--- tags: - generated_from_trainer metrics: - f1 - recall - precision model-index: - name: sentiment-roberta-clean-e8-b16-data2 results: [] --- # sentiment-roberta-clean-e8-b16-data2 This model is a fine-tuned version of [Amalq/autotrain-smm4h_large_roberta_clean-874027878](https://huggingface.co/Amalq/autotrain-smm4h_large_roberta_clean-874027878) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.9974 - F1: 0.7709 - Recall: 0.7709 - Precision: 0.7709 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Recall | Precision | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:---------:| | No log | 1.0 | 375 | 0.7813 | 0.7412 | 0.7412 | 0.7412 | | 0.5973 | 2.0 | 750 | 0.7826 | 0.7332 | 0.7332 | 0.7332 | | 0.2098 | 3.0 | 1125 | 1.1970 | 0.7547 | 0.7547 | 0.7547 | | 0.1231 | 4.0 | 1500 | 1.5843 | 0.7520 | 0.7520 | 0.7520 | | 0.1231 | 5.0 | 1875 | 1.7089 | 0.7520 | 0.7520 | 0.7520 | | 0.0457 | 6.0 | 2250 | 1.7845 | 0.7601 | 0.7601 | 0.7601 | | 0.0228 | 7.0 | 2625 | 2.0039 | 0.7601 | 0.7601 | 0.7601 | | 0.0134 | 8.0 | 3000 | 1.9974 | 0.7709 | 0.7709 | 0.7709 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3