059e-07,
|
1653 |
+
"loss": 0.29,
|
1654 |
+
"step": 2350
|
1655 |
+
},
|
1656 |
+
{
|
1657 |
+
"epoch": 0.28416616496086694,
|
1658 |
+
"grad_norm": 0.5863898992538452,
|
1659 |
+
"learning_rate": 9.00241993852955e-07,
|
1660 |
+
"loss": 0.2871,
|
1661 |
+
"step": 2360
|
1662 |
+
},
|
1663 |
+
{
|
1664 |
+
"epoch": 0.28537025888019263,
|
1665 |
+
"grad_norm": 0.5949921607971191,
|
1666 |
+
"learning_rate": 8.989788106128402e-07,
|
1667 |
+
"loss": 0.2927,
|
1668 |
+
"step": 2370
|
1669 |
+
},
|
1670 |
+
{
|
1671 |
+
"epoch": 0.2865743527995184,
|
1672 |
+
"grad_norm": 0.42538484930992126,
|
1673 |
+
"learning_rate": 8.977085781253668e-07,
|
1674 |
+
"loss": 0.2825,
|
1675 |
+
"step": 2380
|
1676 |
+
},
|
1677 |
+
{
|
1678 |
+
"epoch": 0.28777844671884406,
|
1679 |
+
"grad_norm": 0.5678000450134277,
|
1680 |
+
"learning_rate": 8.964313188332881e-07,
|
1681 |
+
"loss": 0.294,
|
1682 |
+
"step": 2390
|
1683 |
+
},
|
1684 |
+
{
|
1685 |
+
"epoch": 0.2889825406381698,
|
1686 |
+
"grad_norm": 0.5283777713775635,
|
1687 |
+
"learning_rate": 8.951470553035086e-07,
|
1688 |
+
"loss": 0.286,
|
1689 |
+
"step": 2400
|
1690 |
+
},
|
1691 |
+
{
|
1692 |
+
"epoch": 0.2901866345574955,
|
1693 |
+
"grad_norm": 0.8639681935310364,
|
1694 |
+
"learning_rate": 8.938558102266851e-07,
|
1695 |
+
"loss": 0.2971,
|
1696 |
+
"step": 2410
|
1697 |
+
},
|
1698 |
+
{
|
1699 |
+
"epoch": 0.2913907284768212,
|
1700 |
+
"grad_norm": 0.5353107452392578,
|
1701 |
+
"learning_rate": 8.925576064168261e-07,
|
1702 |
+
"loss": 0.3038,
|
1703 |
+
"step": 2420
|
1704 |
+
},
|
1705 |
+
{
|
1706 |
+
"epoch": 0.2925948223961469,
|
1707 |
+
"grad_norm": 0.5691916346549988,
|
1708 |
+
"learning_rate": 8.912524668108885e-07,
|
1709 |
+
"loss": 0.2901,
|
1710 |
+
"step": 2430
|
1711 |
+
},
|
1712 |
+
{
|
1713 |
+
"epoch": 0.2937989163154726,
|
1714 |
+
"grad_norm": 0.5999578833580017,
|
1715 |
+
"learning_rate": 8.899404144683724e-07,
|
1716 |
+
"loss": 0.2864,
|
1717 |
+
"step": 2440
|
1718 |
+
},
|
1719 |
+
{
|
1720 |
+
"epoch": 0.2950030102347983,
|
1721 |
+
"grad_norm": 0.6660271883010864,
|
1722 |
+
"learning_rate": 8.886214725709136e-07,
|
1723 |
+
"loss": 0.2866,
|
1724 |
+
"step": 2450
|
1725 |
+
},
|
1726 |
+
{
|
1727 |
+
"epoch": 0.29620710415412405,
|
1728 |
+
"grad_norm": 0.5501262545585632,
|
1729 |
+
"learning_rate": 8.872956644218742e-07,
|
1730 |
+
"loss": 0.2909,
|
1731 |
+
"step": 2460
|
1732 |
+
},
|
1733 |
+
{
|
1734 |
+
"epoch": 0.29741119807344973,
|
1735 |
+
"grad_norm": 0.44489532709121704,
|
1736 |
+
"learning_rate": 8.859630134459308e-07,
|
1737 |
+
"loss": 0.2869,
|
1738 |
+
"step": 2470
|
1739 |
+
},
|
1740 |
+
{
|
1741 |
+
"epoch": 0.2986152919927754,
|
1742 |
+
"grad_norm": 0.619097113609314,
|
1743 |
+
"learning_rate": 8.846235431886604e-07,
|
1744 |
+
"loss": 0.2782,
|
1745 |
+
"step": 2480
|
1746 |
+
},
|
1747 |
+
{
|
1748 |
+
"epoch": 0.29981938591210117,
|
1749 |
+
"grad_norm": 0.49712878465652466,
|
1750 |
+
"learning_rate": 8.832772773161251e-07,
|
1751 |
+
"loss": 0.2848,
|
1752 |
+
"step": 2490
|
1753 |
+
},
|
1754 |
+
{
|
1755 |
+
"epoch": 0.30102347983142685,
|
1756 |
+
"grad_norm": 0.46963346004486084,
|
1757 |
+
"learning_rate": 8.819242396144529e-07,
|
1758 |
+
"loss": 0.2915,
|
1759 |
+
"step": 2500
|
1760 |
+
},
|
1761 |
+
{
|
1762 |
+
"epoch": 0.30222757375075254,
|
1763 |
+
"grad_norm": 0.5881354212760925,
|
1764 |
+
"learning_rate": 8.805644539894181e-07,
|
1765 |
+
"loss": 0.2969,
|
1766 |
+
"step": 2510
|
1767 |
+
},
|
1768 |
+
{
|
1769 |
+
"epoch": 0.3034316676700783,
|
1770 |
+
"grad_norm": 0.5345028042793274,
|
1771 |
+
"learning_rate": 8.791979444660193e-07,
|
1772 |
+
"loss": 0.2985,
|
1773 |
+
"step": 2520
|
1774 |
+
},
|
1775 |
+
{
|
1776 |
+
"epoch": 0.304635761589404,
|
1777 |
+
"grad_norm": 0.5038124322891235,
|
1778 |
+
"learning_rate": 8.778247351880536e-07,
|
1779 |
+
"loss": 0.2931,
|
1780 |
+
"step": 2530
|
1781 |
+
},
|
1782 |
+
{
|
1783 |
+
"epoch": 0.30583985550872966,
|
1784 |
+
"grad_norm": 0.6723479628562927,
|
1785 |
+
"learning_rate": 8.764448504176919e-07,
|
1786 |
+
"loss": 0.2885,
|
1787 |
+
"step": 2540
|
1788 |
+
},
|
1789 |
+
{
|
1790 |
+
"epoch": 0.3070439494280554,
|
1791 |
+
"grad_norm": 0.474516361951828,
|
1792 |
+
"learning_rate": 8.750583145350483e-07,
|
1793 |
+
"loss": 0.2906,
|
1794 |
+
"step": 2550
|
1795 |
+
},
|
1796 |
+
{
|
1797 |
+
"epoch": 0.3082480433473811,
|
1798 |
+
"grad_norm": 0.509379506111145,
|
1799 |
+
"learning_rate": 8.736651520377507e-07,
|
1800 |
+
"loss": 0.2874,
|
1801 |
+
"step": 2560
|
1802 |
+
},
|
1803 |
+
{
|
1804 |
+
"epoch": 0.3094521372667068,
|
1805 |
+
"grad_norm": 0.9317507743835449,
|
1806 |
+
"learning_rate": 8.722653875405075e-07,
|
1807 |
+
"loss": 0.2891,
|
1808 |
+
"step": 2570
|
1809 |
+
},
|
1810 |
+
{
|
1811 |
+
"epoch": 0.3106562311860325,
|
1812 |
+
"grad_norm": 0.4634588360786438,
|
1813 |
+
"learning_rate": 8.708590457746727e-07,
|
1814 |
+
"loss": 0.284,
|
1815 |
+
"step": 2580
|
1816 |
+
},
|
1817 |
+
{
|
1818 |
+
"epoch": 0.3118603251053582,
|
1819 |
+
"grad_norm": 0.4674171209335327,
|
1820 |
+
"learning_rate": 8.694461515878088e-07,
|
1821 |
+
"loss": 0.2851,
|
1822 |
+
"step": 2590
|
1823 |
+
},
|
1824 |
+
{
|
1825 |
+
"epoch": 0.3130644190246839,
|
1826 |
+
"grad_norm": 0.4606451988220215,
|
1827 |
+
"learning_rate": 8.68026729943248e-07,
|
1828 |
+
"loss": 0.282,
|
1829 |
+
"step": 2600
|
1830 |
+
},
|
1831 |
+
{
|
1832 |
+
"epoch": 0.31426851294400965,
|
1833 |
+
"grad_norm": 0.5793256163597107,
|
1834 |
+
"learning_rate": 8.666008059196513e-07,
|
1835 |
+
"loss": 0.2852,
|
1836 |
+
"step": 2610
|
1837 |
+
},
|
1838 |
+
{
|
1839 |
+
"epoch": 0.31547260686333534,
|
1840 |
+
"grad_norm": 0.742026686668396,
|
1841 |
+
"learning_rate": 8.65168404710565e-07,
|
1842 |
+
"loss": 0.2909,
|
1843 |
+
"step": 2620
|
1844 |
+
},
|
1845 |
+
{
|
1846 |
+
"epoch": 0.316676700782661,
|
1847 |
+
"grad_norm": 0.469868928194046,
|
1848 |
+
"learning_rate": 8.637295516239757e-07,
|
1849 |
+
"loss": 0.2784,
|
1850 |
+
"step": 2630
|
1851 |
+
},
|
1852 |
+
{
|
1853 |
+
"epoch": 0.31788079470198677,
|
1854 |
+
"grad_norm": 0.6895257234573364,
|
1855 |
+
"learning_rate": 8.622842720818635e-07,
|
1856 |
+
"loss": 0.2849,
|
1857 |
+
"step": 2640
|
1858 |
+
},
|
1859 |
+
{
|
1860 |
+
"epoch": 0.31908488862131246,
|
1861 |
+
"grad_norm": 0.6843047142028809,
|
1862 |
+
"learning_rate": 8.608325916197524e-07,
|
1863 |
+
"loss": 0.2969,
|
1864 |
+
"step": 2650
|
1865 |
+
},
|
1866 |
+
{
|
1867 |
+
"epoch": 0.32028898254063815,
|
1868 |
+
"grad_norm": 2.822052240371704,
|
1869 |
+
"learning_rate": 8.593745358862592e-07,
|
1870 |
+
"loss": 0.2954,
|
1871 |
+
"step": 2660
|
1872 |
+
},
|
1873 |
+
{
|
1874 |
+
"epoch": 0.3214930764599639,
|
1875 |
+
"grad_norm": 0.5745678544044495,
|
1876 |
+
"learning_rate": 8.579101306426406e-07,
|
1877 |
+
"loss": 0.3005,
|
1878 |
+
"step": 2670
|
1879 |
+
},
|
1880 |
+
{
|
1881 |
+
"epoch": 0.3226971703792896,
|
1882 |
+
"grad_norm": 0.4625186026096344,
|
1883 |
+
"learning_rate": 8.564394017623378e-07,
|
1884 |
+
"loss": 0.2889,
|
1885 |
+
"step": 2680
|
1886 |
+
},
|
1887 |
+
{
|
1888 |
+
"epoch": 0.32390126429861527,
|
1889 |
+
"grad_norm": 0.5813141465187073,
|
1890 |
+
"learning_rate": 8.549623752305192e-07,
|
1891 |
+
"loss": 0.2926,
|
1892 |
+
"step": 2690
|
1893 |
+
},
|
1894 |
+
{
|
1895 |
+
"epoch": 0.325105358217941,
|
1896 |
+
"grad_norm": 0.49706658720970154,
|
1897 |
+
"learning_rate": 8.534790771436222e-07,
|
1898 |
+
"loss": 0.2884,
|
1899 |
+
"step": 2700
|
1900 |
+
},
|
1901 |
+
{
|
1902 |
+
"epoch": 0.3263094521372667,
|
1903 |
+
"grad_norm": 0.5477120280265808,
|
1904 |
+
"learning_rate": 8.519895337088907e-07,
|
1905 |
+
"loss": 0.2922,
|
1906 |
+
"step": 2710
|
1907 |
+
},
|
1908 |
+
{
|
1909 |
+
"epoch": 0.32751354605659244,
|
1910 |
+
"grad_norm": 1.157457709312439,
|
1911 |
+
"learning_rate": 8.504937712439131e-07,
|
1912 |
+
"loss": 0.2699,
|
1913 |
+
"step": 2720
|
1914 |
+
},
|
1915 |
+
{
|
1916 |
+
"epoch": 0.32871763997591813,
|
1917 |
+
"grad_norm": 0.5263344049453735,
|
1918 |
+
"learning_rate": 8.48991816176157e-07,
|
1919 |
+
"loss": 0.2888,
|
1920 |
+
"step": 2730
|
1921 |
+
},
|
1922 |
+
{
|
1923 |
+
"epoch": 0.3299217338952438,
|
1924 |
+
"grad_norm": 0.764481782913208,
|
1925 |
+
"learning_rate": 8.474836950425026e-07,
|
1926 |
+
"loss": 0.292,
|
1927 |
+
"step": 2740
|
1928 |
+
},
|
1929 |
+
{
|
1930 |
+
"epoch": 0.33112582781456956,
|
1931 |
+
"grad_norm": 0.5704035758972168,
|
1932 |
+
"learning_rate": 8.459694344887731e-07,
|
1933 |
+
"loss": 0.2928,
|
1934 |
+
"step": 2750
|
1935 |
+
},
|
1936 |
+
{
|
1937 |
+
"epoch": 0.33232992173389525,
|
1938 |
+
"grad_norm": 0.46473219990730286,
|
1939 |
+
"learning_rate": 8.444490612692645e-07,
|
1940 |
+
"loss": 0.2816,
|
1941 |
+
"step": 2760
|
1942 |
+
},
|
1943 |
+
{
|
1944 |
+
"epoch": 0.33353401565322094,
|
1945 |
+
"grad_norm": 0.5250662565231323,
|
1946 |
+
"learning_rate": 8.429226022462728e-07,
|
1947 |
+
"loss": 0.2881,
|
1948 |
+
"step": 2770
|
1949 |
+
},
|
1950 |
+
{
|
1951 |
+
"epoch": 0.3347381095725467,
|
1952 |
+
"grad_norm": 0.6085227727890015,
|
1953 |
+
"learning_rate": 8.413900843896193e-07,
|
1954 |
+
"loss": 0.3122,
|
1955 |
+
"step": 2780
|
1956 |
+
},
|
1957 |
+
{
|
1958 |
+
"epoch": 0.33594220349187237,
|
1959 |
+
"grad_norm": 0.7203246355056763,
|
1960 |
+
"learning_rate": 8.398515347761745e-07,
|
1961 |
+
"loss": 0.2911,
|
1962 |
+
"step": 2790
|
1963 |
+
},
|
1964 |
+
{
|
1965 |
+
"epoch": 0.33714629741119806,
|
1966 |
+
"grad_norm": 0.5305497050285339,
|
1967 |
+
"learning_rate": 8.383069805893784e-07,
