Upload utils.py
Browse files
utils.py
ADDED
|
@@ -0,0 +1,697 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from transformers.models.bert.modeling_bert import BertModel, BertPreTrainedModel
|
| 3 |
+
from torch import nn
|
| 4 |
+
from itertools import chain
|
| 5 |
+
from torch.nn import MSELoss, CrossEntropyLoss
|
| 6 |
+
from cleantext import clean
|
| 7 |
+
from num2words import num2words
|
| 8 |
+
import re
|
| 9 |
+
import string
|
| 10 |
+
import pandas as pd
|
| 11 |
+
import nltk
|
| 12 |
+
nltk.download('punkt')
|
| 13 |
+
from nltk.tokenize import sent_tokenize
|
| 14 |
+
import json
|
| 15 |
+
import tqdm
|
| 16 |
+
from transformers import GPT2Tokenizer
|
| 17 |
+
from openai import OpenAI
|
| 18 |
+
import os
|
| 19 |
+
from difflib import SequenceMatcher
|
| 20 |
+
tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
|
| 21 |
+
from sentence_transformers import SentenceTransformer, util
|
| 22 |
+
|
| 23 |
+
# Load a pre-trained model
|
| 24 |
+
sentence_model = SentenceTransformer('all-MiniLM-L6-v2')
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 28 |
+
|
| 29 |
+
punct_chars = list((set(string.punctuation) | {'’', '‘', '–', '—', '~', '|', '“', '”', '…', "'", "`", '_'}))
|
| 30 |
+
punct_chars.sort()
|
| 31 |
+
punctuation = ''.join(punct_chars)
|
| 32 |
+
replace = re.compile('[%s]' % re.escape(punctuation))
|
| 33 |
+
|
| 34 |
+
def get_num_words(text):
|
| 35 |
+
if not isinstance(text, str):
|
| 36 |
+
print("%s is not a string" % text)
|
| 37 |
+
text = replace.sub(' ', text)
|
| 38 |
+
text = re.sub(r'\s+', ' ', text)
|
| 39 |
+
text = text.strip()
|
| 40 |
+
text = re.sub(r'\[.+\]', " ", text)
|
| 41 |
+
return len(text.split())
|
| 42 |
+
|
| 43 |
+
def number_to_words(num):
|
| 44 |
+
try:
|
| 45 |
+
return num2words(re.sub(",", "", num))
|
| 46 |
+
except:
|
| 47 |
+
return num
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
clean_str = lambda s: clean(s,
|
| 51 |
+
fix_unicode=True, # fix various unicode errors
|
| 52 |
+
to_ascii=True, # transliterate to closest ASCII representation
|
| 53 |
+
lower=True, # lowercase text
|
| 54 |
+
no_line_breaks=True, # fully strip line breaks as opposed to only normalizing them
|
| 55 |
+
no_urls=True, # replace all URLs with a special token
|
| 56 |
+
no_emails=True, # replace all email addresses with a special token
|
| 57 |
+
no_phone_numbers=True, # replace all phone numbers with a special token
|
| 58 |
+
no_numbers=True, # replace all numbers with a special token
|
| 59 |
+
no_digits=False, # replace all digits with a special token
|
| 60 |
+
no_currency_symbols=False, # replace all currency symbols with a special token
|
| 61 |
+
no_punct=False, # fully remove punctuation
|
| 62 |
+
replace_with_url="<URL>",
|
| 63 |
+
replace_with_email="<EMAIL>",
|
| 64 |
+
replace_with_phone_number="<PHONE>",
|
| 65 |
+
replace_with_number=lambda m: number_to_words(m.group()),
|
| 66 |
+
replace_with_digit="0",
|
| 67 |
+
replace_with_currency_symbol="<CUR>",
|
| 68 |
+
lang="en"
|
| 69 |
+
)
|
| 70 |
+
|
| 71 |
+
clean_str_nopunct = lambda s: clean(s,
|
| 72 |
+
fix_unicode=True, # fix various unicode errors
|
| 73 |
+
to_ascii=True, # transliterate to closest ASCII representation
|
| 74 |
+
lower=True, # lowercase text
|
| 75 |
+
no_line_breaks=True, # fully strip line breaks as opposed to only normalizing them
|
| 76 |
+
no_urls=True, # replace all URLs with a special token
|
| 77 |
+
no_emails=True, # replace all email addresses with a special token
|
| 78 |
+
no_phone_numbers=True, # replace all phone numbers with a special token
|
| 79 |
+
no_numbers=True, # replace all numbers with a special token
|
| 80 |
+
no_digits=False, # replace all digits with a special token
|
| 81 |
+
no_currency_symbols=False, # replace all currency symbols with a special token
|
| 82 |
+
no_punct=True, # fully remove punctuation
|
| 83 |
+
replace_with_url="<URL>",
|
| 84 |
+
replace_with_email="<EMAIL>",
|
| 85 |
+
replace_with_phone_number="<PHONE>",
|
| 86 |
+
replace_with_number=lambda m: number_to_words(m.group()),
|
| 87 |
+
replace_with_digit="0",
|
| 88 |
+
replace_with_currency_symbol="<CUR>",
|
| 89 |
+
lang="en"
|
| 90 |
+
)
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
|
| 94 |
+
class MultiHeadModel(BertPreTrainedModel):
|
| 95 |
+
