Yazeed-Kamel commited on
Commit
9720aa8
·
verified ·
1 Parent(s): bcd4714

Upload model

Browse files
README.md ADDED
@@ -0,0 +1,199 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ tags: []
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+ This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
config.json ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/content/jais-arabic-math-tutor",
3
+ "activation_function": "swiglu",
4
+ "alibi_scaling": null,
5
+ "architectures": [
6
+ "JAISModel"
7
+ ],
8
+ "attn_pdrop": 0.0,
9
+ "auto_map": {
10
+ "AutoConfig": "configuration_jais.JAISConfig",
11
+ "AutoModel": "inceptionai/jais-family-1p3b-chat--modeling_jais.JAISModel",
12
+ "AutoModelForCausalLM": "inceptionai/jais-family-1p3b-chat--modeling_jais.JAISLMHeadModel",
13
+ "AutoModelForQuestionAnswering": "inceptionai/jais-family-1p3b-chat--modeling_jais.JAISForQuestionAnswering",
14
+ "AutoModelForSequenceClassification": "inceptionai/jais-family-1p3b-chat--modeling_jais.JAISForSequenceClassification",
15
+ "AutoModelForTokenClassification": "inceptionai/jais-family-1p3b-chat--modeling_jais.JAISForTokenClassification"
16
+ },
17
+ "bos_token_id": 0,
18
+ "embd_pdrop": 0.0,
19
+ "eos_token_id": 0,
20
+ "initializer_range": 0.02,
21
+ "layer_norm_epsilon": 1e-05,
22
+ "model_type": "jais",
23
+ "mup_embeddings_scale": 9.1705785388303,
24
+ "mup_output_alpha": 1.09518349815769,
25
+ "mup_scale_qk_dot_by_d": true,
26
+ "mup_width_scale": 0.125,
27
+ "n_embd": 2048,
28
+ "n_head": 16,
29
+ "n_inner": 5472,
30
+ "n_layer": 24,
31
+ "n_positions": 2048,
32
+ "pad_token_id": 0,
33
+ "position_embedding_type": "alibi",
34
+ "reorder_and_upcast_attn": false,
35
+ "resid_pdrop": 0.0,
36
+ "rotary_dim": null,
37
+ "scale_attn_by_inverse_layer_idx": false,
38
+ "scale_attn_weights": true,
39
+ "torch_dtype": "float32",
40
+ "transformers_version": "4.49.0",
41
+ "use_cache": true,
42
+ "vocab_size": 84992
43
+ }
configuration_jais.py ADDED
@@ -0,0 +1,196 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2023 The OpenAI Team Authors and HuggingFace Inc. team.
3
+ # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
4
+ # Copyright 2023 Cerebras Systems.
5
+ #
6
+ # Licensed under the Apache License, Version 2.0 (the "License");
7
+ # you may not use this file except in compliance with the License.
8
+ # You may obtain a copy of the License at
9
+ #
10
+ # http://www.apache.org/licenses/LICENSE-2.0
11
+ #
12
+ # Unless required by applicable law or agreed to in writing, software
13
+ # distributed under the License is distributed on an "AS IS" BASIS,
14
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
15
+ # See the License for the specific language governing permissions and
16
+ # limitations under the License.
17
+ """ JAIS configuration"""
18
+
19
+ from transformers.configuration_utils import PretrainedConfig
20
+ from transformers.utils import logging
21
+
22
+
23
+ logger = logging.get_logger(__name__)
24
+
25
+ class JAISConfig(PretrainedConfig):
26
+ """
27
+ This is the configuration class to store the configuration of a [`JAISModel`]. It is used to instantiate a JAIS
28
+ model according to the specified arguments, defining the model architecture.
29
+
30
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
31
+ documentation from [`PretrainedConfig`] for more information.