|
1968 |
+
"loss": 0.2888,
|
1969 |
+
"step": 2800
|
1970 |
+
},
|
1971 |
+
{
|
1972 |
+
"epoch": 0.3383503913305238,
|
1973 |
+
"grad_norm": 0.5452449917793274,
|
1974 |
+
"learning_rate": 8.367564491187622e-07,
|
1975 |
+
"loss": 0.2866,
|
1976 |
+
"step": 2810
|
1977 |
+
},
|
1978 |
+
{
|
1979 |
+
"epoch": 0.3395544852498495,
|
1980 |
+
"grad_norm": 0.4815659523010254,
|
1981 |
+
"learning_rate": 8.351999677594645e-07,
|
1982 |
+
"loss": 0.2863,
|
1983 |
+
"step": 2820
|
1984 |
+
},
|
1985 |
+
{
|
1986 |
+
"epoch": 0.3407585791691752,
|
1987 |
+
"grad_norm": 0.5499128103256226,
|
1988 |
+
"learning_rate": 8.336375640117481e-07,
|
1989 |
+
"loss": 0.2865,
|
1990 |
+
"step": 2830
|
1991 |
+
},
|
1992 |
+
{
|
1993 |
+
"epoch": 0.3419626730885009,
|
1994 |
+
"grad_norm": 0.559804379940033,
|
1995 |
+
"learning_rate": 8.320692654805136e-07,
|
1996 |
+
"loss": 0.2833,
|
1997 |
+
"step": 2840
|
1998 |
+
},
|
1999 |
+
{
|
2000 |
+
"epoch": 0.3431667670078266,
|
2001 |
+
"grad_norm": 0.5070551633834839,
|
2002 |
+
"learning_rate": 8.304950998748124e-07,
|
2003 |
+
"loss": 0.2969,
|
2004 |
+
"step": 2850
|
2005 |
+
},
|
2006 |
+
{
|
2007 |
+
"epoch": 0.3443708609271523,
|
2008 |
+
"grad_norm": 0.5566725730895996,
|
2009 |
+
"learning_rate": 8.289150950073564e-07,
|
2010 |
+
"loss": 0.2814,
|
2011 |
+
"step": 2860
|
2012 |
+
},
|
2013 |
+
{
|
2014 |
+
"epoch": 0.34557495484647804,
|
2015 |
+
"grad_norm": 0.5421969890594482,
|
2016 |
+
"learning_rate": 8.273292787940268e-07,
|
2017 |
+
"loss": 0.2805,
|
2018 |
+
"step": 2870
|
2019 |
+
},
|
2020 |
+
{
|
2021 |
+
"epoch": 0.34677904876580373,
|
2022 |
+
"grad_norm": 0.49686506390571594,
|
2023 |
+
"learning_rate": 8.257376792533813e-07,
|
2024 |
+
"loss": 0.2872,
|
2025 |
+
"step": 2880
|
2026 |
+
},
|
2027 |
+
{
|
2028 |
+
"epoch": 0.3479831426851294,
|
2029 |
+
"grad_norm": 0.4665164649486542,
|
2030 |
+
"learning_rate": 8.241403245061584e-07,
|
2031 |
+
"loss": 0.2816,
|
2032 |
+
"step": 2890
|
2033 |
+
},
|
2034 |
+
{
|
2035 |
+
"epoch": 0.34918723660445516,
|
2036 |
+
"grad_norm": 0.4437556266784668,
|
2037 |
+
"learning_rate": 8.225372427747813e-07,
|
2038 |
+
"loss": 0.286,
|
2039 |
+
"step": 2900
|
2040 |
+
},
|
2041 |
+
{
|
2042 |
+
"epoch": 0.35039133052378085,
|
2043 |
+
"grad_norm": 0.5280335545539856,
|
2044 |
+
"learning_rate": 8.209284623828583e-07,
|
2045 |
+
"loss": 0.2895,
|
2046 |
+
"step": 2910
|
2047 |
+
},
|
2048 |
+
{
|
2049 |
+
"epoch": 0.35159542444310654,
|
2050 |
+
"grad_norm": 0.5298367142677307,
|
2051 |
+
"learning_rate": 8.193140117546832e-07,
|
2052 |
+
"loss": 0.282,
|
2053 |
+
"step": 2920
|
2054 |
+
},
|
2055 |
+
{
|
2056 |
+
"epoch": 0.3527995183624323,
|
2057 |
+
"grad_norm": 0.7123149633407593,
|
2058 |
+
"learning_rate": 8.176939194147329e-07,
|
2059 |
+
"loss": 0.2841,
|
2060 |
+
"step": 2930
|
2061 |
+
},
|
2062 |
+
{
|
2063 |
+
"epoch": 0.354003612281758,
|
2064 |
+
"grad_norm": 0.6565315127372742,
|
2065 |
+
"learning_rate": 8.160682139871632e-07,
|
2066 |
+
"loss": 0.2793,
|
2067 |
+
"step": 2940
|
2068 |
+
},
|
2069 |
+
{
|
2070 |
+
"epoch": 0.35520770620108366,
|
2071 |
+
"grad_norm": 0.7005172967910767,
|
2072 |
+
"learning_rate": 8.144369241953032e-07,
|
2073 |
+
"loss": 0.2854,
|
2074 |
+
"step": 2950
|
2075 |
+
},
|
2076 |
+
{
|
2077 |
+
"epoch": 0.3564118001204094,
|
2078 |
+
"grad_norm": 0.7468757033348083,
|
2079 |
+
"learning_rate": 8.128000788611478e-07,
|
2080 |
+
"loss": 0.2992,
|
2081 |
+
"step": 2960
|
2082 |
+
},
|
2083 |
+
{
|
2084 |
+
"epoch": 0.3576158940397351,
|
2085 |
+
"grad_norm": 0.5055456161499023,
|
2086 |
+
"learning_rate": 8.111577069048487e-07,
|
2087 |
+
"loss": 0.2979,
|
2088 |
+
"step": 2970
|
2089 |
+
},
|
2090 |
+
{
|
2091 |
+
"epoch": 0.3588199879590608,
|
2092 |
+
"grad_norm": 0.576806366443634,
|
2093 |
+
"learning_rate": 8.095098373442027e-07,
|
2094 |
+
"loss": 0.2915,
|
2095 |
+
"step": 2980
|
2096 |
+
},
|
2097 |
+
{
|
2098 |
+
"epoch": 0.3600240818783865,
|
2099 |
+
"grad_norm": 0.5598990321159363,
|
2100 |
+
"learning_rate": 8.078564992941401e-07,
|
2101 |
+
"loss": 0.2741,
|
2102 |
+
"step": 2990
|
2103 |
+
},
|
2104 |
+
{
|
2105 |
+
"epoch": 0.3612281757977122,
|
2106 |
+
"grad_norm": 0.5614596009254456,
|
2107 |
+
"learning_rate": 8.061977219662092e-07,
|
2108 |
+
"loss": 0.2913,
|
2109 |
+
"step": 3000
|
2110 |
+
},
|
2111 |
+
{
|
2112 |
+
"epoch": 0.3624322697170379,
|
2113 |
+
"grad_norm": 0.37974095344543457,
|
2114 |
+
"learning_rate": 8.045335346680611e-07,
|
2115 |
+
"loss": 0.2787,
|
2116 |
+
"step": 3010
|
2117 |
+
},
|
2118 |
+
{
|
2119 |
+
"epoch": 0.36363636363636365,
|
2120 |
+
"grad_norm": 0.6439441442489624,
|
2121 |
+
"learning_rate": 8.028639668029309e-07,
|
2122 |
+
"loss": 0.2868,
|
2123 |
+
"step": 3020
|
2124 |
+
},
|
2125 |
+
{
|
2126 |
+
"epoch": 0.36484045755568933,
|
2127 |
+
"grad_norm": 0.46323299407958984,
|
2128 |
+
"learning_rate": 8.011890478691196e-07,
|
2129 |
+
"loss": 0.2831,
|
2130 |
+
"step": 3030
|
2131 |
+
},
|
2132 |
+
{
|
2133 |
+
"epoch": 0.3660445514750151,
|
2134 |
+
"grad_norm": 0.4963575005531311,
|
2135 |
+
"learning_rate": 7.995088074594713e-07,
|
2136 |
+
"loss": 0.2782,
|
2137 |
+
"step": 3040
|
2138 |
+
},
|
2139 |
+
{
|
2140 |
+
"epoch": 0.36724864539434077,
|
2141 |
+
"grad_norm": 0.6179429888725281,
|
2142 |
+
"learning_rate": 7.978232752608516e-07,
|
2143 |
+
"loss": 0.2703,
|
2144 |
+
"step": 3050
|
2145 |
+
},
|
2146 |
+
{
|
2147 |
+
"epoch": 0.36845273931366646,
|
2148 |
+
"grad_norm": 0.5127160549163818,
|
2149 |
+
"learning_rate": 7.961324810536223e-07,
|
2150 |
+
"loss": 0.3007,
|
2151 |
+
"step": 3060
|
2152 |
+
},
|
2153 |
+
{
|
2154 |
+
"epoch": 0.3696568332329922,
|
2155 |
+
"grad_norm": 0.45177775621414185,
|
2156 |
+
"learning_rate": 7.94436454711116e-07,
|
2157 |
+
"loss": 0.288,
|
2158 |
+
"step": 3070
|
2159 |
+
},
|
2160 |
+
{
|
2161 |
+
"epoch": 0.3708609271523179,
|
2162 |
+
"grad_norm": 0.47144508361816406,
|
2163 |
+
"learning_rate": 7.927352261991074e-07,
|
2164 |
+
"loss": 0.2901,
|
2165 |
+
"step": 3080
|
2166 |
+
},
|
2167 |
+
{
|
2168 |
+
"epoch": 0.3720650210716436,
|
2169 |
+
"grad_norm": 0.5511527061462402,
|
2170 |
+
"learning_rate": 7.910288255752844e-07,
|
2171 |
+
"loss": 0.2754,
|
2172 |
+
"step": 3090
|
2173 |
+
},
|
2174 |
+
{
|
2175 |
+
"epoch": 0.3732691149909693,
|
2176 |
+
"grad_norm": 0.5164305567741394,
|
2177 |
+
"learning_rate": 7.893172829887171e-07,
|
2178 |
+
"loss": 0.2847,
|
2179 |
+
"step": 3100
|
2180 |
+
},
|
2181 |
+
{
|
2182 |
+
"epoch": 0.374473208910295,
|
2183 |
+
"grad_norm": 0.5629504919052124,
|
2184 |
+
"learning_rate": 7.876006286793251e-07,
|
2185 |
+
"loss": 0.2953,
|
2186 |
+
"step": 3110
|
2187 |
+
},
|
2188 |
+
{
|
2189 |
+
"epoch": 0.3756773028296207,
|
2190 |
+
"grad_norm": 0.513200044631958,
|
2191 |
+
"learning_rate": 7.858788929773422e-07,
|
2192 |
+
"loss": 0.2702,
|
2193 |
+
"step": 3120
|
2194 |
+
},
|
2195 |
+
{
|
2196 |
+
"epoch": 0.37688139674894644,
|
2197 |
+
"grad_norm": 0.504371166229248,
|
2198 |
+
"learning_rate": 7.841521063027825e-07,
|
2199 |
+
"loss": 0.2873,
|
2200 |
+
"step": 3130
|
2201 |
+
},
|
2202 |
+
{
|
2203 |
+
"epoch": 0.37808549066827213,
|
2204 |
+
"grad_norm": 0.613593578338623,
|
2205 |
+
"learning_rate": 7.824202991649013e-07,
|
2206 |
+
"loss": 0.27,
|
2207 |
+
"step": 3140
|
2208 |
+
},
|
2209 |
+
{
|
2210 |
+
"epoch": 0.3792895845875978,
|
2211 |
+
"grad_norm": 0.7345304489135742,
|
2212 |
+
"learning_rate": 7.806835021616564e-07,
|
2213 |
+
"loss": 0.2895,
|
2214 |
+
"step": 3150
|
2215 |
+
},
|
2216 |
+
{
|
2217 |
+
"epoch": 0.38049367850692356,
|
2218 |
+
"grad_norm": 0.48514464497566223,
|
2219 |
+
"learning_rate": 7.789417459791681e-07,
|
2220 |
+
"loss": 0.2809,
|
2221 |
+
"step": 3160
|
2222 |
+
},
|
2223 |
+
{
|
2224 |
+
"epoch": 0.38169777242624925,
|
2225 |
+
"grad_norm": 0.4638960063457489,
|
2226 |
+
"learning_rate": 7.77195061391176e-07,
|
2227 |
+
"loss": 0.2839,
|
2228 |
+
"step": 3170
|
2229 |
+
},
|
2230 |
+
{
|
2231 |
+
"epoch": 0.38290186634557494,
|
2232 |
+
"grad_norm": 0.5008341073989868,
|
2233 |
+
"learning_rate": 7.754434792584968e-07,
|
2234 |
+
"loss": 0.2701,
|
2235 |
+
"step": 3180
|
2236 |
+
},
|
2237 |
+
{
|
2238 |
+
"epoch": 0.3841059602649007,
|
2239 |
+
"grad_norm": 0.5258957743644714,
|
2240 |
+
"learning_rate": 7.73687030528477e-07,
|
2241 |
+
"loss": 0.2709,
|
2242 |
+
"step": 3190
|
2243 |
+
},
|
2244 |
+
{
|
2245 |
+
"epoch": 0.38531005418422637,
|
2246 |
+
"grad_norm": 0.5781968832015991,
|
2247 |
+
"learning_rate": 7.719257462344481e-07,
|
2248 |
+
"loss": 0.2994,
|
2249 |
+
"step": 3200
|
2250 |
+
},
|
2251 |
+
{
|
2252 |
+
"epoch": 0.38651414810355206,
|
2253 |
+
"grad_norm": 0.5485130548477173,
|
2254 |
+
"learning_rate": 7.701596574951771e-07,
|
2255 |
+
"loss": 0.3001,
|
2256 |
+
"step": 3210
|
2257 |
+
},
|
2258 |
+
{
|
2259 |
+
"epoch": 0.3877182420228778,
|
2260 |
+
"grad_norm": 0.4708418846130371,
|
2261 |
+
"learning_rate": 7.683887955143169e-07,
|
2262 |
+
"loss": 0.2736,
|
2263 |
+
"step": 3220
|
2264 |
+
},
|
2265 |
+
{
|
2266 |
+
"epoch": 0.3889223359422035,
|
2267 |
+
"grad_norm": 0.5321612358093262,
|
2268 |
+
"learning_rate": 7.666131915798556e-07,
|
2269 |
+
"loss": 0.2892,
|
2270 |
+
"step": 3230
|
2271 |
+
},
|
2272 |
+
{
|
2273 |
+
"epoch": 0.3901264298615292,
|
2274 |
+
"grad_norm": 0.524898111820221,
|
2275 |
+
"learning_rate": 7.648328770635623e-07,
|
2276 |
+
"loss": 0.2897,
|
2277 |
+
"step": 3240
|
2278 |
+
},
|
2279 |
+
{
|
2280 |
+
"epoch": 0.3913305237808549,
|
2281 |
+
"grad_norm": 0.4973953664302826,
|
2282 |
+