"""Pre-trained BERT model that uses our loss functions"""
|
| 96 |
+
|
| 97 |
+
def __init__(self, config, head2size):
|
| 98 |
+
super(MultiHeadModel, self).__init__(config, head2size)
|
| 99 |
+
config.num_labels = 1
|
| 100 |
+
self.bert = BertModel(config)
|
| 101 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
| 102 |
+
module_dict = {}
|
| 103 |
+
for head_name, num_labels in head2size.items():
|
| 104 |
+
module_dict[head_name] = nn.Linear(config.hidden_size, num_labels)
|
| 105 |
+
self.heads = nn.ModuleDict(module_dict)
|
| 106 |
+
|
| 107 |
+
self.init_weights()
|
| 108 |
+
|
| 109 |
+
def forward(self, input_ids, token_type_ids=None, attention_mask=None,
|
| 110 |
+
head2labels=None, return_pooler_output=False, head2mask=None,
|
| 111 |
+
nsp_loss_weights=None):
|
| 112 |
+
|
| 113 |
+
# Get logits
|
| 114 |
+
output = self.bert(
|
| 115 |
+
input_ids, token_type_ids=token_type_ids, attention_mask=attention_mask,
|
| 116 |
+
output_attentions=False, output_hidden_states=False, return_dict=True)
|
| 117 |
+
pooled_output = self.dropout(output["pooler_output"]).to(device)
|
| 118 |
+
|
| 119 |
+
head2logits = {}
|
| 120 |
+
return_dict = {}
|
| 121 |
+
for head_name, head in self.heads.items():
|
| 122 |
+
head2logits[head_name] = self.heads[head_name](pooled_output)
|
| 123 |
+
head2logits[head_name] = head2logits[head_name].float()
|
| 124 |
+
return_dict[head_name + "_logits"] = head2logits[head_name]
|
| 125 |
+
|
| 126 |
+
|
| 127 |
+
if head2labels is not None:
|
| 128 |
+
for head_name, labels in head2labels.items():
|
| 129 |
+
num_classes = head2logits[head_name].shape[1]
|
| 130 |
+
|
| 131 |
+
# Regression (e.g. for politeness)
|
| 132 |
+
if num_classes == 1:
|
| 133 |
+
|
| 134 |
+
# Only consider positive examples
|
| 135 |
+
if head2mask is not None and head_name in head2mask:
|
| 136 |
+
num_positives = head2labels[head2mask[head_name]].sum() # use certain labels as mask
|
| 137 |
+
if num_positives == 0:
|
| 138 |
+
return_dict[head_name + "_loss"] = torch.tensor([0]).to(device)
|
| 139 |
+
else:
|
| 140 |
+
loss_fct = MSELoss(reduction='none')
|
| 141 |
+
loss = loss_fct(head2logits[head_name].view(-1), labels.float().view(-1))
|
| 142 |
+
return_dict[head_name + "_loss"] = loss.dot(head2labels[head2mask[head_name]].float().view(-1)) / num_positives
|
| 143 |
+
else:
|
| 144 |
+
loss_fct = MSELoss()
|
| 145 |
+
return_dict[head_name + "_loss"] = loss_fct(head2logits[head_name].view(-1), labels.float().view(-1))
|
| 146 |
+
else:
|
| 147 |
+
loss_fct = CrossEntropyLoss(weight=nsp_loss_weights.float())
|
| 148 |
+
return_dict[head_name + "_loss"] = loss_fct(head2logits[head_name], labels.view(-1))
|
| 149 |
+
|
| 150 |
+
|
| 151 |
+
if return_pooler_output:
|
| 152 |
+
return_dict["pooler_output"] = output["pooler_output"]
|
| 153 |
+
|
| 154 |
+
return return_dict
|
| 155 |
+
|
| 156 |
+
class InputBuilder(object):
|
| 157 |
+
"""Base class for building inputs from segments."""
|
| 158 |
+
|
| 159 |
+
def __init__(self, tokenizer):
|
| 160 |
+
self.tokenizer = tokenizer
|
| 161 |
+
self.mask = [tokenizer.mask_token_id]
|
| 162 |
+
|
| 163 |
+
def build_inputs(self, history, reply, max_length):
|
| 164 |
+
raise NotImplementedError
|
| 165 |
+
|
| 166 |
+
def mask_seq(self, sequence, seq_id):
|
| 167 |
+
sequence[seq_id] = self.mask
|
| 168 |
+
return sequence
|
| 169 |
+
|
| 170 |
+
@classmethod
|
| 171 |
+
def _combine_sequence(self, history, reply, max_length, flipped=False):
|
| 172 |
+
# Trim all inputs to max_length
|
| 173 |
+
history = [s[:max_length] for s in history]
|
| 174 |
+
reply = reply[:max_length]
|
| 175 |
+
if flipped:
|
| 176 |
+
return [reply] + history
|
| 177 |
+
return history + [reply]
|
| 178 |
+
|
| 179 |
+
|
| 180 |
+
class BertInputBuilder(InputBuilder):
|
| 181 |
+
"""Processor for BERT inputs"""
|
| 182 |
+
|
| 183 |
+
def __init__(self, tokenizer):
|
| 184 |
+
InputBuilder.__init__(self, tokenizer)
|
| 185 |
+
self.cls = [tokenizer.cls_token_id]
|
| 186 |
+
self.sep = [tokenizer.sep_token_id]
|
| 187 |
+
self.model_inputs = ["input_ids", "token_type_ids", "attention_mask"]
|
| 188 |
+
self.padded_inputs = ["input_ids", "token_type_ids"]
|
| 189 |
+
self.flipped = False
|
| 190 |
+
|
| 191 |
+
|
| 192 |
+
def build_inputs(self, history, reply, max_length, input_str=True):
|
| 193 |
+
"""See base class."""