32
+
33
+
34
+ Args:
35
+ vocab_size (`int`, *optional*, defaults to 50257):
36
+ Vocabulary size of the JAIS model. Defines the number of different tokens that can be represented by the
37
+ `inputs_ids` passed when calling [`JAISModel`].
38
+ n_positions (`int`, *optional*, defaults to 1024):
39
+ The maximum sequence length that this model might ever be used with. Typically set this to something large
40
+ just in case (e.g., 512 or 1024 or 2048).
41
+ n_embd (`int`, *optional*, defaults to 768):
42
+ Dimensionality of the embeddings and hidden states.
43
+ n_layer (`int`, *optional*, defaults to 12):
44
+ Number of hidden layers in the Transformer encoder.
45
+ n_head (`int`, *optional*, defaults to 12):
46
+ Number of attention heads for each attention layer in the Transformer encoder.
47
+ n_inner (`int`, *optional*, defaults to None):
48
+ Dimensionality of the inner feed-forward layers. `None` will set it to 4 times n_embd
49
+ activation_function (`str`, *optional*, defaults to `"gelu"`):
50
+ Activation function, to be selected in the list `["relu", "silu", "gelu", "tanh", "gelu_new", "swiglu"]`.
51
+ resid_pdrop (`float`, *optional*, defaults to 0.1):
52
+ The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
53
+ embd_pdrop (`float`, *optional*, defaults to 0.1):
54
+ The dropout ratio for the embeddings.
55
+ attn_pdrop (`float`, *optional*, defaults to 0.1):
56
+ The dropout ratio for the attention.
57
+ layer_norm_epsilon (`float`, *optional*, defaults to 1e-5):
58
+ The epsilon to use in the layer normalization layers.
59
+ initializer_range (`float`, *optional*, defaults to 0.02):
60
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
61
+ scale_attn_weights (`bool`, *optional*, defaults to `True`):
62
+ Scale attention weights by dividing by sqrt(hidden_size)..
63
+ use_cache (`bool`, *optional*, defaults to `True`):
64
+ Whether or not the model should return the last key/values attentions (not used by all models).
65
+ scale_attn_by_inverse_layer_idx (`bool`, *optional*, defaults to `False`):
66
+ Whether to additionally scale attention weights by `1 / layer_idx + 1`.
67
+ reorder_and_upcast_attn (`bool`, *optional*, defaults to `False`):
68
+ Whether to scale keys (K) prior to computing attention (dot-product) and upcast attention
69
+ dot-product/softmax to float() when training with mixed precision.
70
+ position_embedding_type (`str`, *optional*, defaults to `"learned"`):
71
+ Positional embedding can be either `"alibi"` or `"learned"`.
72
+ mup_width_scale (`float`, *optional*, defaults to 1.0):
73
+ muP parameter to scale learning rate and initializers. Calculated as (`d_model,0 / d_model`), where
74
+ `d_model` is the model's width and `d_model,0` is the proxy model's width.
75
+ mup_embeddings_scale (`float`, *optional*, defaults to 1.0):
76
+ muP parameter to scale token and position embeddings.
77
+ mup_output_alpha (`float`, *optional*, defaults to 1.0):
78
+ muP parameter to scale output logits (`output_logits_scale = mup_output_alpha * mup_width_scale`).
79
+ mup_scale_qk_dot_by_d (`bool`, *optional*, defaults to `False`):
80
+ Scale attention weights by dividing by hidden_size instead of sqrt(hidden_size). Need to set
81
+ scale_attn_weights to `True` as well.
82
+ alibi_scaling (`Dict`, *optional*):
83
+ Dictionary containing the scaling configuration for ALiBi embeddings. Currently only supports linear
84
+ scaling strategy. Can specify either the scaling `factor` (must be a float greater than 1) for fixed scaling
85
+ or `train_seq_len` for dynamic scaling on input samples with sequence length > `train_seq_len`. The expected
86
+ formats are `{"type": strategy name, "factor": scaling factor}` or
87
+ `{"type": strategy name, "train_seq_len": training sequence length}`.