"learning_rate": 7.630478834204351e-07,
|
2283 |
+
"loss": 0.2804,
|
2284 |
+
"step": 3250
|
2285 |
+
},
|
2286 |
+
{
|
2287 |
+
"epoch": 0.3925346177001806,
|
2288 |
+
"grad_norm": 0.5439997315406799,
|
2289 |
+
"learning_rate": 7.612582421881423e-07,
|
2290 |
+
"loss": 0.2824,
|
2291 |
+
"step": 3260
|
2292 |
+
},
|
2293 |
+
{
|
2294 |
+
"epoch": 0.3937387116195063,
|
2295 |
+
"grad_norm": 0.5040695667266846,
|
2296 |
+
"learning_rate": 7.594639849864681e-07,
|
2297 |
+
"loss": 0.2806,
|
2298 |
+
"step": 3270
|
2299 |
+
},
|
2300 |
+
{
|
2301 |
+
"epoch": 0.39494280553883204,
|
2302 |
+
"grad_norm": 0.57867830991745,
|
2303 |
+
"learning_rate": 7.576651435167523e-07,
|
2304 |
+
"loss": 0.2788,
|
2305 |
+
"step": 3280
|
2306 |
+
},
|
2307 |
+
{
|
2308 |
+
"epoch": 0.39614689945815773,
|
2309 |
+
"grad_norm": 0.43785402178764343,
|
2310 |
+
"learning_rate": 7.558617495613304e-07,
|
2311 |
+
"loss": 0.272,
|
2312 |
+
"step": 3290
|
2313 |
+
},
|
2314 |
+
{
|
2315 |
+
"epoch": 0.3973509933774834,
|
2316 |
+
"grad_norm": 0.6042655110359192,
|
2317 |
+
"learning_rate": 7.540538349829725e-07,
|
2318 |
+
"loss": 0.2918,
|
2319 |
+
"step": 3300
|
2320 |
+
},
|
2321 |
+
{
|
2322 |
+
"epoch": 0.39855508729680916,
|
2323 |
+
"grad_norm": 0.6529451012611389,
|
2324 |
+
"learning_rate": 7.522414317243198e-07,
|
2325 |
+
"loss": 0.2882,
|
2326 |
+
"step": 3310
|
2327 |
+
},
|
2328 |
+
{
|
2329 |
+
"epoch": 0.39975918121613485,
|
2330 |
+
"grad_norm": 0.5043284296989441,
|
2331 |
+
"learning_rate": 7.50424571807321e-07,
|
2332 |
+
"loss": 0.2859,
|
2333 |
+
"step": 3320
|
2334 |
+
},
|
2335 |
+
{
|
2336 |
+
"epoch": 0.40096327513546054,
|
2337 |
+
"grad_norm": 0.44874584674835205,
|
2338 |
+
"learning_rate": 7.486032873326656e-07,
|
2339 |
+
"loss": 0.2912,
|
2340 |
+
"step": 3330
|
2341 |
+
},
|
2342 |
+
{
|
2343 |
+
"epoch": 0.4021673690547863,
|
2344 |
+
"grad_norm": 0.515211284160614,
|
2345 |
+
"learning_rate": 7.467776104792171e-07,
|
2346 |
+
"loss": 0.2747,
|
2347 |
+
"step": 3340
|
2348 |
+
},
|
2349 |
+
{
|
2350 |
+
"epoch": 0.40337146297411197,
|
2351 |
+
"grad_norm": 0.5425666570663452,
|
2352 |
+
"learning_rate": 7.449475735034453e-07,
|
2353 |
+
"loss": 0.2964,
|
2354 |
+
"step": 3350
|
2355 |
+
},
|
2356 |
+
{
|
2357 |
+
"epoch": 0.4045755568934377,
|
2358 |
+
"grad_norm": 0.5557084083557129,
|
2359 |
+
"learning_rate": 7.431132087388546e-07,
|
2360 |
+
"loss": 0.2809,
|
2361 |
+
"step": 3360
|
2362 |
+
},
|
2363 |
+
{
|
2364 |
+
"epoch": 0.4057796508127634,
|
2365 |
+
"grad_norm": 0.4438600540161133,
|
2366 |
+
"learning_rate": 7.412745485954144e-07,
|
2367 |
+
"loss": 0.269,
|
2368 |
+
"step": 3370
|
2369 |
+
},
|
2370 |
+
{
|
2371 |
+
"epoch": 0.4069837447320891,
|
2372 |
+
"grad_norm": 0.586608350276947,
|
2373 |
+
"learning_rate": 7.394316255589854e-07,
|
2374 |
+
"loss": 0.2848,
|
2375 |
+
"step": 3380
|
2376 |
+
},
|
2377 |
+
{
|
2378 |
+
"epoch": 0.40818783865141484,
|
2379 |
+
"grad_norm": 0.6429834961891174,
|
2380 |
+
"learning_rate": 7.375844721907466e-07,
|
2381 |
+
"loss": 0.2917,
|
2382 |
+
"step": 3390
|
2383 |
+
},
|
2384 |
+
{
|
2385 |
+
"epoch": 0.4093919325707405,
|
2386 |
+
"grad_norm": 0.5150188207626343,
|
2387 |
+
"learning_rate": 7.35733121126619e-07,
|
2388 |
+
"loss": 0.2772,
|
2389 |
+
"step": 3400
|
2390 |
+
},
|
2391 |
+
{
|
2392 |
+
"epoch": 0.4105960264900662,
|
2393 |
+
"grad_norm": 0.5537393093109131,
|
2394 |
+
"learning_rate": 7.338776050766896e-07,
|
2395 |
+
"loss": 0.2819,
|
2396 |
+
"step": 3410
|
2397 |
+
},
|
2398 |
+
{
|
2399 |
+
"epoch": 0.41180012040939196,
|
2400 |
+
"grad_norm": 0.4834784269332886,
|
2401 |
+
"learning_rate": 7.320179568246333e-07,
|
2402 |
+
"loss": 0.2851,
|
2403 |
+
"step": 3420
|
2404 |
+
},
|
2405 |
+
{
|
2406 |
+
"epoch": 0.41300421432871764,
|
2407 |
+
"grad_norm": 0.6806831955909729,
|
2408 |
+
"learning_rate": 7.301542092271337e-07,
|
2409 |
+
"loss": 0.2841,
|
2410 |
+
"step": 3430
|
2411 |
+
},
|
2412 |
+
{
|
2413 |
+
"epoch": 0.41420830824804333,
|
2414 |
+
"grad_norm": 0.5081019997596741,
|
2415 |
+
"learning_rate": 7.282863952133022e-07,
|
2416 |
+
"loss": 0.2763,
|
2417 |
+
"step": 3440
|
2418 |
+
},
|
2419 |
+
{
|
2420 |
+
"epoch": 0.4154124021673691,
|
2421 |
+
"grad_norm": 0.5681424140930176,
|
2422 |
+
"learning_rate": 7.264145477840974e-07,
|
2423 |
+
"loss": 0.2719,
|
2424 |
+
"step": 3450
|
2425 |
+
},
|
2426 |
+
{
|
2427 |
+
"epoch": 0.41661649608669477,
|
2428 |
+
"grad_norm": 0.6257504820823669,
|
2429 |
+
"learning_rate": 7.245387000117404e-07,
|
2430 |
+
"loss": 0.2813,
|
2431 |
+
"step": 3460
|
2432 |
+
},
|
2433 |
+
{
|
2434 |
+
"epoch": 0.41782059000602045,
|
2435 |
+
"grad_norm": 0.5195356607437134,
|
2436 |
+
"learning_rate": 7.226588850391317e-07,
|
2437 |
+
"loss": 0.2761,
|
2438 |
+
"step": 3470
|
2439 |
+
},
|
2440 |
+
{
|
2441 |
+
"epoch": 0.4190246839253462,
|
2442 |
+
"grad_norm": 0.5490323305130005,
|
2443 |
+
"learning_rate": 7.207751360792647e-07,
|
2444 |
+
"loss": 0.291,
|
2445 |
+
"step": 3480
|
2446 |
+
},
|
2447 |
+
{
|
2448 |
+
"epoch": 0.4202287778446719,
|
2449 |
+
"grad_norm": 0.6458017230033875,
|
2450 |
+
"learning_rate": 7.188874864146397e-07,
|
2451 |
+
"loss": 0.2919,
|
2452 |
+
"step": 3490
|
2453 |
+
},
|
2454 |
+
{
|
2455 |
+
"epoch": 0.4214328717639976,
|
2456 |
+
"grad_norm": 0.5081551671028137,
|
2457 |
+
"learning_rate": 7.16995969396676e-07,
|
2458 |
+
"loss": 0.2762,
|
2459 |
+
"step": 3500
|
2460 |
+
},
|
2461 |
+
{
|
2462 |
+
"epoch": 0.4226369656833233,
|
2463 |
+
"grad_norm": 0.6496263742446899,
|
2464 |
+
"learning_rate": 7.151006184451212e-07,
|
2465 |
+
"loss": 0.2766,
|
2466 |
+
"step": 3510
|
2467 |
+
},
|
2468 |
+
{
|
2469 |
+
"epoch": 0.423841059602649,
|
2470 |
+
"grad_norm": 0.6383594870567322,
|
2471 |
+
"learning_rate": 7.132014670474625e-07,
|
2472 |
+
"loss": 0.2829,
|
2473 |
+
"step": 3520
|
2474 |
+
},
|
2475 |
+
{
|
2476 |
+
"epoch": 0.4250451535219747,
|
2477 |
+
"grad_norm": 0.6374247074127197,
|
2478 |
+
"learning_rate": 7.112985487583333e-07,
|
2479 |
+
"loss": 0.2776,
|
2480 |
+
"step": 3530
|
2481 |
+
},
|
2482 |
+
{
|
2483 |
+
"epoch": 0.42624924744130044,
|
2484 |
+
"grad_norm": 0.48250874876976013,
|
2485 |
+
"learning_rate": 7.093918971989229e-07,
|
2486 |
+
"loss": 0.2794,
|
2487 |
+
"step": 3540
|
2488 |
+
},
|
2489 |
+
{
|
2490 |
+
"epoch": 0.4274533413606261,
|
2491 |
+
"grad_norm": 0.5055521726608276,
|
2492 |
+
"learning_rate": 7.07481546056379e-07,
|
2493 |
+
"loss": 0.2818,
|
2494 |
+
"step": 3550
|
2495 |
+
},
|
2496 |
+
{
|
2497 |
+
"epoch": 0.4286574352799518,
|
2498 |
+
"grad_norm": 0.558320164680481,
|
2499 |
+
"learning_rate": 7.055675290832157e-07,
|
2500 |
+
"loss": 0.29,
|
2501 |
+
"step": 3560
|
2502 |
+
},
|
2503 |
+
{
|
2504 |
+
"epoch": 0.42986152919927756,
|
2505 |
+
"grad_norm": 0.54196697473526,
|
2506 |
+
"learning_rate": 7.036498800967153e-07,
|
2507 |
+
"loss": 0.2819,
|
2508 |
+
"step": 3570
|
2509 |
+
},
|
2510 |
+
{
|
2511 |
+
"epoch": 0.43106562311860325,
|
2512 |
+
"grad_norm": 0.5442371368408203,
|
2513 |
+
"learning_rate": 7.017286329783314e-07,
|
2514 |
+
"loss": 0.3044,
|
2515 |
+
"step": 3580
|
2516 |
+
},
|
2517 |
+
{
|
2518 |
+
"epoch": 0.43226971703792894,
|
2519 |
+
"grad_norm": 0.531579315662384,
|
2520 |
+
"learning_rate": 6.9980382167309e-07,
|
2521 |
+
"loss": 0.2875,
|
2522 |
+
"step": 3590
|
2523 |
+
},
|
2524 |
+
{
|
2525 |
+
"epoch": 0.4334738109572547,
|
2526 |
+
"grad_norm": 0.6069034934043884,
|
2527 |
+
"learning_rate": 6.978754801889902e-07,
|
2528 |
+
"loss": 0.2915,
|
2529 |
+
"step": 3600
|
2530 |
+
},
|
2531 |
+
{
|
2532 |
+
"epoch": 0.43467790487658037,
|
2533 |
+
"grad_norm": 0.5376235246658325,
|
2534 |
+
"learning_rate": 6.959436425964033e-07,
|
2535 |
+
"loss": 0.2768,
|
2536 |
+
"step": 3610
|
2537 |
+
},
|
2538 |
+
{
|
2539 |
+
"epoch": 0.43588199879590606,
|
2540 |
+
"grad_norm": 0.5438763499259949,
|
2541 |
+
"learning_rate": 6.9400834302747e-07,
|
2542 |
+
"loss": 0.2911,
|
2543 |
+
"step": 3620
|
2544 |
+
},
|
2545 |
+
{
|
2546 |
+
"epoch": 0.4370860927152318,
|
2547 |
+
"grad_norm": 0.4325105547904968,
|
2548 |
+
"learning_rate": 6.920696156754985e-07,
|
2549 |
+
"loss": 0.269,
|
2550 |
+
"step": 3630
|
2551 |
+
},
|
2552 |
+
{
|
2553 |
+
"epoch": 0.4382901866345575,
|
2554 |
+
"grad_norm": 0.5107905864715576,
|
2555 |
+
"learning_rate": 6.901274947943597e-07,
|
2556 |
+
"loss": 0.2754,
|
2557 |
+
"step": 3640
|
2558 |
+
},
|
2559 |
+
{
|
2560 |
+
"epoch": 0.4394942805538832,
|
2561 |
+
"grad_norm": 0.5302306413650513,
|
2562 |
+
"learning_rate": 6.881820146978822e-07,
|
2563 |
+
"loss": 0.2835,
|
2564 |
+
"step": 3650
|
2565 |
+
},
|
2566 |
+
{
|
2567 |
+
"epoch": 0.4406983744732089,
|
2568 |
+
"grad_norm": 0.5489309430122375,
|
2569 |
+
"learning_rate": 6.862332097592457e-07,
|
2570 |
+
"loss": 0.2746,
|
2571 |
+
"step": 3660
|
2572 |
+
},
|
2573 |
+
{
|
2574 |
+
"epoch": 0.4419024683925346,
|
2575 |
+
"grad_norm": 0.4515032172203064,
|
2576 |
+
"learning_rate": 6.842811144103743e-07,
|
2577 |
+
"loss": 0.2829,
|
2578 |
+
"step": 3670
|
2579 |
+
},
|
2580 |
+
{
|
2581 |
+
"epoch": 0.44310656231186035,
|
2582 |
+
"grad_norm": 0.5359588861465454,
|
2583 |
+
"learning_rate": 6.823257631413275e-07,
|
2584 |
+
"loss": 0.2826,
|
2585 |
+
"step": 3680
|
2586 |
+
},
|
2587 |
+
{
|
2588 |
+
"epoch": 0.44431065623118604,
|
2589 |
+
"grad_norm": 0.49561506509780884,
|
2590 |
+
"learning_rate": 6.803671904996916e-07,
|
2591 |
+
"loss": 0.2946,
|
2592 |
+
"step": 3690
|
2593 |
+
},
|
2594 |
+
{
|
2595 |
+
"epoch": 0.44551475015051173,
|
2596 |
+
"grad_norm": 0.43841075897216797,
|
2597 |
+