|
| 194 |
+
if input_str:
|
| 195 |
+
history = [self.tokenizer.convert_tokens_to_ids(self.tokenizer.tokenize(t)) for t in history]
|
| 196 |
+
reply = self.tokenizer.convert_tokens_to_ids(self.tokenizer.tokenize(reply))
|
| 197 |
+
sequence = self._combine_sequence(history, reply, max_length, self.flipped)
|
| 198 |
+
sequence = [s + self.sep for s in sequence]
|
| 199 |
+
sequence[0] = self.cls + sequence[0]
|
| 200 |
+
|
| 201 |
+
instance = {}
|
| 202 |
+
instance["input_ids"] = list(chain(*sequence))
|
| 203 |
+
last_speaker = 0
|
| 204 |
+
other_speaker = 1
|
| 205 |
+
seq_length = len(sequence)
|
| 206 |
+
instance["token_type_ids"] = [last_speaker if ((seq_length - i) % 2 == 1) else other_speaker
|
| 207 |
+
for i, s in enumerate(sequence) for _ in s]
|
| 208 |
+
return instance
|
| 209 |
+
|
| 210 |
+
def preprocess_transcript_for_eliciting(transcript_json):
|
| 211 |
+
transcript_df = pd.DataFrame(transcript_json)
|
| 212 |
+
transcript_df.reset_index(drop=True, inplace=True)
|
| 213 |
+
def break_into_sentences(text):
|
| 214 |
+
return sent_tokenize(text)
|
| 215 |
+
transcript_df['text'] = transcript_df['text'].apply(str)
|
| 216 |
+
transcript_df['sentences'] = transcript_df['text'].apply(break_into_sentences)
|
| 217 |
+
transcript_df.rename(columns={"startTimestamp": "starttime", "endTimestamp": "endtime"}, inplace=True)
|
| 218 |
+
transcript_df.rename(columns={'is_chat?':'is_chat'}, inplace=True)
|
| 219 |
+
|
| 220 |
+
def create_sentence_df(row):
|
| 221 |
+
sentences = row['sentences']
|
| 222 |
+
speaker = row['speaker']
|
| 223 |
+
df = pd.DataFrame({'sentence':sentences})
|
| 224 |
+
df['speaker'] = speaker
|
| 225 |
+
df['userId'] = row['userId']
|
| 226 |
+
df['session_uuid'] = row['session_uuid']
|
| 227 |
+
df['starttime'] = row['starttime']
|
| 228 |
+
df['endtime'] = row['endtime']
|
| 229 |
+
df['is_chat'] = row['is_chat']
|
| 230 |
+
df['speaker_#'] = row['speaker_#']
|
| 231 |
+
return df
|
| 232 |
+
|
| 233 |
+
sentence_df = pd.concat(transcript_df.apply(create_sentence_df, axis=1).values)
|
| 234 |
+
sentence_df.reset_index(drop=True, inplace=True)
|
| 235 |
+
|
| 236 |
+
sentence_df.dropna(inplace=True)
|
| 237 |
+
sentence_df.rename(columns={'sentence':'text', 'userId':'uid'}, inplace=True)
|
| 238 |
+
|
| 239 |
+
# sentence_df['prev_utt'] = None
|
| 240 |
+
|
| 241 |
+
# prev_utt = None
|
| 242 |
+
# for index, row in sentence_df.iterrows():
|
| 243 |
+
# # Check if the current speaker is a student
|
| 244 |
+
# if row['speaker'] != 'tutor':
|
| 245 |
+
# # Store the current utterance as the previous one for the next iteration
|
| 246 |
+
# prev_utt = row['text']
|
| 247 |
+
# else:
|
| 248 |
+
# # If the current speaker is the tutor, update 'prev_utt' in the DataFrame
|
| 249 |
+
# if prev_utt is not None and index > 0:
|
| 250 |
+
# sentence_df.at[index, 'prev_utt'] = prev_utt
|
| 251 |
+
# prev_utt = None
|
| 252 |
+
|
| 253 |
+
# # drop rows where speaker_# is not tutor
|
| 254 |
+
# sentence_df = sentence_df[sentence_df['speaker_#'] == 'tutor']
|
| 255 |
+
|
| 256 |
+
# drop starttime, endtime, speaker_#, is_chat and session_uuid columns
|
| 257 |
+
sentence_df.drop(columns=['speaker_#', 'is_chat', 'session_uuid'], inplace=True)
|
| 258 |
+
|
| 259 |
+
session_json = sentence_df.to_json(orient='records')
|
| 260 |
+
session_json = json.loads(session_json)
|
| 261 |
+
|
| 262 |
+
return session_json
|
| 263 |
+
|
| 264 |
+
|
| 265 |
+
|
| 266 |
+
def preprocess_raw_files(input_json, params):
|
| 267 |
+
"""
|
| 268 |
+
Preprocesses raw json file and returns another json file
|
| 269 |
+
|
| 270 |
+
Args:
|
| 271 |
+
input_json (str): input json file
|
| 272 |
+
|
| 273 |
+
Returns:
|
| 274 |
+
_type_: output json file
|
| 275 |
+
|
| 276 |
+
"""
|
| 277 |
+
# convert raw json to dataframe
|
| 278 |
+
tutor_uuid = params['tutor_uuid']
|
| 279 |
+
session_uuid = params['session_uuid']
|
| 280 |
+
|
| 281 |
+
chat_transcript_df = convert_json_to_df(input_json, tutor_uuid, session_uuid)
|
| 282 |
+
|
| 283 |
+
# aggregate by speaker
|
| 284 |
+
aggregate_df = aggregate_by_speaker_id(chat_transcript_df)
|
| 285 |
+
|
| 286 |
+
# convert to json
|
| 287 |
+
aggregate_json = aggregate_df.to_json(orient='records')
|
| 288 |
+
aggregate_json = json.loads(aggregate_json)
|
| 289 |
+
|
| 290 |
+
return aggregate_json
|
| 291 |
+
|
| 292 |
+
|
| 293 |
+
def convert_json_to_df(input_json, tutor_uuid, session_uuid):
|
| 294 |
+
"""
|
| 295 |
+
Extracts transcript and chat data from raw json file, assigns speaker and speaker_# columns, and returns a dataframe.