88
+
89
+ Example:
90
+
91
+ ```python
92
+ >>> from transformers import JAISConfig, JAISModel
93
+
94
+ >>> # Initializing a JAIS configuration
95
+ >>> configuration = JAISConfig()
96
+
97
+ >>> # Initializing a model (with random weights) from the configuration
98
+ >>> model = JAISModel(configuration)
99
+
100
+ >>> # Accessing the model configuration
101
+ >>> configuration = model.config
102
+ ```"""
103
+
104
+ model_type = "jais"
105
+ keys_to_ignore_at_inference = ["past_key_values"]
106
+ attribute_map = {
107
+ "hidden_size": "n_embd",
108
+ "max_position_embeddings": "n_positions",
109
+ "num_attention_heads": "n_head",
110
+ "num_hidden_layers": "n_layer",
111
+ }
112
+
113
+ def __init__(
114
+ self,
115
+ vocab_size=50257,
116
+ n_positions=1024,
117
+ n_embd=768,
118
+ n_layer=12,
119
+ n_head=12,
120
+ n_inner=None,
121
+ activation_function="gelu_new",
122
+ resid_pdrop=0.1,
123
+ embd_pdrop=0.1,
124
+ attn_pdrop=0.1,
125
+ layer_norm_epsilon=1e-5,
126
+ initializer_range=0.02,
127
+ scale_attn_weights=True,
128
+ use_cache=True,
129
+ bos_token_id=50256,
130
+ eos_token_id=50256,
131
+ scale_attn_by_inverse_layer_idx=False,
132
+ reorder_and_upcast_attn=False,
133
+ position_embedding_type="learned",
134
+ mup_width_scale=1.0,
135
+ mup_embeddings_scale=1.0,
136
+ mup_output_alpha=1.0,
137
+ mup_scale_qk_dot_by_d=False,
138
+ alibi_scaling=None,
139
+ **kwargs,
140
+ ):
141
+ self.vocab_size = vocab_size
142
+ self.n_positions = n_positions
143
+ self.n_embd = n_embd
144
+ self.n_layer = n_layer
145
+ self.n_head = n_head
146
+ self.n_inner = n_inner
147
+ self.activation_function = activation_function
148
+ self.resid_pdrop = resid_pdrop
149
+ self.embd_pdrop = embd_pdrop
150
+ self.attn_pdrop = attn_pdrop
151
+ self.layer_norm_epsilon = layer_norm_epsilon
152
+ self.initializer_range = initializer_range
153
+ self.scale_attn_weights = scale_attn_weights
154
+ self.use_cache = use_cache
155
+ self.scale_attn_by_inverse_layer_idx = scale_attn_by_inverse_layer_idx
156
+ self.reorder_and_upcast_attn = reorder_and_upcast_attn
157
+
158
+ self.bos_token_id = bos_token_id
159
+ self.eos_token_id = eos_token_id
160
+
161
+ self.position_embedding_type = position_embedding_type
162
+ self.mup_width_scale = mup_width_scale
163
+ self.mup_embeddings_scale = mup_embeddings_scale
164
+ self.mup_output_alpha = mup_output_alpha
165
+ self.mup_scale_qk_dot_by_d = mup_scale_qk_dot_by_d
166
+
167
+ self.alibi_scaling = alibi_scaling
168
+ self._alibi_scaling_validation()
169
+
170
+ super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
171
+
172
+ def _alibi_scaling_validation(self):
173
+ """
174
+ Validate the `alibi_scaling` configuration.