"learning_rate": 6.784054310899683e-07,
|
2598 |
+
"loss": 0.2802,
|
2599 |
+
"step": 3700
|
2600 |
+
},
|
2601 |
+
{
|
2602 |
+
"epoch": 0.4467188440698375,
|
2603 |
+
"grad_norm": 0.7528261542320251,
|
2604 |
+
"learning_rate": 6.764405195729639e-07,
|
2605 |
+
"loss": 0.2829,
|
2606 |
+
"step": 3710
|
2607 |
+
},
|
2608 |
+
{
|
2609 |
+
"epoch": 0.44792293798916316,
|
2610 |
+
"grad_norm": 1.1440777778625488,
|
2611 |
+
"learning_rate": 6.744724906651774e-07,
|
2612 |
+
"loss": 0.2665,
|
2613 |
+
"step": 3720
|
2614 |
+
},
|
2615 |
+
{
|
2616 |
+
"epoch": 0.44912703190848885,
|
2617 |
+
"grad_norm": 0.5153807997703552,
|
2618 |
+
"learning_rate": 6.72501379138186e-07,
|
2619 |
+
"loss": 0.2754,
|
2620 |
+
"step": 3730
|
2621 |
+
},
|
2622 |
+
{
|
2623 |
+
"epoch": 0.4503311258278146,
|
2624 |
+
"grad_norm": 0.582036554813385,
|
2625 |
+
"learning_rate": 6.705272198180312e-07,
|
2626 |
+
"loss": 0.2818,
|
2627 |
+
"step": 3740
|
2628 |
+
},
|
2629 |
+
{
|
2630 |
+
"epoch": 0.4515352197471403,
|
2631 |
+
"grad_norm": 0.7196856737136841,
|
2632 |
+
"learning_rate": 6.685500475846044e-07,
|
2633 |
+
"loss": 0.2744,
|
2634 |
+
"step": 3750
|
2635 |
+
},
|
2636 |
+
{
|
2637 |
+
"epoch": 0.45273931366646597,
|
2638 |
+
"grad_norm": 1.0595272779464722,
|
2639 |
+
"learning_rate": 6.665698973710288e-07,
|
2640 |
+
"loss": 0.2602,
|
2641 |
+
"step": 3760
|
2642 |
+
},
|
2643 |
+
{
|
2644 |
+
"epoch": 0.4539434075857917,
|
2645 |
+
"grad_norm": 0.4910378158092499,
|
2646 |
+
"learning_rate": 6.645868041630439e-07,
|
2647 |
+
"loss": 0.2887,
|
2648 |
+
"step": 3770
|
2649 |
+
},
|
2650 |
+
{
|
2651 |
+
"epoch": 0.4551475015051174,
|
2652 |
+
"grad_norm": 0.4395122230052948,
|
2653 |
+
"learning_rate": 6.626008029983867e-07,
|
2654 |
+
"loss": 0.2771,
|
2655 |
+
"step": 3780
|
2656 |
+
},
|
2657 |
+
{
|
2658 |
+
"epoch": 0.4563515954244431,
|
2659 |
+
"grad_norm": 0.5630185008049011,
|
2660 |
+
"learning_rate": 6.606119289661721e-07,
|
2661 |
+
"loss": 0.2976,
|
2662 |
+
"step": 3790
|
2663 |
+
},
|
2664 |
+
{
|
2665 |
+
"epoch": 0.45755568934376883,
|
2666 |
+
"grad_norm": 0.6062456965446472,
|
2667 |
+
"learning_rate": 6.58620217206274e-07,
|
2668 |
+
"loss": 0.2707,
|
2669 |
+
"step": 3800
|
2670 |
+
},
|
2671 |
+
{
|
2672 |
+
"epoch": 0.4587597832630945,
|
2673 |
+
"grad_norm": 0.6882142424583435,
|
2674 |
+
"learning_rate": 6.566257029087039e-07,
|
2675 |
+
"loss": 0.2732,
|
2676 |
+
"step": 3810
|
2677 |
+
},
|
2678 |
+
{
|
2679 |
+
"epoch": 0.4599638771824202,
|
2680 |
+
"grad_norm": 0.4631926417350769,
|
2681 |
+
"learning_rate": 6.546284213129885e-07,
|
2682 |
+
"loss": 0.2794,
|
2683 |
+
"step": 3820
|
2684 |
+
},
|
2685 |
+
{
|
2686 |
+
"epoch": 0.46116797110174595,
|
2687 |
+
"grad_norm": 0.4465793967247009,
|
2688 |
+
"learning_rate": 6.526284077075488e-07,
|
2689 |
+
"loss": 0.2809,
|
2690 |
+
"step": 3830
|
2691 |
+
},
|
2692 |
+
{
|
2693 |
+
"epoch": 0.46237206502107164,
|
2694 |
+
"grad_norm": 0.5073222517967224,
|
2695 |
+
"learning_rate": 6.506256974290747e-07,
|
2696 |
+
"loss": 0.2908,
|
2697 |
+
"step": 3840
|
2698 |
+
},
|
2699 |
+
{
|
2700 |
+
"epoch": 0.46357615894039733,
|
2701 |
+
"grad_norm": 0.5717306137084961,
|
2702 |
+
"learning_rate": 6.486203258619016e-07,
|
2703 |
+
"loss": 0.282,
|
2704 |
+
"step": 3850
|
2705 |
+
},
|
2706 |
+
{
|
2707 |
+
"epoch": 0.4647802528597231,
|
2708 |
+
"grad_norm": 0.5614638924598694,
|
2709 |
+
"learning_rate": 6.466123284373858e-07,
|
2710 |
+
"loss": 0.2764,
|
2711 |
+
"step": 3860
|
2712 |
+
},
|
2713 |
+
{
|
2714 |
+
"epoch": 0.46598434677904876,
|
2715 |
+
"grad_norm": 0.626006007194519,
|
2716 |
+
"learning_rate": 6.446017406332772e-07,
|
2717 |
+
"loss": 0.277,
|
2718 |
+
"step": 3870
|
2719 |
+
},
|
2720 |
+
{
|
2721 |
+
"epoch": 0.46718844069837445,
|
2722 |
+
"grad_norm": 0.47509709000587463,
|
2723 |
+
"learning_rate": 6.425885979730933e-07,
|
2724 |
+
"loss": 0.2828,
|
2725 |
+
"step": 3880
|
2726 |
+
},
|
2727 |
+
{
|
2728 |
+
"epoch": 0.4683925346177002,
|
2729 |
+
"grad_norm": 0.5545176267623901,
|
2730 |
+
"learning_rate": 6.405729360254914e-07,
|
2731 |
+
"loss": 0.2893,
|
2732 |
+
"step": 3890
|
2733 |
+
},
|
2734 |
+
{
|
2735 |
+
"epoch": 0.4695966285370259,
|
2736 |
+
"grad_norm": 0.4888879060745239,
|
2737 |
+
"learning_rate": 6.3855479040364e-07,
|
2738 |
+
"loss": 0.2811,
|
2739 |
+
"step": 3900
|
2740 |
+
},
|
2741 |
+
{
|
2742 |
+
"epoch": 0.4708007224563516,
|
2743 |
+
"grad_norm": 0.44063079357147217,
|
2744 |
+
"learning_rate": 6.365341967645902e-07,
|
2745 |
+
"loss": 0.2782,
|
2746 |
+
"step": 3910
|
2747 |
+
},
|
2748 |
+
{
|
2749 |
+
"epoch": 0.4720048163756773,
|
2750 |
+
"grad_norm": 0.5356207489967346,
|
2751 |
+
"learning_rate": 6.345111908086444e-07,
|
2752 |
+
"loss": 0.2658,
|
2753 |
+
"step": 3920
|
2754 |
+
},
|
2755 |
+
{
|
2756 |
+
"epoch": 0.473208910295003,
|
2757 |
+
"grad_norm": 0.5134460926055908,
|
2758 |
+
"learning_rate": 6.324858082787275e-07,
|
2759 |
+
"loss": 0.2782,
|
2760 |
+
"step": 3930
|
2761 |
+
},
|
2762 |
+
{
|
2763 |
+
"epoch": 0.4744130042143287,
|
2764 |
+
"grad_norm": 0.5685980916023254,
|
2765 |
+
"learning_rate": 6.304580849597527e-07,
|
2766 |
+
"loss": 0.2704,
|
2767 |
+
"step": 3940
|
2768 |
+
},
|
2769 |
+
{
|
2770 |
+
"epoch": 0.47561709813365444,
|
2771 |
+
"grad_norm": 0.8610411286354065,
|
2772 |
+
"learning_rate": 6.284280566779923e-07,
|
2773 |
+
"loss": 0.29,
|
2774 |
+
"step": 3950
|
2775 |
+
},
|
2776 |
+
{
|
2777 |
+
"epoch": 0.4768211920529801,
|
2778 |
+
"grad_norm": 0.5496920943260193,
|
2779 |
+
"learning_rate": 6.263957593004421e-07,
|
2780 |
+
"loss": 0.2704,
|
2781 |
+
"step": 3960
|
2782 |
+
},
|
2783 |
+
{
|
2784 |
+
"epoch": 0.4780252859723058,
|
2785 |
+
"grad_norm": 0.4593532383441925,
|
2786 |
+
"learning_rate": 6.243612287341896e-07,
|
2787 |
+
"loss": 0.2806,
|
2788 |
+
"step": 3970
|
2789 |
+
},
|
2790 |
+
{
|
2791 |
+
"epoch": 0.47922937989163156,
|
2792 |
+
"grad_norm": 0.5178139805793762,
|
2793 |
+
"learning_rate": 6.223245009257783e-07,
|
2794 |
+
"loss": 0.2683,
|
2795 |
+
"step": 3980
|
2796 |
+
},
|
2797 |
+
{
|
2798 |
+
"epoch": 0.48043347381095725,
|
2799 |
+
"grad_norm": 0.6350088119506836,
|
2800 |
+
"learning_rate": 6.20285611860573e-07,
|
2801 |
+
"loss": 0.2796,
|
2802 |
+
"step": 3990
|
2803 |
+
},
|
2804 |
+
{
|
2805 |
+
"epoch": 0.481637567730283,
|
2806 |
+
"grad_norm": 0.4848230183124542,
|
2807 |
+
"learning_rate": 6.182445975621246e-07,
|
2808 |
+
"loss": 0.2727,
|
2809 |
+
"step": 4000
|
2810 |
+
},
|
2811 |
+
{
|
2812 |
+
"epoch": 0.4828416616496087,
|
2813 |
+
"grad_norm": 0.6039783358573914,
|
2814 |
+
"learning_rate": 6.162014940915323e-07,
|
2815 |
+
"loss": 0.295,
|
2816 |
+
"step": 4010
|
2817 |
+
},
|
2818 |
+
{
|
2819 |
+
"epoch": 0.48404575556893437,
|
2820 |
+
"grad_norm": 0.5623034834861755,
|
2821 |
+
"learning_rate": 6.141563375468082e-07,
|
2822 |
+
"loss": 0.2843,
|
2823 |
+
"step": 4020
|
2824 |
+
},
|
2825 |
+
{
|
2826 |
+
"epoch": 0.4852498494882601,
|
2827 |
+
"grad_norm": 0.5298231244087219,
|
2828 |
+
"learning_rate": 6.12109164062238e-07,
|
2829 |
+
"loss": 0.2685,
|
2830 |
+
"step": 4030
|
2831 |
+
},
|
2832 |
+
{
|
2833 |
+
"epoch": 0.4864539434075858,
|
2834 |
+
"grad_norm": 0.49439486861228943,
|
2835 |
+
"learning_rate": 6.100600098077431e-07,
|
2836 |
+
"loss": 0.2588,
|
2837 |
+
"step": 4040
|
2838 |
+
},
|
2839 |
+
{
|
2840 |
+
"epoch": 0.4876580373269115,
|
2841 |
+
"grad_norm": 0.4667768180370331,
|
2842 |
+
"learning_rate": 6.080089109882418e-07,
|
2843 |
+
"loss": 0.275,
|
2844 |
+
"step": 4050
|
2845 |
+
},
|
2846 |
+
{
|
2847 |
+
"epoch": 0.48886213124623723,
|
2848 |
+
"grad_norm": 0.5490863919258118,
|
2849 |
+
"learning_rate": 6.059559038430094e-07,
|
2850 |
+
"loss": 0.2837,
|
2851 |
+
"step": 4060
|
2852 |
+
},
|
2853 |
+
{
|
2854 |
+
"epoch": 0.4900662251655629,
|
2855 |
+
"grad_norm": 0.467192143201828,
|
2856 |
+
"learning_rate": 6.039010246450376e-07,
|
2857 |
+
"loss": 0.2733,
|
2858 |
+
"step": 4070
|
2859 |
+
},
|
2860 |
+
{
|
2861 |
+
"epoch": 0.4912703190848886,
|
2862 |
+
"grad_norm": 0.49663642048835754,
|
2863 |
+
"learning_rate": 6.018443097003945e-07,
|
2864 |
+
"loss": 0.2738,
|
2865 |
+
"step": 4080
|
2866 |
+
},
|
2867 |
+
{
|
2868 |
+
"epoch": 0.49247441300421435,
|
2869 |
+
"grad_norm": 0.501777708530426,
|
2870 |
+
"learning_rate": 5.997857953475823e-07,
|
2871 |
+
"loss": 0.2743,
|
2872 |
+
"step": 4090
|
2873 |
+
},
|
2874 |
+
{
|
2875 |
+
"epoch": 0.49367850692354004,
|
2876 |
+
"grad_norm": 0.5064652562141418,
|
2877 |
+
"learning_rate": 5.977255179568955e-07,
|
2878 |
+
"loss": 0.2748,
|
2879 |
+
"step": 4100
|
2880 |
+
},
|
2881 |
+
{
|
2882 |
+
"epoch": 0.4948826008428657,
|
2883 |
+
"grad_norm": 0.6248656511306763,
|
2884 |
+
"learning_rate": 5.956635139297783e-07,
|
2885 |
+
"loss": 0.2765,
|
2886 |
+
"step": 4110
|
2887 |
+
},
|
2888 |
+
{
|
2889 |
+
"epoch": 0.49608669476219147,
|
2890 |
+
"grad_norm": 0.45688706636428833,
|
2891 |
+
"learning_rate": 5.935998196981817e-07,
|
2892 |
+
"loss": 0.271,
|
2893 |
+
"step": 4120
|
2894 |
+
},
|
2895 |
+
{
|
2896 |
+
"epoch": 0.49729078868151716,
|
2897 |
+
"grad_norm": 0.7225250601768494,
|
2898 |
+
"learning_rate": 5.915344717239197e-07,
|
2899 |
+
"loss": 0.2853,
|
2900 |
+
"step": 4130
|
2901 |
+
},
|
2902 |
+
{
|
2903 |
+
"epoch": 0.49849488260084285,
|
2904 |
+
"grad_norm": 0.5863081812858582,
|
2905 |
+
"learning_rate": 5.894675064980246e-07,
|
2906 |
+
"loss": 0.2685,
|
2907 |
+
"step": 4140
|
2908 |
+
},
|
2909 |
+
{
|
2910 |
+
"epoch": 0.4996989765201686,
|
2911 |
+
"grad_norm": 0.5770187973976135,
|
2912 |
+
