--- license: mit tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: covid-augment-tweet-bert-large-e4 results: [] --- # covid-augment-tweet-bert-large-e4 This model is a fine-tuned version of [digitalepidemiologylab/covid-twitter-bert-v2](https://huggingface.co/digitalepidemiologylab/covid-twitter-bert-v2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3723 - Accuracy: 0.9587 - F1: 0.8889 - Precision: 0.8920 - Recall: 0.8858 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.1307 | 1.0 | 4089 | 0.3055 | 0.9523 | 0.8771 | 0.8435 | 0.9135 | | 0.0367 | 2.0 | 8178 | 0.3270 | 0.9568 | 0.8885 | 0.8558 | 0.9239 | | 0.0133 | 3.0 | 12267 | 0.3316 | 0.9600 | 0.8949 | 0.8771 | 0.9135 | | 0.0007 | 4.0 | 16356 | 0.3723 | 0.9587 | 0.8889 | 0.8920 | 0.8858 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3