175
+ """
176
+ if self.alibi_scaling is None:
177
+ return
178
+
179
+ if not isinstance(self.alibi_scaling, dict) or len(self.alibi_scaling) != 2:
180
+ raise ValueError(
181
+ "`alibi_scaling` must be a dictionary with two fields, `type` and `factor` or `type` and `train_seq_len`, "
182
+ f"got {self.alibi_scaling}"
183
+ )
184
+ alibi_scaling_type = self.alibi_scaling.get("type", None)
185
+ alibi_scaling_factor = self.alibi_scaling.get("factor", None)
186
+ alibi_dynamic_scaling = self.alibi_scaling.get("train_seq_len", None)
187
+ if alibi_scaling_type is None or alibi_scaling_type != "linear":
188
+ raise ValueError(
189
+ f"`alibi_scaling`'s type field must be 'linear', got {alibi_scaling_type}"
190
+ )
191
+ if alibi_scaling_factor is not None:
192
+ if not isinstance(alibi_scaling_factor, float) or alibi_scaling_factor <= 1.0:
193
+ raise ValueError(f"`alibi_scaling`'s factor field must be a float > 1.0, got {alibi_scaling_factor}")
194
+ if alibi_dynamic_scaling is not None:
195
+ if not isinstance(alibi_dynamic_scaling, int) or alibi_dynamic_scaling <= 1:
196
+ raise ValueError(f"`alibi_scaling`'s `train_seq_len` field must be an integer > 1, got {alibi_dynamic_scaling}")
model-00001-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:70e4852297f6afe2b380df70f8cf1f60360a817b02e0ac006c10183ddfc2ed9f
3
+ size 4999288080
model-00002-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cca18b961eda21cdb208a556702a9b6b90a72753633de4fe5bc4d8cc9f4ac1ef
3
+ size 537964176
model.safetensors.index.json ADDED
@@ -0,0 +1,347 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 5537220672
4
+ },
5
+ "weight_map": {
6
+ "h.0.attn.c_attn.bias": "model-00001-of-00002.safetensors",
7
+ "h.0.attn.c_attn.weight": "model-00001-of-00002.safetensors",
8
+ "h.0.attn.c_proj.bias": "model-00001-of-00002.safetensors",
9
+ "h.0.attn.c_proj.weight": "model-00001-of-00002.safetensors",
10
+ "h.0.ln_1.bias": "model-00001-of-00002.safetensors",
11
+ "h.0.ln_1.weight": "model-00001-of-00002.safetensors",
12
+ "h.0.ln_2.bias": "model-00001-of-00002.safetensors",
13
+ "h.0.ln_2.weight": "model-00001-of-00002.safetensors",
14
+ "h.0.mlp.c_fc.bias": "model-00001-of-00002.safetensors",
15
+ "h.0.mlp.c_fc.weight": "model-00001-of-00002.safetensors",
16
+ "h.0.mlp.c_fc2.bias": "model-00001-of-00002.safetensors",
17
+ "h.0.mlp.c_fc2.weight": "model-00001-of-00002.safetensors",
18
+ "h.0.mlp.c_proj.bias": "model-00001-of-00002.safetensors",
19
+ "h.0.mlp.c_proj.weight": "model-00001-of-00002.safetensors",
20
+ "h.1.attn.c_attn.bias": "model-00001-of-00002.safetensors",
21
+ "h.1.attn.c_attn.weight": "model-00001-of-00002.safetensors",
22
+ "h.1.attn.c_proj.bias": "model-00001-of-00002.safetensors",
23
+ "h.1.attn.c_proj.weight": "model-00001-of-00002.safetensors",
24