"learning_rate": 5.87398960540103e-07,
|
2913 |
+
"loss": 0.2774,
|
2914 |
+
"step": 4150
|
2915 |
+
},
|
2916 |
+
{
|
2917 |
+
"epoch": 0.5009030704394943,
|
2918 |
+
"grad_norm": 0.41943806409835815,
|
2919 |
+
"learning_rate": 5.8532887039769e-07,
|
2920 |
+
"loss": 0.2622,
|
2921 |
+
"step": 4160
|
2922 |
+
},
|
2923 |
+
{
|
2924 |
+
"epoch": 0.50210716435882,
|
2925 |
+
"grad_norm": 0.6374907493591309,
|
2926 |
+
"learning_rate": 5.832572726456039e-07,
|
2927 |
+
"loss": 0.2858,
|
2928 |
+
"step": 4170
|
2929 |
+
},
|
2930 |
+
{
|
2931 |
+
"epoch": 0.5033112582781457,
|
2932 |
+
"grad_norm": 0.5210843086242676,
|
2933 |
+
"learning_rate": 5.811842038852996e-07,
|
2934 |
+
"loss": 0.2706,
|
2935 |
+
"step": 4180
|
2936 |
+
},
|
2937 |
+
{
|
2938 |
+
"epoch": 0.5045153521974715,
|
2939 |
+
"grad_norm": 0.596387505531311,
|
2940 |
+
"learning_rate": 5.791097007442222e-07,
|
2941 |
+
"loss": 0.2823,
|
2942 |
+
"step": 4190
|
2943 |
+
},
|
2944 |
+
{
|
2945 |
+
"epoch": 0.5057194461167971,
|
2946 |
+
"grad_norm": 0.6676878929138184,
|
2947 |
+
"learning_rate": 5.7703379987516e-07,
|
2948 |
+
"loss": 0.2848,
|
2949 |
+
"step": 4200
|
2950 |
+
},
|
2951 |
+
{
|
2952 |
+
"epoch": 0.5069235400361228,
|
2953 |
+
"grad_norm": 0.6097555160522461,
|
2954 |
+
"learning_rate": 5.749565379555961e-07,
|
2955 |
+
"loss": 0.2766,
|
2956 |
+
"step": 4210
|
2957 |
+
},
|
2958 |
+
{
|
2959 |
+
"epoch": 0.5081276339554486,
|
2960 |
+
"grad_norm": 0.6043739318847656,
|
2961 |
+
"learning_rate": 5.728779516870615e-07,
|
2962 |
+
"loss": 0.2885,
|
2963 |
+
"step": 4220
|
2964 |
+
},
|
2965 |
+
{
|
2966 |
+
"epoch": 0.5093317278747742,
|
2967 |
+
"grad_norm": 0.5565124750137329,
|
2968 |
+
"learning_rate": 5.707980777944859e-07,
|
2969 |
+
"loss": 0.2643,
|
2970 |
+
"step": 4230
|
2971 |
+
},
|
2972 |
+
{
|
2973 |
+
"epoch": 0.5105358217941,
|
2974 |
+
"grad_norm": 0.49649959802627563,
|
2975 |
+
"learning_rate": 5.687169530255487e-07,
|
2976 |
+
"loss": 0.2672,
|
2977 |
+
"step": 4240
|
2978 |
+
},
|
2979 |
+
{
|
2980 |
+
"epoch": 0.5117399157134257,
|
2981 |
+
"grad_norm": 0.49968451261520386,
|
2982 |
+
"learning_rate": 5.666346141500307e-07,
|
2983 |
+
"loss": 0.2754,
|
2984 |
+
"step": 4250
|
2985 |
+
},
|
2986 |
+
{
|
2987 |
+
"epoch": 0.5129440096327513,
|
2988 |
+
"grad_norm": 0.4982677698135376,
|
2989 |
+
"learning_rate": 5.645510979591634e-07,
|
2990 |
+
"loss": 0.2785,
|
2991 |
+
"step": 4260
|
2992 |
+
},
|
2993 |
+
{
|
2994 |
+
"epoch": 0.5141481035520771,
|
2995 |
+
"grad_norm": 0.904083251953125,
|
2996 |
+
"learning_rate": 5.624664412649797e-07,
|
2997 |
+
"loss": 0.2833,
|
2998 |
+
"step": 4270
|
2999 |
+
},
|
3000 |
+
{
|
3001 |
+
"epoch": 0.5153521974714028,
|
3002 |
+
"grad_norm": 0.5038682222366333,
|
3003 |
+
"learning_rate": 5.603806808996625e-07,
|
3004 |
+
"loss": 0.2746,
|
3005 |
+
"step": 4280
|
3006 |
+
},
|
3007 |
+
{
|
3008 |
+
"epoch": 0.5165562913907285,
|
3009 |
+
"grad_norm": 0.7115175724029541,
|
3010 |
+
"learning_rate": 5.58293853714895e-07,
|
3011 |
+
"loss": 0.2712,
|
3012 |
+
"step": 4290
|
3013 |
+
},
|
3014 |
+
{
|
3015 |
+
"epoch": 0.5177603853100542,
|
3016 |
+
"grad_norm": 0.5522176027297974,
|
3017 |
+
"learning_rate": 5.562059965812097e-07,
|
3018 |
+
"loss": 0.2869,
|
3019 |
+
"step": 4300
|
3020 |
+
},
|
3021 |
+
{
|
3022 |
+
"epoch": 0.5189644792293799,
|
3023 |
+
"grad_norm": 0.6081178784370422,
|
3024 |
+
"learning_rate": 5.541171463873357e-07,
|
3025 |
+
"loss": 0.2751,
|
3026 |
+
"step": 4310
|
3027 |
+
},
|
3028 |
+
{
|
3029 |
+
"epoch": 0.5201685731487056,
|
3030 |
+
"grad_norm": 0.5689599514007568,
|
3031 |
+
"learning_rate": 5.52027340039548e-07,
|
3032 |
+
"loss": 0.2875,
|
3033 |
+
"step": 4320
|
3034 |
+
},
|
3035 |
+
{
|
3036 |
+
"epoch": 0.5213726670680313,
|
3037 |
+
"grad_norm": 0.43370601534843445,
|
3038 |
+
"learning_rate": 5.499366144610153e-07,
|
3039 |
+
"loss": 0.2673,
|
3040 |
+
"step": 4330
|
3041 |
+
},
|
3042 |
+
{
|
3043 |
+
"epoch": 0.5225767609873571,
|
3044 |
+
"grad_norm": 0.5115625262260437,
|
3045 |
+
"learning_rate": 5.478450065911473e-07,
|
3046 |
+
"loss": 0.2791,
|
3047 |
+
"step": 4340
|
3048 |
+
},
|
3049 |
+
{
|
3050 |
+
"epoch": 0.5237808549066827,
|
3051 |
+
"grad_norm": 0.518798291683197,
|
3052 |
+
"learning_rate": 5.45752553384942e-07,
|
3053 |
+
"loss": 0.277,
|
3054 |
+
"step": 4350
|
3055 |
+
},
|
3056 |
+
{
|
3057 |
+
"epoch": 0.5249849488260084,
|
3058 |
+
"grad_norm": 0.5628324151039124,
|
3059 |
+
"learning_rate": 5.436592918123337e-07,
|
3060 |
+
"loss": 0.2884,
|
3061 |
+
"step": 4360
|
3062 |
+
},
|
3063 |
+
{
|
3064 |
+
"epoch": 0.5261890427453342,
|
3065 |
+
"grad_norm": 0.47458890080451965,
|
3066 |
+
"learning_rate": 5.415652588575385e-07,
|
3067 |
+
"loss": 0.27,
|
3068 |
+
"step": 4370
|
3069 |
+
},
|
3070 |
+
{
|
3071 |
+
"epoch": 0.5273931366646598,
|
3072 |
+
"grad_norm": 0.6163709759712219,
|
3073 |
+
"learning_rate": 5.394704915184014e-07,
|
3074 |
+
"loss": 0.2643,
|
3075 |
+
"step": 4380
|
3076 |
+
},
|
3077 |
+
{
|
3078 |
+
"epoch": 0.5285972305839856,
|
3079 |
+
"grad_norm": 0.44985631108283997,
|
3080 |
+
"learning_rate": 5.373750268057431e-07,
|
3081 |
+
"loss": 0.2774,
|
3082 |
+
"step": 4390
|
3083 |
+
},
|
3084 |
+
{
|
3085 |
+
"epoch": 0.5298013245033113,
|
3086 |
+
"grad_norm": 0.47572416067123413,
|
3087 |
+
"learning_rate": 5.352789017427052e-07,
|
3088 |
+
"loss": 0.278,
|
3089 |
+
"step": 4400
|
3090 |
+
},
|
3091 |
+
{
|
3092 |
+
"epoch": 0.5310054184226369,
|
3093 |
+
"grad_norm": 0.5311432480812073,
|
3094 |
+
"learning_rate": 5.33182153364097e-07,
|
3095 |
+
"loss": 0.283,
|
3096 |
+
"step": 4410
|
3097 |
+
},
|
3098 |
+
{
|
3099 |
+
"epoch": 0.5322095123419627,
|
3100 |
+
"grad_norm": 0.5810163617134094,
|
3101 |
+
"learning_rate": 5.310848187157403e-07,
|
3102 |
+
"loss": 0.257,
|
3103 |
+
"step": 4420
|
3104 |
+
},
|
3105 |
+
{
|
3106 |
+
"epoch": 0.5334136062612884,
|
3107 |
+
"grad_norm": 0.8989514708518982,
|
3108 |
+
"learning_rate": 5.289869348538153e-07,
|
3109 |
+
"loss": 0.2846,
|
3110 |
+
"step": 4430
|
3111 |
+
},
|
3112 |
+
{
|
3113 |
+
"epoch": 0.534617700180614,
|
3114 |
+
"grad_norm": 0.4534051716327667,
|
3115 |
+
"learning_rate": 5.26888538844206e-07,
|
3116 |
+
"loss": 0.2836,
|
3117 |
+
"step": 4440
|
3118 |
+
},
|
3119 |
+
{
|
3120 |
+
"epoch": 0.5358217940999398,
|
3121 |
+
"grad_norm": 0.4670819938182831,
|
3122 |
+
"learning_rate": 5.247896677618452e-07,
|
3123 |
+
"loss": 0.2614,
|
3124 |
+
"step": 4450
|
3125 |
+
},
|
3126 |
+
{
|
3127 |
+
"epoch": 0.5370258880192655,
|
3128 |
+
"grad_norm": 0.5935913324356079,
|
3129 |
+
"learning_rate": 5.226903586900587e-07,
|
3130 |
+
"loss": 0.2826,
|
3131 |
+
"step": 4460
|
3132 |
+
},
|
3133 |
+
{
|
3134 |
+
"epoch": 0.5382299819385912,
|
3135 |
+
"grad_norm": 0.45839351415634155,
|
3136 |
+
"learning_rate": 5.205906487199119e-07,
|
3137 |
+
"loss": 0.2514,
|
3138 |
+
"step": 4470
|
3139 |
+
},
|
3140 |
+
{
|
3141 |
+
"epoch": 0.5394340758579169,
|
3142 |
+
"grad_norm": 0.4929831624031067,
|
3143 |
+
"learning_rate": 5.184905749495525e-07,
|
3144 |
+
"loss": 0.2815,
|
3145 |
+
"step": 4480
|
3146 |
+
},
|
3147 |
+
{
|
3148 |
+
"epoch": 0.5406381697772427,
|
3149 |
+
"grad_norm": 0.529437780380249,
|
3150 |
+
"learning_rate": 5.163901744835564e-07,
|
3151 |
+
"loss": 0.2744,
|
3152 |
+
"step": 4490
|
3153 |
+
},
|
3154 |
+
{
|
3155 |
+
"epoch": 0.5418422636965683,
|
3156 |
+
"grad_norm": 0.44370970129966736,
|
3157 |
+
"learning_rate": 5.14289484432271e-07,
|
3158 |
+
"loss": 0.2837,
|
3159 |
+
"step": 4500
|
3160 |
+
},
|
3161 |
+
{
|
3162 |
+
"epoch": 0.543046357615894,
|
3163 |
+
"grad_norm": 0.46680358052253723,
|
3164 |
+
"learning_rate": 5.121885419111611e-07,
|
3165 |
+
"loss": 0.2833,
|
3166 |
+
"step": 4510
|
3167 |
+
},
|
3168 |
+
{
|
3169 |
+
"epoch": 0.5442504515352198,
|
3170 |
+
"grad_norm": 0.5581067204475403,
|
3171 |
+
"learning_rate": 5.100873840401513e-07,
|
3172 |
+
"loss": 0.2846,
|
3173 |
+
"step": 4520
|
3174 |
+
},
|
3175 |
+
{
|
3176 |
+
"epoch": 0.5454545454545454,
|
3177 |
+
"grad_norm": 0.4683559238910675,
|
3178 |
+
"learning_rate": 5.079860479429718e-07,
|
3179 |
+
"loss": 0.2666,
|
3180 |
+
"step": 4530
|
3181 |
+
},
|
3182 |
+
{
|
3183 |
+
"epoch": 0.5466586393738712,
|
3184 |
+
"grad_norm": 0.464067280292511,
|
3185 |
+
"learning_rate": 5.058845707465009e-07,
|
3186 |
+
"loss": 0.2693,
|
3187 |
+
"step": 4540
|
3188 |
+
},
|
3189 |
+
{
|
3190 |
+
"epoch": 0.5478627332931969,
|
3191 |
+
"grad_norm": 0.5715063214302063,
|
3192 |
+
"learning_rate": 5.037829895801106e-07,
|
3193 |
+
"loss": 0.2746,
|
3194 |
+
"step": 4550
|
3195 |
+
},
|
3196 |
+
{
|
3197 |
+
"epoch": 0.5490668272125225,
|
3198 |
+
"grad_norm": 0.585356593132019,
|
3199 |
+
"learning_rate": 5.016813415750097e-07,
|
3200 |
+
"loss": 0.281,
|
3201 |
+
"step": 4560
|
3202 |
+
},
|
3203 |
+
{
|
3204 |
+
"epoch": 0.5502709211318483,
|
3205 |
+
"grad_norm": 0.4893047511577606,
|
3206 |
+
"learning_rate": 4.995796638635875e-07,
|
3207 |
+
"loss": 0.2799,
|
3208 |
+
"step": 4570
|
3209 |
+
},
|
3210 |
+
{
|
3211 |
+
"epoch": 0.551475015051174,
|
3212 |
+
"grad_norm": 1.0689632892608643,
|
3213 |
+
"learning_rate": 4.974779935787589e-07,
|
3214 |
+
"loss": 0.2574,
|
3215 |
+
"step": 4580
|
3216 |
+
},
|
3217 |
+
{
|
3218 |
+
"epoch": 0.5526791089704997,
|
3219 |
+
"grad_norm": 0.6054455637931824,
|
3220 |
+
"learning_rate": 4.953763678533068e-07,
|
3221 |
+
"loss": 0.2635,
|
3222 |
+
"step": 4590
|
3223 |
+
},
|
3224 |
+
{
|
3225 |
+
"epoch": 0.5538832028898254,
|
3226 |
+
"grad_norm": 0.46325477957725525,
|
3227 |
+
"learning_rate": 4.932748238192273e-07,