|
| 296 |
+
The dataframe contains the following columns:
|
| 297 |
+
- startTimestamp
|
| 298 |
+
- endTimestamp
|
| 299 |
+
- text
|
| 300 |
+
- userId
|
| 301 |
+
- is_chat?
|
| 302 |
+
- speaker
|
| 303 |
+
- speaker_#
|
| 304 |
+
|
| 305 |
+
Args:
|
| 306 |
+
input_json (str): input json file
|
| 307 |
+
tutor_uuid (str): tutor uuid
|
| 308 |
+
|
| 309 |
+
Returns:
|
| 310 |
+
_type_: dataframe
|
| 311 |
+
"""
|
| 312 |
+
data = input_json
|
| 313 |
+
|
| 314 |
+
if data['transcript'] != []:
|
| 315 |
+
transcript_df = pd.DataFrame(data['transcript'])
|
| 316 |
+
transcript_df['is_chat?'] = 0
|
| 317 |
+
else:
|
| 318 |
+
raise ValueError("Transcript is empty")
|
| 319 |
+
|
| 320 |
+
# transcribe chat data as well
|
| 321 |
+
if data['chat'] != []:
|
| 322 |
+
chat_df = pd.DataFrame(data['chat'])
|
| 323 |
+
chat_df.rename(
|
| 324 |
+
columns={'timestamp': 'startTimestamp'}, inplace=True)
|
| 325 |
+
chat_df['endTimestamp'] = chat_df['startTimestamp']
|
| 326 |
+
chat_df['is_chat?'] = 1
|
| 327 |
+
else:
|
| 328 |
+
chat_df = pd.DataFrame(columns=list(transcript_df))
|
| 329 |
+
|
| 330 |
+
chat_transcript_df = pd.concat([chat_df, transcript_df], ignore_index=True).sort_values(
|
| 331 |
+
by='startTimestamp', ascending=True)
|
| 332 |
+
|
| 333 |
+
chat_transcript_df['session_uuid'] = session_uuid
|
| 334 |
+
|
| 335 |
+
# Add speaker column
|
| 336 |
+
count_non_chat = 0
|
| 337 |
+
for i, row in chat_transcript_df.iterrows():
|
| 338 |
+
if row['userId'] == tutor_uuid:
|
| 339 |
+
chat_transcript_df.loc[i, 'speaker'] = 'tutor'
|
| 340 |
+
elif row['userId'] is None:
|
| 341 |
+
if i == 0: # first chat
|
| 342 |
+
chat_transcript_df.loc[i, 'speaker'] = 'student' # this is a heuristic that may not be true
|
| 343 |
+
elif count_non_chat == 0: # first non-chat
|
| 344 |
+
chat_transcript_df.loc[i, 'speaker'] = 'tutor' # this is a heuristic that may not be true
|
| 345 |
+
else:
|
| 346 |
+
chat_transcript_df.loc[i, 'speaker'] = chat_transcript_df.loc[i-1, 'speaker'] # this is a heuristic that may not be true
|
| 347 |
+
else:
|
| 348 |
+
chat_transcript_df.loc[i, 'speaker'] = 'student'
|
| 349 |
+
if row['is_chat?'] == 0:
|
| 350 |
+
count_non_chat += 1
|
| 351 |
+
|
| 352 |
+
# Add speaker_# column, iterate through rows and assign speaker_# based on speaker
|
| 353 |
+
studentId2studentNum = {}
|
| 354 |
+
count_non_chat = 0
|
| 355 |
+
for i, row in chat_transcript_df.iterrows():
|
| 356 |
+
if row ['speaker'] == 'tutor':
|
| 357 |
+
chat_transcript_df.loc[i, 'speaker_#'] = 'tutor'
|
| 358 |
+
elif row['userId'] is None:
|
| 359 |
+
if i == 0: # first chat
|
| 360 |
+
chat_transcript_df.loc[i, 'speaker_#'] = 'student1'
|
| 361 |
+
elif count_non_chat == 0:
|
| 362 |
+
chat_transcript_df.loc[i, 'speaker_#'] = 'tutor'
|
| 363 |
+
else:
|
| 364 |
+
chat_transcript_df.loc[i, 'speaker_#'] = chat_transcript_df.loc[i-1, 'speaker_#']
|
| 365 |
+
else:
|
| 366 |
+
if row['userId'] in studentId2studentNum:
|
| 367 |
+
