--- license: mit tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: covid-augment-tweet-bert-large-e2-v2 results: [] --- # covid-augment-tweet-bert-large-e2-v2 This model is a fine-tuned version of [digitalepidemiologylab/covid-twitter-bert](https://huggingface.co/digitalepidemiologylab/covid-twitter-bert) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2513 - Accuracy: 0.9639 - F1: 0.9051 - Precision: 0.8870 - Recall: 0.9239 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.0495 | 1.0 | 1023 | 0.2682 | 0.9600 | 0.8920 | 0.8982 | 0.8858 | | 0.0135 | 2.0 | 2046 | 0.2513 | 0.9639 | 0.9051 | 0.8870 | 0.9239 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3