|
3228 |
+
"loss": 0.2769,
|
3229 |
+
"step": 4600
|
3230 |
+
},
|
3231 |
+
{
|
3232 |
+
"epoch": 0.5550872968091511,
|
3233 |
+
"grad_norm": 0.5770764350891113,
|
3234 |
+
"learning_rate": 4.911733986070735e-07,
|
3235 |
+
"loss": 0.2671,
|
3236 |
+
"step": 4610
|
3237 |
+
},
|
3238 |
+
{
|
3239 |
+
"epoch": 0.5562913907284768,
|
3240 |
+
"grad_norm": 0.5715611577033997,
|
3241 |
+
"learning_rate": 4.890721293452979e-07,
|
3242 |
+
"loss": 0.2917,
|
3243 |
+
"step": 4620
|
3244 |
+
},
|
3245 |
+
{
|
3246 |
+
"epoch": 0.5574954846478025,
|
3247 |
+
"grad_norm": 0.5384266972541809,
|
3248 |
+
"learning_rate": 4.869710531595988e-07,
|
3249 |
+
"loss": 0.2771,
|
3250 |
+
"step": 4630
|
3251 |
+
},
|
3252 |
+
{
|
3253 |
+
"epoch": 0.5586995785671283,
|
3254 |
+
"grad_norm": 0.4611688256263733,
|
3255 |
+
"learning_rate": 4.848702071722629e-07,
|
3256 |
+
"loss": 0.2828,
|
3257 |
+
"step": 4640
|
3258 |
+
},
|
3259 |
+
{
|
3260 |
+
"epoch": 0.5599036724864539,
|
3261 |
+
"grad_norm": 0.6118834018707275,
|
3262 |
+
"learning_rate": 4.827696285015094e-07,
|
3263 |
+
"loss": 0.2832,
|
3264 |
+
"step": 4650
|
3265 |
+
},
|
3266 |
+
{
|
3267 |
+
"epoch": 0.5611077664057796,
|
3268 |
+
"grad_norm": 0.5026919841766357,
|
3269 |
+
"learning_rate": 4.806693542608348e-07,
|
3270 |
+
"loss": 0.2735,
|
3271 |
+
"step": 4660
|
3272 |
+
},
|
3273 |
+
{
|
3274 |
+
"epoch": 0.5623118603251054,
|
3275 |
+
"grad_norm": 0.548273503780365,
|
3276 |
+
"learning_rate": 4.785694215583566e-07,
|
3277 |
+
"loss": 0.2742,
|
3278 |
+
"step": 4670
|
3279 |
+
},
|
3280 |
+
{
|
3281 |
+
"epoch": 0.563515954244431,
|
3282 |
+
"grad_norm": 0.6186013221740723,
|
3283 |
+
"learning_rate": 4.764698674961581e-07,
|
3284 |
+
"loss": 0.2784,
|
3285 |
+
"step": 4680
|
3286 |
+
},
|
3287 |
+
{
|
3288 |
+
"epoch": 0.5647200481637568,
|
3289 |
+
"grad_norm": 0.45300328731536865,
|
3290 |
+
"learning_rate": 4.743707291696329e-07,
|
3291 |
+
"loss": 0.2786,
|
3292 |
+
"step": 4690
|
3293 |
+
},
|
3294 |
+
{
|
3295 |
+
"epoch": 0.5659241420830825,
|
3296 |
+
"grad_norm": 0.49064886569976807,
|
3297 |
+
"learning_rate": 4.7227204366682873e-07,
|
3298 |
+
"loss": 0.2747,
|
3299 |
+
"step": 4700
|
3300 |
+
},
|
3301 |
+
{
|
3302 |
+
"epoch": 0.5671282360024081,
|
3303 |
+
"grad_norm": 0.5186241865158081,
|
3304 |
+
"learning_rate": 4.7017384806779336e-07,
|
3305 |
+
"loss": 0.2788,
|
3306 |
+
"step": 4710
|
3307 |
+
},
|
3308 |
+
{
|
3309 |
+
"epoch": 0.5683323299217339,
|
3310 |
+
"grad_norm": 0.5284368395805359,
|
3311 |
+
"learning_rate": 4.6807617944391843e-07,
|
3312 |
+
"loss": 0.264,
|
3313 |
+
"step": 4720
|
3314 |
+
},
|
3315 |
+
{
|
3316 |
+
"epoch": 0.5695364238410596,
|
3317 |
+
"grad_norm": 0.5770208239555359,
|
3318 |
+
"learning_rate": 4.6597907485728477e-07,
|
3319 |
+
"loss": 0.2759,
|
3320 |
+
"step": 4730
|
3321 |
+
},
|
3322 |
+
{
|
3323 |
+
"epoch": 0.5707405177603853,
|
3324 |
+
"grad_norm": 0.5039085149765015,
|
3325 |
+
"learning_rate": 4.6388257136000807e-07,
|
3326 |
+
"loss": 0.2807,
|
3327 |
+
"step": 4740
|
3328 |
+
},
|
3329 |
+
{
|
3330 |
+
"epoch": 0.571944611679711,
|
3331 |
+
"grad_norm": 1.2547776699066162,
|
3332 |
+
"learning_rate": 4.617867059935838e-07,
|
3333 |
+
"loss": 0.2651,
|
3334 |
+
"step": 4750
|
3335 |
+
},
|
3336 |
+
{
|
3337 |
+
"epoch": 0.5731487055990367,
|
3338 |
+
"grad_norm": 0.5457895398139954,
|
3339 |
+
"learning_rate": 4.5969151578823224e-07,
|
3340 |
+
"loss": 0.27,
|
3341 |
+
"step": 4760
|
3342 |
+
},
|
3343 |
+
{
|
3344 |
+
"epoch": 0.5743527995183624,
|
3345 |
+
"grad_norm": 0.4974658787250519,
|
3346 |
+
"learning_rate": 4.5759703776224555e-07,
|
3347 |
+
"loss": 0.2794,
|
3348 |
+
"step": 4770
|
3349 |
+
},
|
3350 |
+
{
|
3351 |
+
"epoch": 0.5755568934376881,
|
3352 |
+
"grad_norm": 0.5161871314048767,
|
3353 |
+
"learning_rate": 4.555033089213321e-07,
|
3354 |
+
"loss": 0.2816,
|
3355 |
+
"step": 4780
|
3356 |
+
},
|
3357 |
+
{
|
3358 |
+
"epoch": 0.5767609873570139,
|
3359 |
+
"grad_norm": 0.43015995621681213,
|
3360 |
+
"learning_rate": 4.534103662579642e-07,
|
3361 |
+
"loss": 0.267,
|
3362 |
+
"step": 4790
|
3363 |
+
},
|
3364 |
+
{
|
3365 |
+
"epoch": 0.5779650812763396,
|
3366 |
+
"grad_norm": 0.4864785969257355,
|
3367 |
+
"learning_rate": 4.5131824675072364e-07,
|
3368 |
+
"loss": 0.2793,
|
3369 |
+
"step": 4800
|
3370 |
+
},
|
3371 |
+
{
|
3372 |
+
"epoch": 0.5791691751956652,
|
3373 |
+
"grad_norm": 0.6006112694740295,
|
3374 |
+
"learning_rate": 4.492269873636482e-07,
|
3375 |
+
"loss": 0.2689,
|
3376 |
+
"step": 4810
|
3377 |
+
},
|
3378 |
+
{
|
3379 |
+
"epoch": 0.580373269114991,
|
3380 |
+
"grad_norm": 0.4434204399585724,
|
3381 |
+
"learning_rate": 4.4713662504557927e-07,
|
3382 |
+
"loss": 0.2876,
|
3383 |
+
"step": 4820
|
3384 |
+
},
|
3385 |
+
{
|
3386 |
+
"epoch": 0.5815773630343167,
|
3387 |
+
"grad_norm": 0.565077543258667,
|
3388 |
+
"learning_rate": 4.450471967295083e-07,
|
3389 |
+
"loss": 0.2658,
|
3390 |
+
"step": 4830
|
3391 |
+
},
|
3392 |
+
{
|
3393 |
+
"epoch": 0.5827814569536424,
|
3394 |
+
"grad_norm": 0.5381281971931458,
|
3395 |
+
"learning_rate": 4.429587393319246e-07,
|
3396 |
+
"loss": 0.2715,
|
3397 |
+
"step": 4840
|
3398 |
+
},
|
3399 |
+
{
|
3400 |
+
"epoch": 0.5839855508729681,
|
3401 |
+
"grad_norm": 0.49021026492118835,
|
3402 |
+
"learning_rate": 4.408712897521633e-07,
|
3403 |
+
"loss": 0.2688,
|
3404 |
+
"step": 4850
|
3405 |
+
},
|
3406 |
+
{
|
3407 |
+
"epoch": 0.5851896447922939,
|
3408 |
+
"grad_norm": 0.5293102264404297,
|
3409 |
+
"learning_rate": 4.3878488487175323e-07,
|
3410 |
+
"loss": 0.2604,
|
3411 |
+
"step": 4860
|
3412 |
+
},
|
3413 |
+
{
|
3414 |
+
"epoch": 0.5863937387116195,
|
3415 |
+
"grad_norm": 0.6353856921195984,
|
3416 |
+
"learning_rate": 4.3669956155376476e-07,
|
3417 |
+
"loss": 0.2586,
|
3418 |
+
"step": 4870
|
3419 |
+
},
|
3420 |
+
{
|
3421 |
+
"epoch": 0.5875978326309452,
|
3422 |
+
"grad_norm": 0.5306446552276611,
|
3423 |
+
"learning_rate": 4.3461535664215923e-07,
|
3424 |
+
"loss": 0.2624,
|
3425 |
+
"step": 4880
|
3426 |
+
},
|
3427 |
+
{
|
3428 |
+
"epoch": 0.588801926550271,
|
3429 |
+
"grad_norm": 0.5957462191581726,
|
3430 |
+
"learning_rate": 4.325323069611383e-07,
|
3431 |
+
"loss": 0.2731,
|
3432 |
+
"step": 4890
|
3433 |
+
},
|
3434 |
+
{
|
3435 |
+
"epoch": 0.5900060204695966,
|
3436 |
+
"grad_norm": 0.6803829073905945,
|
3437 |
+
"learning_rate": 4.3045044931449156e-07,
|
3438 |
+
"loss": 0.2779,
|
3439 |
+
"step": 4900
|
3440 |
+
},
|
3441 |
+
{
|
3442 |
+
"epoch": 0.5912101143889223,
|
3443 |
+
"grad_norm": 0.5501326322555542,
|
3444 |
+
"learning_rate": 4.2836982048494854e-07,
|
3445 |
+
"loss": 0.2675,
|
3446 |
+
"step": 4910
|
3447 |
+
},
|
3448 |
+
{
|
3449 |
+
"epoch": 0.5924142083082481,
|
3450 |
+
"grad_norm": 0.49481987953186035,
|
3451 |
+
"learning_rate": 4.262904572335272e-07,
|
3452 |
+
"loss": 0.2725,
|
3453 |
+
"step": 4920
|
3454 |
+
},
|
3455 |
+
{
|
3456 |
+
"epoch": 0.5936183022275737,
|
3457 |
+
"grad_norm": 0.5254814028739929,
|
3458 |
+
"learning_rate": 4.242123962988851e-07,
|
3459 |
+
"loss": 0.2804,
|
3460 |
+
"step": 4930
|
3461 |
+
},
|
3462 |
+
{
|
3463 |
+
"epoch": 0.5948223961468995,
|
3464 |
+
"grad_norm": 0.5598310232162476,
|
3465 |
+
"learning_rate": 4.2213567439667037e-07,
|
3466 |
+
"loss": 0.2703,
|
3467 |
+
"step": 4940
|
3468 |
+
},
|
3469 |
+
{
|
3470 |
+
"epoch": 0.5960264900662252,
|
3471 |
+
"grad_norm": 0.5715354681015015,
|
3472 |
+
"learning_rate": 4.200603282188724e-07,
|
3473 |
+
"loss": 0.2799,
|
3474 |
+
"step": 4950
|
3475 |
+
},
|
3476 |
+
{
|
3477 |
+
"epoch": 0.5972305839855508,
|
3478 |
+
"grad_norm": 0.6474336981773376,
|
3479 |
+
"learning_rate": 4.179863944331743e-07,
|
3480 |
+
"loss": 0.2799,
|
3481 |
+
"step": 4960
|
3482 |
+
},
|
3483 |
+
{
|
3484 |
+
"epoch": 0.5984346779048766,
|
3485 |
+
"grad_norm": 0.47116249799728394,
|
3486 |
+
"learning_rate": 4.15913909682305e-07,
|
3487 |
+
"loss": 0.2751,
|
3488 |
+
"step": 4970
|
3489 |
+
},
|
3490 |
+
{
|
3491 |
+
"epoch": 0.5996387718242023,
|
3492 |
+
"grad_norm": 0.5750442147254944,
|
3493 |
+
"learning_rate": 4.138429105833906e-07,
|
3494 |
+
"loss": 0.2719,
|
3495 |
+
"step": 4980
|
3496 |
+
},
|
3497 |
+
{
|
3498 |
+
"epoch": 0.600842865743528,
|
3499 |
+
"grad_norm": 0.5243822932243347,
|
3500 |
+
"learning_rate": 4.1177343372730923e-07,
|
3501 |
+
"loss": 0.2709,
|
3502 |
+
"step": 4990
|
3503 |
+
},
|
3504 |
+
{
|
3505 |
+
"epoch": 0.6020469596628537,
|
3506 |
+
"grad_norm": 0.5334904789924622,
|
3507 |
+
"learning_rate": 4.097055156780437e-07,
|
3508 |
+
"loss": 0.272,
|
3509 |
+
"step": 5000
|
3510 |
+
}
|
3511 |
+
],
|
3512 |
+
"logging_steps": 10,
|
3513 |
+
"max_steps": 8305,
|
3514 |
+
"num_input_tokens_seen": 0,
|
3515 |
+
"num_train_epochs": 1,
|
3516 |
+
"save_steps": 1000,
|
3517 |
+
"stateful_callbacks": {
|
3518 |
+
"TrainerControl": {
|
3519 |
+
"args": {
|
3520 |
+
"should_epoch_stop": false,
|
3521 |
+
"should_evaluate": false,
|
3522 |
+
"should_log": false,
|
3523 |
+
"should_save": true,
|
3524 |
+
"should_training_stop": false
|
3525 |
+
},
|
3526 |
+
"attributes": {}
|
3527 |
+
}
|
3528 |
+
},
|
3529 |
+
"total_flos": 1967389652549632.0,
|
3530 |
+
"train_batch_size": 1,
|
3531 |
+
"trial_name": null,
|
3532 |
+
"trial_params": null
|
3533 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1bf150d820bfae61b431f78524e1ada6e18847a6a0b58efeab889334baf2b6e5
|
3 |
+
size 7672
|
vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
zero_to_fp32.py
ADDED
@@ -0,0 +1,760 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright (c) Microsoft Corporation.