chat_transcript_df.loc[i, 'speaker_#'] = 'student' + str(studentId2studentNum[row['userId']])
|
| 368 |
+
else:
|
| 369 |
+
studentId2studentNum[row['userId']] = len(studentId2studentNum) + 1
|
| 370 |
+
chat_transcript_df.loc[i, 'speaker_#'] = 'student' + str(studentId2studentNum[row['userId']])
|
| 371 |
+
if row['is_chat?'] == 0:
|
| 372 |
+
count_non_chat += 1
|
| 373 |
+
|
| 374 |
+
return chat_transcript_df
|
| 375 |
+
|
| 376 |
+
def aggregate_by_speaker_id(data):
|
| 377 |
+
aggregate_df = []
|
| 378 |
+
speaker_id = None
|
| 379 |
+
speaker = None
|
| 380 |
+
aggregate_key_value = None
|
| 381 |
+
enumerated_speaker = None
|
| 382 |
+
is_chat = None
|
| 383 |
+
session = None
|
| 384 |
+
curr_text = ""
|
| 385 |
+
curr_starttime = None
|
| 386 |
+
curr_endtime = None
|
| 387 |
+
|
| 388 |
+
for _, row in tqdm.tqdm(data.iterrows()):
|
| 389 |
+
is_same_speaker_id = (row['speaker_#'] == aggregate_key_value)
|
| 390 |
+
is_same_type = (row['is_chat?'] == is_chat)
|
| 391 |
+
|
| 392 |
+
if (is_same_type) and (is_same_speaker_id):
|
| 393 |
+
# Concatenate text and update endtime
|
| 394 |
+
if type(row['text']) == str:
|
| 395 |
+
curr_text += " " + row['text']
|
| 396 |
+
curr_endtime = row['endTimestamp']
|
| 397 |
+
else:
|
| 398 |
+
# Append previous speaker's text to aggregate_df
|
| 399 |
+
aggregate_df.append({
|
| 400 |
+
"userId": speaker_id,
|
| 401 |
+
"is_chat": is_chat,
|
| 402 |
+
"session_uuid": session,
|
| 403 |
+
"starttime": curr_starttime,
|
| 404 |
+
"endtime": curr_endtime,
|
| 405 |
+
"text": curr_text,
|
| 406 |
+
"speaker": speaker,
|
| 407 |
+
"speaker_#": enumerated_speaker
|
| 408 |
+
})
|
| 409 |
+
|
| 410 |
+
# Update speaker, is_chat, session, curr_text, curr_starttime, curr_endtime
|
| 411 |
+
speaker_id = row['userId']
|
| 412 |
+
is_chat = row['is_chat?']
|
| 413 |
+
session = row['session_uuid']
|
| 414 |
+
curr_text = row['text'] if type(row['text']) == str else ""
|
| 415 |
+
curr_starttime = row['startTimestamp']
|
| 416 |
+
curr_endtime = row['endTimestamp']
|
| 417 |
+
speaker = row['speaker']
|
| 418 |
+
enumerated_speaker = row['speaker_#']
|
| 419 |
+
aggregate_key_value = row['speaker_#']
|
| 420 |
+
|
| 421 |
+
# Append last speaker's text to aggregate_df if it hasn't been appended yet
|
| 422 |
+
if aggregate_df[-1]['userId'] != speaker_id:
|
| 423 |
+
aggregate_df.append({
|
| 424 |
+
"userId": speaker_id,
|
| 425 |
+
"is_chat": is_chat,
|
| 426 |
+
"session_uuid": session,
|
| 427 |
+
"starttime": curr_starttime,
|
| 428 |
+
"endtime": curr_endtime,
|
| 429 |
+
"text": curr_text,
|
| 430 |
+
"speaker": speaker,
|
| 431 |
+
"speaker_#": enumerated_speaker
|
| 432 |
+
})
|
| 433 |
+
|
| 434 |
+
aggregate_df = pd.DataFrame(aggregate_df[1:])
|
| 435 |
+
return aggregate_df
|
| 436 |
+
|
| 437 |
+
|
| 438 |
+
def post_processing_output_json(transcript_json, session_id, session_type):
|
| 439 |
+
"""
|
| 440 |
+
Post-processes the uptake and eliciting dataframes to ony include rows that satisfy certain conditions.
