--- library_name: transformers language: - ko license: apache-2.0 base_model: monologg/koelectra-base-v3-discriminator tags: - text-classification - KoELECTRA - Korean-NLP - topic-classification - news-classification - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: ynat-model results: [] --- # ynat-model This model is a fine-tuned version of [monologg/koelectra-base-v3-discriminator](https://huggingface.co/monologg/koelectra-base-v3-discriminator) on the klue-ynat dataset. It achieves the following results on the evaluation set: - Loss: 0.4126 - Accuracy: 0.8597 - Precision: 0.8499 - Recall: 0.8748 - F1: 0.8614 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.3914 | 1.0 | 714 | 0.4437 | 0.8498 | 0.8320 | 0.8767 | 0.8521 | | 0.3064 | 2.0 | 1428 | 0.3937 | 0.8585 | 0.8534 | 0.8667 | 0.8593 | | 0.2261 | 3.0 | 2142 | 0.4126 | 0.8597 | 0.8499 | 0.8748 | 0.8614 | ### Framework versions - Transformers 4.52.4 - Pytorch 2.6.0+cu124 - Datasets 3.6.0 - Tokenizers 0.21.1