|
4 |
+
# SPDX-License-Identifier: Apache-2.0
|
5 |
+
|
6 |
+
# DeepSpeed Team
|
7 |
+
|
8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
11 |
+
# application.
|
12 |
+
#
|
13 |
+
# example:
|
14 |
+
# python zero_to_fp32.py . output_dir/
|
15 |
+
# or
|
16 |
+
# python zero_to_fp32.py . output_dir/ --safe_serialization
|
17 |
+
|
18 |
+
import argparse
|
19 |
+
import torch
|
20 |
+
import glob
|
21 |
+
import math
|
22 |
+
import os
|
23 |
+
import re
|
24 |
+
import gc
|
25 |
+
import json
|
26 |
+
import numpy as np
|
27 |
+
from tqdm import tqdm
|
28 |
+
from collections import OrderedDict
|
29 |
+
from dataclasses import dataclass
|
30 |
+
|
31 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
32 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
33 |
+
from deepspeed.utils import logger
|
34 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
35 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
36 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
37 |
+
|
38 |
+
|
39 |
+
@dataclass
|
40 |
+
class zero_model_state:
|
41 |
+
buffers: dict()
|
42 |
+
param_shapes: dict()
|
43 |
+
shared_params: list
|
44 |
+
ds_version: int
|
45 |
+
frozen_param_shapes: dict()
|
46 |
+
frozen_param_fragments: dict()
|
47 |
+
|
48 |
+
|
49 |
+
debug = 0
|
50 |
+
|
51 |
+
# load to cpu
|
52 |
+
device = torch.device('cpu')
|
53 |
+
|
54 |
+
|
55 |
+
def atoi(text):
|
56 |
+
return int(text) if text.isdigit() else text
|
57 |
+
|
58 |
+
|
59 |
+
def natural_keys(text):
|
60 |
+
'''
|
61 |
+
alist.sort(key=natural_keys) sorts in human order
|
62 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
63 |
+
(See Toothy's implementation in the comments)
|
64 |
+
'''
|
65 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
66 |
+
|
67 |
+
|
68 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
69 |
+
if not os.path.isdir(checkpoint_dir):
|
70 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
71 |
+
|
72 |
+
# there should be only one file
|
73 |
+
if zero_stage <= 2:
|
74 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
75 |
+
elif zero_stage == 3:
|
76 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
77 |
+
|
78 |
+
if not os.path.exists(file):
|
79 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
80 |
+
|
81 |
+
return file
|
82 |
+
|
83 |
+
|
84 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
85 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
86 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
87 |
+
|
88 |
+
if len(ckpt_files) == 0:
|
89 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
90 |
+
|
91 |
+
return ckpt_files
|
92 |
+
|
93 |
+
|
94 |
+
def get_optim_files(checkpoint_dir):
|
95 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
96 |
+
|
97 |
+
|
98 |
+
def get_model_state_files(checkpoint_dir):
|
99 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
100 |
+
|
101 |
+
|
102 |
+
def parse_model_states(files):
|
103 |
+
zero_model_states = []
|
104 |
+
for file in files:
|
105 |
+
state_dict = torch.load(file, map_location=device, weights_only=False)
|
106 |
+
|
107 |
+
if BUFFER_NAMES not in state_dict:
|
108 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
109 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
110 |
+
if debug:
|
111 |
+
print("Found buffers:", buffer_names)
|
112 |
+
|
113 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
114 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
115 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
116 |
+
|
117 |
+
# collect parameters that are included in param_shapes
|
118 |
+
param_names = []
|
119 |
+
for s in param_shapes:
|
120 |
+
for name in s.keys():
|
121 |
+
param_names.append(name)
|
122 |
+
|
123 |
+
# update with frozen parameters
|
124 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
125 |
+
if frozen_param_shapes is not None:
|
126 |
+
if debug:
|
127 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
128 |
+
param_names += list(frozen_param_shapes.keys())
|
129 |
+
|
130 |
+
# handle shared params
|
131 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
132 |
+
|
133 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
134 |
+
|
135 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
136 |
+
|
137 |
+
z_model_state = zero_model_state(buffers=buffers,
|
138 |
+
param_shapes=param_shapes,
|
139 |
+
shared_params=shared_params,
|
140 |
+
ds_version=ds_version,
|
141 |
+
frozen_param_shapes=frozen_param_shapes,
|
142 |
+
frozen_param_fragments=frozen_param_fragments)
|
143 |
+
zero_model_states.append(z_model_state)
|
144 |
+
|
145 |
+
return zero_model_states
|
146 |
+
|
147 |
+
|
148 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
149 |
+
total_files = len(files)
|
150 |
+
state_dicts = []
|
151 |
+
for f in tqdm(files, desc='Loading checkpoint shards'):
|
152 |
+
state_dict = torch.load(f, map_location=device, mmap=True, weights_only=False)
|
153 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
154 |
+
# and also handle the case where it was already removed by another helper script
|
155 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
156 |
+
state_dicts.append(state_dict)
|
157 |
+
|
158 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
159 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
160 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
161 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
162 |
+
|
163 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
164 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
165 |
+
# use the max of the partition_count to get the dp world_size.
|
166 |
+
|
167 |
+
if type(world_size) is list:
|
168 |
+
world_size = max(world_size)
|
169 |
+
|
170 |
+
if world_size != total_files:
|
171 |
+
raise ValueError(
|
172 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
173 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
174 |
+
)
|
175 |
+
|
176 |
+
# the groups are named differently in each stage
|
177 |
+
if zero_stage <= 2:
|
178 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
179 |
+
elif zero_stage == 3:
|
180 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
181 |
+
else:
|
182 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
183 |
+
|
184 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
185 |
+
return zero_stage, world_size, fp32_flat_groups
|
186 |
+
|
187 |
+
|
188 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
|
189 |
+
"""
|
190 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
191 |
+
|
192 |
+
Args:
|
193 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
194 |
+
|
195 |
+
"""
|
196 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
197 |
+
|
198 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
199 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
200 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
201 |
+
|
202 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
203 |
+
|
204 |
+
zero_model_states = parse_model_states(model_files)
|
205 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
206 |
+
|
207 |
+
if zero_stage <= 2:
|
208 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
209 |
+
exclude_frozen_parameters)
|
210 |
+
elif zero_stage == 3:
|
211 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
212 |
+
exclude_frozen_parameters)
|
213 |
+
|
214 |
+
|
215 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
216 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
217 |
+
return
|
218 |
+
|
219 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
220 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
221 |
+
|
222 |
+
if debug:
|
223 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
224 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
225 |
+
|
226 |
+
wanted_params = len(frozen_param_shapes)
|
227 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
228 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
229 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
230 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
231 |
+
|
232 |
+
total_params = 0
|
233 |
+
total_numel = 0
|
234 |
+
for name, shape in frozen_param_shapes.items():
|
235 |
+
total_params += 1
|
236 |
+
unpartitioned_numel = shape.numel()
|
237 |
+
total_numel += unpartitioned_numel
|
238 |
+
|
239 |
+
state_dict[name] = frozen_param_fragments[name]
|
240 |
+
|
241 |
+
if debug:
|
242 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
243 |
+
|
244 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
245 |
+
|
246 |
+
|
247 |
+
def _has_callable(obj, fn):
|
248 |
+
attr = getattr(obj, fn, None)
|
249 |
+
return callable(attr)
|
250 |
+
|
251 |
+
|
252 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
253 |
+
param_shapes = zero_model_states[0].param_shapes
|
254 |
+
|
255 |
+
# Reconstruction protocol:
|
256 |
+
#
|
257 |
+
# XXX: document this
|
258 |
+
|
259 |
+
if debug:
|
260 |
+
for i in range(world_size):
|
261 |
+
for j in range(len(fp32_flat_groups[0])):
|
262 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
263 |
+
|
264 |
+
# XXX: memory usage doubles here (zero2)
|
265 |
+
num_param_groups = len(fp32_flat_groups[0])
|
266 |
+
merged_single_partition_of_fp32_groups = []
|
267 |
+
for i in range(num_param_groups):
|
268 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
269 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
270 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
271 |
+
avail_numel = sum(
|
272 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
273 |
+
|
274 |
+
if debug:
|
275 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
276 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
277 |
+
# not asserting if there is a mismatch due to possible padding
|
278 |
+
print(f"Have {avail_numel} numels to process.")
|
279 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
280 |
+
|
281 |
+
# params
|
282 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
283 |
+
# out-of-core computing solution
|
284 |
+
total_numel = 0
|
285 |
+
total_params = 0
|
286 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
287 |
+
offset = 0
|
288 |
+
avail_numel = full_single_fp32_vector.numel()
|
289 |
+
for name, shape in shapes.items():
|
290 |
+
|
291 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
292 |
+
total_numel += unpartitioned_numel
|
293 |
+
total_params += 1
|
294 |
+
|
295 |
+
if debug:
|
296 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
297 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
298 |
+
offset += unpartitioned_numel
|
299 |
+
|
300 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
301 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
302 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
303 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
304 |
+
align_to = 2 * world_size
|
305 |
+
|
306 |
+
def zero2_align(x):
|
307 |
+
return align_to * math.ceil(x / align_to)
|
308 |
+
|
309 |
+
if debug:
|
310 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
311 |
+
|
312 |
+
offset = zero2_align(offset)
|
313 |
+
avail_numel = zero2_align(avail_numel)
|
314 |
+
|
315 |
+
if debug:
|
316 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
317 |
+
|
318 |
+
# Sanity check
|
319 |
+
if offset != avail_numel:
|
320 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
321 |
+
|
322 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
323 |
+
|
324 |
+
|
325 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
326 |
+
exclude_frozen_parameters):
|
327 |
+
state_dict = OrderedDict()
|
328 |
+
|
329 |
+
# buffers
|
330 |
+
buffers = zero_model_states[0].buffers
|
331 |
+
state_dict.update(buffers)
|
332 |
+
if debug:
|
333 |
+
print(f"added {len(buffers)} buffers")
|
334 |
+
|
335 |
+
if not exclude_frozen_parameters:
|
336 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
337 |
+
|
338 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
339 |
+
|
340 |
+
# recover shared parameters
|
341 |
+
for pair in zero_model_states[0].shared_params:
|
342 |
+
if pair[1] in state_dict:
|
343 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
344 |
+
|
345 |
+
return state_dict
|
346 |
+
|
347 |
+
|
348 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
349 |
+
remainder = unpartitioned_numel % world_size
|
350 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
351 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
352 |
+
return partitioned_numel, padding_numel
|
353 |
+
|
354 |
+
|
355 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
356 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
357 |
+
return
|
358 |
+
|
359 |
+
if debug:
|
360 |
+
for i in range(world_size):
|
361 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
362 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
363 |
+
|
364 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
365 |
+
wanted_params = len(frozen_param_shapes)
|
366 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
367 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
368 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
369 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
370 |
+
|
371 |
+
total_params = 0
|
372 |
+
total_numel = 0
|
373 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
374 |
+
total_params += 1
|
375 |
+
unpartitioned_numel = shape.numel()
|
376 |
+
total_numel += unpartitioned_numel
|
377 |
+
|
378 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
379 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
380 |
+
|
381 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
382 |
+
|
383 |
+
if debug:
|
384 |
+
print(
|
385 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
386 |
+
)
|
387 |
+
|
388 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
389 |
+
|
390 |
+
|
391 |
+
class GatheredTensor:
|
392 |
+
"""
|
393 |
+
A pseudo tensor that collects partitioned weights.
|
394 |
+
It is more memory efficient when there are multiple groups.