|
| 441 |
+
|
| 442 |
+
Args:
|
| 443 |
+
uptake_json (str): uptake json file
|
| 444 |
+
eliciting_json (str): eliciting json file
|
| 445 |
+
|
| 446 |
+
Returns:
|
| 447 |
+
_type_: output json file
|
| 448 |
+
"""
|
| 449 |
+
if session_type == "eliciting":
|
| 450 |
+
eliciting_df = pd.DataFrame(transcript_json['utterances'])
|
| 451 |
+
eliciting_df.rename(columns={"text": "utt"}, inplace=True)
|
| 452 |
+
eliciting_df["session_uuid"] = session_id
|
| 453 |
+
eliciting_df.drop(columns=["uid"], inplace=True)
|
| 454 |
+
|
| 455 |
+
eliciting_df = eliciting_df[eliciting_df['speaker'] == 'tutor']
|
| 456 |
+
|
| 457 |
+
# only take rows of eliciting_df that have utt longer than 5 words
|
| 458 |
+
eliciting_df = eliciting_df[eliciting_df['utt'].str.split().str.len() > 5]
|
| 459 |
+
|
| 460 |
+
# only take rows of eliciting_df that have question > 0.5
|
| 461 |
+
eliciting_df = eliciting_df[eliciting_df['question'] > 0.5]
|
| 462 |
+
|
| 463 |
+
# only take rows of eliciting_df that have eliciting = 1.0
|
| 464 |
+
eliciting_df = eliciting_df[eliciting_df['eliciting'] == 1.0]
|
| 465 |
+
eliciting_df['eliciting'] = eliciting_df['eliciting'].apply(lambda x: 1 if x == 1.0 else x)
|
| 466 |
+
eliciting_df['eliciting'] = eliciting_df['eliciting'].astype('Int64')
|
| 467 |
+
final_df = eliciting_df[["utt", "eliciting", "starttime", "endtime", "session_uuid"]]
|
| 468 |
+
|
| 469 |
+
else:
|
| 470 |
+
# convert uptake to dataframe
|
| 471 |
+
uptake_df = pd.DataFrame(transcript_json['utterances'])
|
| 472 |
+
uptake_df.rename(columns={"text": "utt"}, inplace=True)
|
| 473 |
+
uptake_df.drop(columns=["uid", "userId", "is_chat", "speaker_#"], inplace=True)
|
| 474 |
+
|
| 475 |
+
# only take rows of total_upatke_df that have utt longer than 5 words
|
| 476 |
+
uptake_df = uptake_df[uptake_df['utt'].str.split().str.len() > 5]
|
| 477 |
+
|
| 478 |
+
# only take rows of uptake_df that have question > 0.5
|
| 479 |
+
uptake_df = uptake_df[uptake_df['question'] > 0.5]
|
| 480 |
+
|
| 481 |
+
# only take rows of uptake_df that have uptake > 0.8
|
| 482 |
+
uptake_df = uptake_df[uptake_df['uptake'] > 0.8]
|
| 483 |
+
uptake_df['uptake'] = uptake_df['uptake'].apply(lambda x: 1 if x > 0.8 else x)
|
| 484 |
+
uptake_df['uptake'] = uptake_df['uptake'].astype('Int64')
|
| 485 |
+
final_df = uptake_df[["utt", "prev_utt", "uptake", "starttime", "endtime", "session_uuid"]]
|
| 486 |
+
|
| 487 |
+
final_df = final_df.drop(columns=["session_uuid"]).copy()
|
| 488 |
+
# convert to json
|
| 489 |
+
final_output = final_df.to_json(orient='records')
|
| 490 |
+
|
| 491 |
+
final_output = json.loads(final_output)
|
| 492 |
+
|
| 493 |
+
return final_output
|
| 494 |
+
|
| 495 |
+
def compute_student_engagement(utterances):
|
| 496 |
+
"""
|
| 497 |
+
Computes the number of students engaged in a session.
|
| 498 |
+
|
| 499 |
+
Args:
|
| 500 |
+
utterances json file
|
| 501 |
+
|
| 502 |
+
Returns:
|
| 503 |
+
_type_: int
|
| 504 |
+
|
| 505 |
+
"""
|
| 506 |
+
# convert to dataframe
|
| 507 |
+
utterances_df = pd.DataFrame(utterances)
|
| 508 |
+
|
| 509 |
+
# only take rows of utterances_df that have speaker = student
|
| 510 |
+
utterances_df = utterances_df[utterances_df['speaker'] == 'student']
|
| 511 |
+
utterances_talk_df = utterances_df[utterances_df['is_chat'] == False]
|
| 512 |
+
|
| 513 |
+
# calculate number of students engaged
|
| 514 |
+
num_students_engaged = utterances_df['userId'].nunique()
|
| 515 |
+
|
| 516 |
+
# calculate number of students engaged in talk
|
| 517 |
+
num_students_engaged_talk = utterances_talk_df['userId'].nunique()
|
| 518 |
+
|
| 519 |
+
return num_students_engaged, num_students_engaged_talk
|
| 520 |
+
|
| 521 |
+
def compute_talk_time(utterances):
|
| 522 |
+
"""
|
| 523 |
+
Computes the talk time of a tutor in a session.