+ "h.1.ln_1.bias": "model-00001-of-00002.safetensors",
25
+ "h.1.ln_1.weight": "model-00001-of-00002.safetensors",
26
+ "h.1.ln_2.bias": "model-00001-of-00002.safetensors",
27
+ "h.1.ln_2.weight": "model-00001-of-00002.safetensors",
28
+ "h.1.mlp.c_fc.bias": "model-00001-of-00002.safetensors",
29
+ "h.1.mlp.c_fc.weight": "model-00001-of-00002.safetensors",
30
+ "h.1.mlp.c_fc2.bias": "model-00001-of-00002.safetensors",
31
+ "h.1.mlp.c_fc2.weight": "model-00001-of-00002.safetensors",
32
+ "h.1.mlp.c_proj.bias": "model-00001-of-00002.safetensors",
33
+ "h.1.mlp.c_proj.weight": "model-00001-of-00002.safetensors",
34
+ "h.10.attn.c_attn.bias": "model-00001-of-00002.safetensors",
35
+ "h.10.attn.c_attn.weight": "model-00001-of-00002.safetensors",
36
+ "h.10.attn.c_proj.bias": "model-00001-of-00002.safetensors",
37
+ "h.10.attn.c_proj.weight": "model-00001-of-00002.safetensors",
38
+ "h.10.ln_1.bias": "model-00001-of-00002.safetensors",
39
+ "h.10.ln_1.weight": "model-00001-of-00002.safetensors",
40
+ "h.10.ln_2.bias": "model-00001-of-00002.safetensors",
41
+ "h.10.ln_2.weight": "model-00001-of-00002.safetensors",
42
+ "h.10.mlp.c_fc.bias": "model-00001-of-00002.safetensors",
43
+ "h.10.mlp.c_fc.weight": "model-00001-of-00002.safetensors",
44
+ "h.10.mlp.c_fc2.bias": "model-00001-of-00002.safetensors",
45
+ "h.10.mlp.c_fc2.weight": "model-00001-of-00002.safetensors",
46
+ "h.10.mlp.c_proj.bias": "model-00001-of-00002.safetensors",
47
+ "h.10.mlp.c_proj.weight": "model-00001-of-00002.safetensors",
48
+ "h.11.attn.c_attn.bias": "model-00001-of-00002.safetensors",
49
+ "h.11.attn.c_attn.weight": "model-00001-of-00002.safetensors",
50
+ "h.11.attn.c_proj.bias": "model-00001-of-00002.safetensors",
51
+ "h.11.attn.c_proj.weight": "model-00001-of-00002.safetensors",
52
+ "h.11.ln_1.bias": "model-00001-of-00002.safetensors",
53
+ "h.11.ln_1.weight": "model-00001-of-00002.safetensors",
54
+ "h.11.ln_2.bias": "model-00001-of-00002.safetensors",
55
+ "h.11.ln_2.weight": "model-00001-of-00002.safetensors",
56
+ "h.11.mlp.c_fc.bias": "model-00001-of-00002.safetensors",
57
+ "h.11.mlp.c_fc.weight": "model-00001-of-00002.safetensors",
58
+ "h.11.mlp.c_fc2.bias": "model-00001-of-00002.safetensors",
59
+ "h.11.mlp.c_fc2.weight": "model-00001-of-00002.safetensors",
60
+ "h.11.mlp.c_proj.bias": "model-00001-of-00002.safetensors",
61
+ "h.11.mlp.c_proj.weight": "model-00001-of-00002.safetensors",
62
+ "h.12.attn.c_attn.bias": "model-00001-of-00002.safetensors",
63
+ "h.12.attn.c_attn.weight": "model-00001-of-00002.safetensors",
64
+ "h.12.attn.c_proj.bias": "model-00001-of-00002.safetensors",
65
+ "h.12.attn.c_proj.weight": "model-00001-of-00002.safetensors",
66
+ "h.12.ln_1.bias": "model-00001-of-00002.safetensors",
67
+ "h.12.ln_1.weight": "model-00001-of-00002.safetensors",
68
+ "h.12.ln_2.bias": "model-00001-of-00002.safetensors",