|
395 |
+
"""
|
396 |
+
|
397 |
+
def __init__(self, flat_groups, flat_groups_offset, offset, partitioned_numel, shape):
|
398 |
+
self.flat_groups = flat_groups
|
399 |
+
self.flat_groups_offset = flat_groups_offset
|
400 |
+
self.offset = offset
|
401 |
+
self.partitioned_numel = partitioned_numel
|
402 |
+
self.shape = shape
|
403 |
+
self.dtype = self.flat_groups[0][0].dtype
|
404 |
+
|
405 |
+
def contiguous(self):
|
406 |
+
"""
|
407 |
+
Merge partitioned weights from flat_groups into a single tensor.
|
408 |
+
"""
|
409 |
+
end_idx = self.offset + self.partitioned_numel
|
410 |
+
world_size = len(self.flat_groups)
|
411 |
+
pad_flat_param_chunks = []
|
412 |
+
|
413 |
+
for rank_i in range(world_size):
|
414 |
+
# for each rank, we need to collect weights from related group/groups
|
415 |
+
flat_groups_at_rank_i = self.flat_groups[rank_i]
|
416 |
+
start_group_id = None
|
417 |
+
end_group_id = None
|
418 |
+
for group_id in range(len(self.flat_groups_offset)):
|
419 |
+
if self.flat_groups_offset[group_id] <= self.offset < self.flat_groups_offset[group_id + 1]:
|
420 |
+
start_group_id = group_id
|
421 |
+
if self.flat_groups_offset[group_id] < end_idx <= self.flat_groups_offset[group_id + 1]:
|
422 |
+
end_group_id = group_id
|
423 |
+
break
|
424 |
+
# collect weights from related group/groups
|
425 |
+
for group_id in range(start_group_id, end_group_id + 1):
|
426 |
+
flat_tensor = flat_groups_at_rank_i[group_id]
|
427 |
+
start_offset = self.offset - self.flat_groups_offset[group_id]
|
428 |
+
end_offset = min(end_idx, self.flat_groups_offset[group_id + 1]) - self.flat_groups_offset[group_id]
|
429 |
+
pad_flat_param_chunks.append(flat_tensor[start_offset:end_offset])
|
430 |
+
|
431 |
+
# collect weights from all ranks
|
432 |
+
pad_flat_param = torch.cat(pad_flat_param_chunks, dim=0)
|
433 |
+
param = pad_flat_param[:self.shape.numel()].view(self.shape).contiguous()
|
434 |
+
return param
|
435 |
+
|
436 |
+
|
437 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
438 |
+
param_shapes = zero_model_states[0].param_shapes
|
439 |
+
avail_numel = sum([flat_group.numel() for flat_group in fp32_flat_groups[0]]) * world_size
|
440 |
+
|
441 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
442 |
+
# param, re-consolidating each param, while dealing with padding if any
|
443 |
+
|
444 |
+
# merge list of dicts, preserving order
|
445 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
446 |
+
|
447 |
+
if debug:
|
448 |
+
for i in range(world_size):
|
449 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
450 |
+
|
451 |
+
wanted_params = len(param_shapes)
|
452 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
453 |
+
# not asserting if there is a mismatch due to possible padding
|
454 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
455 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
456 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
457 |
+
|
458 |
+
# params
|
459 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
460 |
+
# out-of-core computing solution
|
461 |
+
offset = 0
|
462 |
+
total_numel = 0
|
463 |
+
total_params = 0
|
464 |
+
flat_groups_offset = [0] + list(np.cumsum([flat_tensor.numel() for flat_tensor in fp32_flat_groups[0]]))
|
465 |
+
for name, shape in tqdm(param_shapes.items(), desc='Gathering sharded weights'):
|
466 |
+
unpartitioned_numel = shape.numel()
|
467 |
+
total_numel += unpartitioned_numel
|
468 |
+
total_params += 1
|
469 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
470 |
+
|
471 |
+
if debug:
|
472 |
+
print(
|
473 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
474 |
+
)
|
475 |
+
|
476 |
+
# memory efficient tensor
|
477 |
+
tensor = GatheredTensor(fp32_flat_groups, flat_groups_offset, offset, partitioned_numel, shape)
|
478 |
+
state_dict[name] = tensor
|
479 |
+
offset += partitioned_numel
|
480 |
+
|
481 |
+
offset *= world_size
|
482 |
+
|
483 |
+
# Sanity check
|
484 |
+
if offset != avail_numel:
|
485 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
486 |
+
|
487 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
488 |
+
|
489 |
+
|
490 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
491 |
+
exclude_frozen_parameters):
|
492 |
+
state_dict = OrderedDict()
|
493 |
+
|
494 |
+
# buffers
|
495 |
+
buffers = zero_model_states[0].buffers
|
496 |
+
state_dict.update(buffers)
|
497 |
+
if debug:
|
498 |
+
print(f"added {len(buffers)} buffers")
|
499 |
+
|
500 |
+
if not exclude_frozen_parameters:
|
501 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
502 |
+
|
503 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
504 |
+
|
505 |
+
# recover shared parameters
|
506 |
+
for pair in zero_model_states[0].shared_params:
|
507 |
+
if pair[1] in state_dict:
|
508 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
509 |
+
|
510 |
+
return state_dict
|
511 |
+
|
512 |
+
|
513 |
+
def to_torch_tensor(state_dict, return_empty_tensor=False):
|
514 |
+
"""
|
515 |
+
Convert state_dict of GatheredTensor to torch tensor
|
516 |
+
"""
|
517 |
+
torch_state_dict = {}
|
518 |
+
converted_tensors = {}
|
519 |
+
for name, tensor in state_dict.items():
|
520 |
+
tensor_id = id(tensor)
|
521 |
+
if tensor_id in converted_tensors: # shared tensors
|
522 |
+
shared_tensor = torch_state_dict[converted_tensors[tensor_id]]
|
523 |
+
torch_state_dict[name] = shared_tensor
|
524 |
+
else:
|
525 |
+
converted_tensors[tensor_id] = name
|
526 |
+
if return_empty_tensor:
|
527 |
+
torch_state_dict[name] = torch.empty(tensor.shape, dtype=tensor.dtype)
|
528 |
+
else:
|
529 |
+
torch_state_dict[name] = tensor.contiguous()
|
530 |
+
return torch_state_dict
|
531 |
+
|
532 |
+
|
533 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
|
534 |
+
tag=None,
|
535 |
+
exclude_frozen_parameters=False,
|
536 |
+
lazy_mode=False):
|
537 |
+
"""
|
538 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
539 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
540 |
+
via a model hub.
|
541 |
+
|
542 |
+
Args:
|
543 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
544 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
545 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
546 |
+
- ``lazy_mode``: get state_dict in lazy mode. It returns a dict of pesduo tensor instead of torch tensor, which is more memory efficient.
|
547 |
+
Convert the pesduo tensor to torch tensor by ``.contiguous()``
|
548 |
+
|
549 |
+
Returns:
|
550 |
+
- pytorch ``state_dict``
|
551 |
+
|
552 |
+
A typical usage might be ::
|
553 |
+
|
554 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
555 |
+
# do the training and checkpoint saving
|
556 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
557 |
+
model = model.cpu() # move to cpu
|
558 |
+
model.load_state_dict(state_dict)
|
559 |
+
# submit to model hub or save the model to share with others
|
560 |
+
|
561 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
562 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
563 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
564 |
+
|
565 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
566 |
+
|
567 |
+
Note: the above usage may not work if your application doesn't have sufficient free CPU memory.
|
568 |
+
You may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
569 |
+
the checkpoint. Or you can load state_dict in lazy mode ::
|
570 |
+
|
571 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
572 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, lazy_mode=True) # not on cpu
|
573 |
+
for name, lazy_tensor in state_dict.item():
|
574 |
+
tensor = lazy_tensor.contiguous() # to cpu
|
575 |
+
print(name, tensor)
|
576 |
+
# del tensor to release memory if it no longer in use
|
577 |
+
"""
|
578 |
+
if tag is None:
|
579 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
580 |
+
if os.path.isfile(latest_path):
|
581 |
+
with open(latest_path, 'r') as fd:
|
582 |
+
tag = fd.read().strip()
|
583 |
+
else:
|
584 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
585 |
+
|
586 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
587 |
+
|
588 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
589 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
590 |
+
|
591 |
+
state_dict = _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
|
592 |
+
if lazy_mode:
|
593 |
+
return state_dict
|
594 |
+
else:
|
595 |
+
return to_torch_tensor(state_dict)
|
596 |
+
|
597 |
+
|
598 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
|
599 |
+
output_dir,
|
600 |
+
max_shard_size="5GB",
|
601 |
+
safe_serialization=False,
|
602 |
+
tag=None,
|
603 |
+
exclude_frozen_parameters=False):
|
604 |
+
"""
|
605 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
606 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
607 |
+
|
608 |
+
Args:
|
609 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
610 |
+
- ``output_dir``: directory to the pytorch fp32 state_dict output files
|
611 |
+
- ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
|
612 |
+
- ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
|
613 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
614 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
615 |
+
"""
|
616 |
+
|
617 |
+
# Dependency pre-check
|
618 |
+
if safe_serialization:
|
619 |
+
try:
|
620 |
+
from safetensors.torch import save_file
|
621 |
+
except ImportError:
|
622 |
+
print('If you want to use `safe_serialization`, please `pip install safetensors`')
|
623 |
+
raise
|
624 |
+
if max_shard_size is not None:
|
625 |
+
try:
|
626 |
+
from huggingface_hub import split_torch_state_dict_into_shards
|
627 |
+
except ImportError:
|
628 |
+
print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
|
629 |
+
raise
|
630 |
+
|
631 |
+
# Convert zero checkpoint to state_dict
|
632 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
|
633 |
+
tag,
|
634 |
+
exclude_frozen_parameters,
|
635 |
+
lazy_mode=True)
|
636 |
+
|
637 |
+
# Shard the model if it is too big.
|
638 |
+
weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
|
639 |
+
if max_shard_size is not None:
|
640 |
+
filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
|
641 |
+
# an memory-efficient approach for sharding
|
642 |
+
empty_state_dict = to_torch_tensor(state_dict, return_empty_tensor=True)
|
643 |
+
state_dict_split = split_torch_state_dict_into_shards(empty_state_dict,
|
644 |
+
filename_pattern=filename_pattern,
|
645 |
+
max_shard_size=max_shard_size)
|
646 |
+
else:
|
647 |
+
from collections import namedtuple
|
648 |
+
StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
|
649 |
+
state_dict_split = StateDictSplit(is_sharded=False,
|
650 |
+
filename_to_tensors={weights_name: list(state_dict.keys())})
|
651 |
+
|
652 |
+
# Save the model by shard
|
653 |
+
os.makedirs(output_dir, exist_ok=True)
|
654 |
+
filename_to_tensors = state_dict_split.filename_to_tensors.items()
|
655 |
+
for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
|
656 |
+
shard_state_dict = {tensor_name: state_dict[tensor_name] for tensor_name in tensors}
|
657 |
+
shard_state_dict = to_torch_tensor(shard_state_dict)
|
658 |
+
output_path = os.path.join(output_dir, shard_file)
|
659 |
+
if safe_serialization:
|
660 |
+
save_file(shard_state_dict, output_path, metadata={"format": "pt"})
|
661 |
+
else:
|
662 |
+
torch.save(shard_state_dict, output_path)
|
663 |
+
# release the memory of current shard
|
664 |
+
for tensor_name in list(shard_state_dict.keys()):
|
665 |
+
del state_dict[tensor_name]
|
666 |
+
del shard_state_dict[tensor_name]
|
667 |
+
del shard_state_dict
|
668 |
+
gc.collect()
|
669 |
+
|
670 |
+
# Save index if sharded
|
671 |
+
if state_dict_split.is_sharded:
|
672 |
+
index = {
|
673 |
+
"metadata": state_dict_split.metadata,
|
674 |
+
"weight_map": state_dict_split.tensor_to_filename,
|
675 |
+
}
|
676 |
+
save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
|
677 |
+
save_index_file = os.path.join(output_dir, save_index_file)
|
678 |
+
with open(save_index_file, "w", encoding="utf-8") as f:
|
679 |
+
content = json.dumps(index, indent=2, sort_keys=True) + "\n"
|
680 |
+
f.write(content)
|
681 |
+
|
682 |
+
|
683 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
684 |
+
"""
|
685 |
+
1. Put the provided model to cpu
|
686 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
687 |
+
3. Load it into the provided model
|
688 |
+
|
689 |
+
Args:
|
690 |
+
- ``model``: the model object to update
|
691 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
692 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
693 |
+
|
694 |
+
Returns:
|
695 |
+
- ``model`: modified model
|
696 |
+
|
697 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
698 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
699 |
+
conveniently placed for you in the checkpoint folder.
|
700 |
+
|
701 |
+
A typical usage might be ::
|
702 |
+
|
703 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
704 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
705 |
+
# submit to model hub or save the model to share with others
|
706 |
+
|
707 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
708 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
709 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
710 |
+
|
711 |
+
"""
|
712 |
+
logger.info(f"Extracting fp32 weights")
|
713 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
714 |
+
|
715 |
+
logger.info(f"Overwriting model with fp32 weights")
|
716 |
+
model = model.cpu()
|
717 |
+
model.load_state_dict(state_dict, strict=False)
|
718 |
+
|
719 |
+
return model
|
720 |
+
|
721 |
+
|
722 |
+
if __name__ == "__main__":
|
723 |
+
parser = argparse.ArgumentParser()
|
724 |
+
parser.add_argument("checkpoint_dir",
|
725 |
+
type=str,
|
726 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
727 |
+
parser.add_argument("output_dir",
|
728 |
+
type=str,
|
729 |
+
help="directory to the pytorch fp32 state_dict output files"
|
730 |
+
"(e.g. path/checkpoint-12-output/)")
|
731 |
+
parser.add_argument(
|
732 |
+
"--max_shard_size",
|
733 |
+
type=str,
|
734 |
+
default="5GB",
|
735 |
+
help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
|
736 |
+
"lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
|
737 |
+
"We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
|
738 |
+
"without CPU OOM issues.")
|
739 |
+
parser.add_argument(
|
740 |
+
"--safe_serialization",
|
741 |
+
default=False,
|
742 |
+
action='store_true',
|
743 |
+
help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
|
744 |
+
parser.add_argument("-t",
|
745 |
+
"--tag",
|
746 |
+
type=str,
|
747 |
+
default=None,
|
748 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
749 |
+
parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
|
750 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
751 |
+
args = parser.parse_args()
|
752 |
+
|
753 |
+
debug = args.debug
|
754 |
+
|
755 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
|
756 |
+
args.output_dir,
|
757 |
+
max_shard_size=args.max_shard_size,
|
758 |
+
safe_serialization=args.safe_serialization,
|
759 |
+
tag=args.tag,
|
760 |
+
exclude_frozen_parameters=args.exclude_frozen_parameters)
|