|
| 524 |
+
|
| 525 |
+
Args:
|
| 526 |
+
utterances json file
|
| 527 |
+
|
| 528 |
+
Returns:
|
| 529 |
+
_type_: float
|
| 530 |
+
"""
|
| 531 |
+
# convert to dataframe
|
| 532 |
+
utterances_df = pd.DataFrame(utterances)
|
| 533 |
+
|
| 534 |
+
# Filter out nan text
|
| 535 |
+
utterances_df = utterances_df[~utterances_df['text'].isna()]
|
| 536 |
+
|
| 537 |
+
# Calculate token ratio spoken
|
| 538 |
+
# Tokenize with GPT2 for talk
|
| 539 |
+
num_tokens = utterances_df['text'].apply(lambda x: len(tokenizer.encode(x)))
|
| 540 |
+
total_tokens = num_tokens.sum()
|
| 541 |
+
|
| 542 |
+
# Calculate total tokens for tutor
|
| 543 |
+
tutor_tokens = num_tokens[utterances_df['speaker'] == 'tutor'].sum()
|
| 544 |
+
|
| 545 |
+
# Add spoken_token_tutor_pct to output_df
|
| 546 |
+
if total_tokens == 0:
|
| 547 |
+
return 0
|
| 548 |
+
else:
|
| 549 |
+
return tutor_tokens / total_tokens
|
| 550 |
+
|
| 551 |
+
def gpt4_filtering_selection(json_final_output, session_type, focus_concept):
|
| 552 |
+
|
| 553 |
+
ELICITING_SYSTEM_PROMPT = """We want to extract the best moments of when a novice tutor asked questions that solicited learner ideas from looking at a copy of their session's transcript.
|
| 554 |
+
Please review the following list of utterances from the transcript, each separated by a double-slash.
|
| 555 |
+
Identify up to 3 utterances from the list that are the best examples of soliciting learner ideas, and if there are no examples then return “None”.
|
| 556 |
+
Ensure that the selected examples are a clear and complete question that would elicit learner engagement.
|
| 557 |
+
Prioritize questions that encourage students to reason out loud and elaborate on their problem-solving process, and avoid questions that may have single-word answer.
|
| 558 |
+
Return the selected examples in a json dictionary with the following format:
|
| 559 |
+
{"model_outputs": [{"utt": "A1"}, {"utt": "A2"}, {"utt": "A3"}]}"""
|
| 560 |
+
|
| 561 |
+
|
| 562 |
+
UPTAKE_SYSTEM_PROMPT = """We want to extract the best moments of when a novice tutor revoices and builds on learner ideas from looking at a copy of their session's transcript.
|
| 563 |
+
Effective building on students’ ideas looks like positive and encouraging uptake of their ideas, repeating back a previous statement, or affirming a student’s contribution.
|
| 564 |
+
Please review the following list of tuples in the form (A1 // B1) \n (A2 // B2) \n (A3 // B3)... where each tuple represents a pair of utterances from the transcript.
|
| 565 |
+
The first element A in each tuple is the previous utterance from the student, and the second element B is the current utterance in response from the tutor.
|
| 566 |
+
The A and B items in each tuple are separated by a double-slash.
|
| 567 |
+
Please return up to three of the provided tuples that are the best instances of a tutor revoicing a student’s ideas.
|
| 568 |
+
If there are no examples then return “None”. Please fix capitalization, punctuation, and blatant typos.
|
| 569 |
+
Return the selected examples in a json dictionary with the following format:
|
| 570 |
+
{"model_outputs": [{"prev_utt": "A1", "utt": "B1"}, {"prev_utt": "A2", "utt": "B2"}, {"prev_utt": "A3", "utt": "B3"}]}"""
|
| 571 |
+
|
| 572 |
+
ELICITING_REASONING = """We want to extract the best moments of when a novice tutor prompts their students for reasoning from looking at a copy of their session's transcript.
|
| 573 |
+
Effective prompting for reasoning looks like questions containing “why” and “how”, prompting students for their thoughts and explanations beyond a simple answer, and asking problem-specific questions.
|
| 574 |
+
Please review the following list of utterances from the transcript, each separated by a double-slash.
|
| 575 |
+
Identify up to 3 utterances from the list that are the best examples of soliciting learner ideas, and if there are no examples then return “None”.
|
| 576 |
+
Ensure that the selected examples are a clear and complete question that would elicit learner engagement.
|
| 577 |
+
Prioritize questions that encourage students to reason out loud and elaborate on their problem-solving process, and avoid questions that may have single-word answer.
|
| 578 |
+
Return the selected examples in a json dictionary with the following format:
|
| 579 |
+
{"model_outputs": [{"utt": "A1"}, {"utt": "A2"}, {"utt": "A3"}]}"""
|
| 580 |
+
|
| 581 |
+
# breakpoint()
|
| 582 |
+
if session_type == "eliciting":
|
| 583 |
+
if focus_concept == "reasoning":
|
| 584 |
+
system_prompt = ELICITING_REASONING
|
| 585 |
+
else:
|
| 586 |
+
system_prompt = ELICITING_SYSTEM_PROMPT
|
| 587 |
+
else:
|
| 588 |
+
system_prompt = UPTAKE_SYSTEM_PROMPT
|
| 589 |
+
df = pd.DataFrame(json_final_output)
|
| 590 |
+
client = OpenAI(
|
| 591 |
+
# This is the default and can be omitted
|
| 592 |
+
api_key="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",
|
| 593 |
+
)
|
| 594 |
+
|
| 595 |
+
if session_type == "eliciting":
|
| 596 |
+
# clean text
|
| 597 |
+
for i in range(len(df)):
|
| 598 |
+
response = client.chat.completions.create(
|
| 599 |
+
model="gpt-4-0125-preview",
|
| 600 |
+
# response_format={ "type": "json_object" },
|
| 601 |
+
messages=[
|
| 602 |
+
{"role": "system", "content": "Clean the following text: \n"},
|
| 603 |
+
{"role": "user", "content": f"{df['utt'].iloc[i]}"}
|
| 604 |
+
]
|
| 605 |
+
)
|
| 606 |
+
df.iloc[i, df.columns.get_loc('utt')] = response.choices[0].message.content
|
| 607 |
+
|
| 608 |
+
# breakpoint()
|
| 609 |
+
list_of_utterances = df['utt'].tolist()
|
| 610 |
+
# expand the list of utterances into a string
|
| 611 |
+
expanded_utterances = ' ; '.join(list_of_utterances)
|
| 612 |
+
if session_type == "uptake":
|
| 613 |
+
expanded_utterances = ""
|
| 614 |
+
for i in range(len(df)):
|
| 615 |
+
df.iloc[i, df.columns.get_loc('utt')] = ' '.join(df['utt'].iloc[i].split()[:100])+ "[...]"