69
+ "h.12.ln_2.weight": "model-00001-of-00002.safetensors",
70
+ "h.12.mlp.c_fc.bias": "model-00001-of-00002.safetensors",
71
+ "h.12.mlp.c_fc.weight": "model-00001-of-00002.safetensors",
72
+ "h.12.mlp.c_fc2.bias": "model-00001-of-00002.safetensors",
73
+ "h.12.mlp.c_fc2.weight": "model-00001-of-00002.safetensors",
74
+ "h.12.mlp.c_proj.bias": "model-00001-of-00002.safetensors",
75
+ "h.12.mlp.c_proj.weight": "model-00001-of-00002.safetensors",
76
+ "h.13.attn.c_attn.bias": "model-00001-of-00002.safetensors",
77
+ "h.13.attn.c_attn.weight": "model-00001-of-00002.safetensors",
78
+ "h.13.attn.c_proj.bias": "model-00001-of-00002.safetensors",
79
+ "h.13.attn.c_proj.weight": "model-00001-of-00002.safetensors",
80
+ "h.13.ln_1.bias": "model-00001-of-00002.safetensors",
81
+ "h.13.ln_1.weight": "model-00001-of-00002.safetensors",
82
+ "h.13.ln_2.bias": "model-00001-of-00002.safetensors",
83
+ "h.13.ln_2.weight": "model-00001-of-00002.safetensors",
84
+ "h.13.mlp.c_fc.bias": "model-00001-of-00002.safetensors",
85
+ "h.13.mlp.c_fc.weight": "model-00001-of-00002.safetensors",
86
+ "h.13.mlp.c_fc2.bias": "model-00001-of-00002.safetensors",
87
+ "h.13.mlp.c_fc2.weight": "model-00001-of-00002.safetensors",
88
+ "h.13.mlp.c_proj.bias": "model-00001-of-00002.safetensors",
89
+ "h.13.mlp.c_proj.weight": "model-00001-of-00002.safetensors",
90
+ "h.14.attn.c_attn.bias": "model-00001-of-00002.safetensors",
91
+ "h.14.attn.c_attn.weight": "model-00001-of-00002.safetensors",
92
+ "h.14.attn.c_proj.bias": "model-00001-of-00002.safetensors",
93
+ "h.14.attn.c_proj.weight": "model-00001-of-00002.safetensors",
94
+ "h.14.ln_1.bias": "model-00001-of-00002.safetensors",
95
+ "h.14.ln_1.weight": "model-00001-of-00002.safetensors",
96
+ "h.14.ln_2.bias": "model-00001-of-00002.safetensors",
97
+ "h.14.ln_2.weight": "model-00001-of-00002.safetensors",
98
+ "h.14.mlp.c_fc.bias": "model-00001-of-00002.safetensors",
99
+ "h.14.mlp.c_fc.weight": "model-00001-of-00002.safetensors",
100
+ "h.14.mlp.c_fc2.bias": "model-00001-of-00002.safetensors",
101
+ "h.14.mlp.c_fc2.weight": "model-00001-of-00002.safetensors",
102
+ "h.14.mlp.c_proj.bias": "model-00001-of-00002.safetensors",
103
+ "h.14.mlp.c_proj.weight": "model-00001-of-00002.safetensors",
104
+ "h.15.attn.c_attn.bias": "model-00001-of-00002.safetensors",
105
+ "h.15.attn.c_attn.weight": "model-00001-of-00002.safetensors",
106
+ "h.15.attn.c_proj.bias": "model-00001-of-00002.safetensors",
107
+ "h.15.attn.c_proj.weight": "model-00001-of-00002.safetensors",
108
+ "h.15.ln_1.bias": "model-00001-of-00002.safetensors",
109
+ "h.15.ln_1.weight": "model-00001-of-00002.safetensors",
110
+ "h.15.ln_2.bias": "model-00001-of-00002.safetensors",
111
+ "h.15.ln_2.weight": "model-00001-of-00002.safetensors",
112