|
| 616 |
+
if len(df['prev_utt'].iloc[i].split()) > 100:
|
| 617 |
+
df.iloc[i, df.columns.get_loc('prev_utt')] = "[...]" + ' '.join(df['prev_utt'].iloc[i].split()[-100:])
|
| 618 |
+
expanded_utterances += f"({df['prev_utt'].iloc[i]} // {df['utt'].iloc[i]}) \n"
|
| 619 |
+
|
| 620 |
+
|
| 621 |
+
if len(list_of_utterances) > 0:
|
| 622 |
+
response = client.chat.completions.create(
|
| 623 |
+
model="gpt-4-0125-preview",
|
| 624 |
+
response_format={ "type": "json_object" },
|
| 625 |
+
messages=[
|
| 626 |
+
{"role": "system", "content": system_prompt},
|
| 627 |
+
{"role": "user", "content": f"{expanded_utterances}"}
|
| 628 |
+
]
|
| 629 |
+
)
|
| 630 |
+
# place back into the dataframe
|
| 631 |
+
try:
|
| 632 |
+
json_output = json.loads(response.choices[0].message.content)['model_outputs']
|
| 633 |
+
chosen_utterances = [json_output[i]['utt'] for i in range(len(json_output))]
|
| 634 |
+
if session_type == "uptake":
|
| 635 |
+
chosen_prev_utterances = [json_output[i]['prev_utt'] for i in range(len(json_output))]
|
| 636 |
+
except:
|
| 637 |
+
print("Error on line 637 of utils.py")
|
| 638 |
+
|
| 639 |
+
def similar(a, b):
|
| 640 |
+
# Encode sentences to get their embeddings
|
| 641 |
+
embeddings_a = sentence_model.encode(a, convert_to_tensor=True)
|
| 642 |
+
embeddings_b = sentence_model.encode(b, convert_to_tensor=True)
|
| 643 |
+
|
| 644 |
+
# Compute cosine similarity
|
| 645 |
+
cosine_similarity = util.pytorch_cos_sim(embeddings_a, embeddings_b)
|
| 646 |
+
|
| 647 |
+
return cosine_similarity.item()
|
| 648 |
+
|
| 649 |
+
# find the index of the chosen utterances in the original list (regex to find the index, it does not have to be exact)
|
| 650 |
+
indices = []
|
| 651 |
+
for j, chosen_sentence in enumerate(chosen_utterances):
|
| 652 |
+
best_match_index = -1
|
| 653 |
+
highest_similarity = 0.0
|
| 654 |
+
|
| 655 |
+
for i, initial_sentence in enumerate(list_of_utterances):
|
| 656 |
+
similarity = similar(chosen_sentence, initial_sentence)
|
| 657 |
+
if similarity > highest_similarity:
|
| 658 |
+
highest_similarity = similarity
|
| 659 |
+
best_match_index = i
|
| 660 |
+
|
| 661 |
+
# replace the best match utterance with the chosen utterance in df
|
| 662 |
+
df.iloc[best_match_index, df.columns.get_loc('utt')] = chosen_sentence
|
| 663 |
+
if session_type == "uptake":
|
| 664 |
+
df.iloc[best_match_index, df.columns.get_loc('prev_utt')] = chosen_prev_utterances[j]
|
| 665 |
+
indices.append(best_match_index)
|
| 666 |
+
|
| 667 |
+
# check that the indices are unique
|
| 668 |
+
try:
|
| 669 |
+
assert len(indices) == len(set(indices))
|
| 670 |
+
except:
|
| 671 |
+
# only take unique indices
|
| 672 |
+
indices = list(set(indices))
|
| 673 |
+
print("error on line 673 of utils.py")
|
| 674 |
+
# if len(indices) != len(set(indices)):
|
| 675 |
+
# raise ValueError("Indices are not unique")
|
| 676 |
+
|
| 677 |
+
# filter the dataframe to only include the chosen utterances
|
| 678 |
+
df = df.iloc[indices]
|
| 679 |
+
df.reset_index(drop=True, inplace=True)
|
| 680 |
+
|
| 681 |
+
else:
|
| 682 |
+
df = df
|
| 683 |
+
|
| 684 |
+
# convert to json
|
| 685 |
+
final_output = df.to_json(orient='records')
|
| 686 |
+
final_output = json.loads(final_output)
|
| 687 |
+
|
| 688 |
+
return final_output
|
| 689 |
+
|
| 690 |
+
|
| 691 |
+
|
| 692 |
+
|
| 693 |
+
|
| 694 |
+
|
| 695 |
+
|
| 696 |
+
|
| 697 |
+
|