+ "h.15.mlp.c_fc.bias": "model-00001-of-00002.safetensors",
113
+ "h.15.mlp.c_fc.weight": "model-00001-of-00002.safetensors",
114
+ "h.15.mlp.c_fc2.bias": "model-00001-of-00002.safetensors",
115
+ "h.15.mlp.c_fc2.weight": "model-00001-of-00002.safetensors",
116
+ "h.15.mlp.c_proj.bias": "model-00001-of-00002.safetensors",
117
+ "h.15.mlp.c_proj.weight": "model-00001-of-00002.safetensors",
118
+ "h.16.attn.c_attn.bias": "model-00001-of-00002.safetensors",
119
+ "h.16.attn.c_attn.weight": "model-00001-of-00002.safetensors",
120
+ "h.16.attn.c_proj.bias": "model-00001-of-00002.safetensors",
121
+ "h.16.attn.c_proj.weight": "model-00001-of-00002.safetensors",
122
+ "h.16.ln_1.bias": "model-00001-of-00002.safetensors",
123
+ "h.16.ln_1.weight": "model-00001-of-00002.safetensors",
124
+ "h.16.ln_2.bias": "model-00001-of-00002.safetensors",
125
+ "h.16.ln_2.weight": "model-00001-of-00002.safetensors",
126
+ "h.16.mlp.c_fc.bias": "model-00001-of-00002.safetensors",
127
+ "h.16.mlp.c_fc.weight": "model-00001-of-00002.safetensors",
128
+ "h.16.mlp.c_fc2.bias": "model-00001-of-00002.safetensors",
129
+ "h.16.mlp.c_fc2.weight": "model-00001-of-00002.safetensors",
130
+ "h.16.mlp.c_proj.bias": "model-00001-of-00002.safetensors",
131
+ "h.16.mlp.c_proj.weight": "model-00001-of-00002.safetensors",
132
+ "h.17.attn.c_attn.bias": "model-00001-of-00002.safetensors",
133
+ "h.17.attn.c_attn.weight": "model-00001-of-00002.safetensors",
134
+ "h.17.attn.c_proj.bias": "model-00001-of-00002.safetensors",
135
+ "h.17.attn.c_proj.weight": "model-00001-of-00002.safetensors",
136
+ "h.17.ln_1.bias": "model-00001-of-00002.safetensors",
137
+ "h.17.ln_1.weight": "model-00001-of-00002.safetensors",
138
+ "h.17.ln_2.bias": "model-00001-of-00002.safetensors",
139
+ "h.17.ln_2.weight": "model-00001-of-00002.safetensors",
140
+ "h.17.mlp.c_fc.bias": "model-00001-of-00002.safetensors",
141
+ "h.17.mlp.c_fc.weight": "model-00001-of-00002.safetensors",
142
+ "h.17.mlp.c_fc2.bias": "model-00001-of-00002.safetensors",
143
+ "h.17.mlp.c_fc2.weight": "model-00001-of-00002.safetensors",
144
+ "h.17.mlp.c_proj.bias": "model-00001-of-00002.safetensors",
145
+ "h.17.mlp.c_proj.weight": "model-00001-of-00002.safetensors",
146
+ "h.18.attn.c_attn.bias": "model-00001-of-00002.safetensors",
147
+ "h.18.attn.c_attn.weight": "model-00001-of-00002.safetensors",
148
+ "h.18.attn.c_proj.bias": "model-00001-of-00002.safetensors",
149
+ "h.18.attn.c_proj.weight": "model-00001-of-00002.safetensors",
150
+ "h.18.ln_1.bias": "model-00001-of-00002.safetensors",
151
+ "h.18.ln_1.weight": "model-00001-of-00002.safetensors",
152
+ "h.18.ln_2.bias": "model-00001-of-00002.safetensors",
153
+ "h.18.ln_2.weight": "model-00001-of-00002.safetensors",
154
+ "h.18.mlp.c_fc.bias": "model-00001-of-00002.safetensors",
155
+ "h.18.mlp.c_fc.weight": "model-00001-of-00002.safetensors",
156
+ "h.18.mlp.c_fc2.bias": "model-00001-of-00002.safetensors",
157
+ "h.18.mlp.c_fc2.weight": "model-00001-of-00002.safetensors",
158
+ "h.18.mlp.c_proj.bias": "model-00001-of-00002.safetensors",
159
+ "h.18.mlp.c_proj.weight": "model-00001-of-00002.safetensors",
160
+ "h.19.attn.c_attn.bias": "model-00001-of-00002.safetensors",
161
+ "h.19.attn.c_attn.weight": "model-00001-of-00002.safetensors",
162
+ "h.19.attn.c_proj.bias": "model-00001-of-00002.safetensors",
163
+ "h.19.attn.c_proj.weight": "model-00001-of-00002.safetensors",
164
+ "h.19.ln_1.bias": "model-00001-of-00002.safetensors",
165
+ "h.19.ln_1.weight": "model-00001-of-00002.safetensors",
166
+ "h.19.ln_2.bias": "model-00001-of-00002.safetensors",
167
+ "h.19.ln_2.weight": "model-00001-of-00002.safetensors",
168
+ "h.19.mlp.c_fc.bias": "model-00001-of-00002.safetensors",
169
+ "h.19.mlp.c_fc.weight": "model-00001-of-00002.safetensors",
170
+ "h.19.mlp.c_fc2.bias": "model-00001-of-00002.safetensors",
171
+ "h.19.mlp.c_fc2.weight": "model-00001-of-00002.safetensors",
172
+ "h.19.mlp.c_proj.bias": "model-00001-of-00002.safetensors",
173
+ "h.19.mlp.c_proj.weight": "model-00001-of-00002.safetensors",
174
+ "h.2.attn.c_attn.bias": "model-00001-of-00002.safetensors",
175
+ "h.2.attn.c_attn.weight": "model-00001-of-00002.safetensors",
176
+ "h.2.attn.c_proj.bias": "model-00001-of-00002.safetensors",
177
+ "h.2.attn.c_proj.weight": "model-00001-of-00002.safetensors",
178
+ "h.2.ln_1.bias": "model-00001-of-00002.safetensors",
179
+ "h.2.ln_1.weight": "model-00001-of-00002.safetensors",
180
+ "h.2.ln_2.bias": "model-00001-of-00002.safetensors",
181
+ "h.2.ln_2.weight": "model-00001-of-00002.safetensors",
182
+ "h.2.mlp.c_fc.bias": "model-00001-of-00002.safetensors",
183
+ "h.2.mlp.c_fc.weight": "model-00001-of-00002.safetensors",
184
+ "h.2.mlp.c_fc2.bias": "model-00001-of-00002.safetensors",
185
+ "h.2.mlp.c_fc2.weight": "model-00001-of-00002.safetensors",
186
+ "h.2.mlp.c_proj.bias": "model-00001-of-00002.safetensors",
187
+ "h.2.mlp.c_proj.weight": "model-00001-of-00002.safetensors",
188
+ "h.20.attn.c_attn.bias": "model-00001-of-00002.safetensors",
189
+ "h.20.attn.c_attn.weight": "model-00001-of-00002.safetensors",
190
+ "h.20.attn.c_proj.bias": "model-00001-of-00002.safetensors",
191
+ "h.20.attn.c_proj.weight": "model-00001-of-00002.safetensors",
192
+ "h.20.ln_1.bias": "model-00001-of-00002.safetensors",
193
+ "h.20.ln_1.weight": "model-00001-of-00002.safetensors",
194
+ "h.20.ln_2.bias": "model-00001-of-00002.safetensors",
195
+ "h.20.ln_2.weight": "model-00001-of-00002.safetensors",
196
+ "h.20.mlp.c_fc.bias": "model-00001-of-00002.safetensors",
197
+ "h.20.mlp.c_fc.weight": "model-00001-of-00002.safetensors",
198
+ "h.20.mlp.c_fc2.bias": "model-00001-of-00002.safetensors",
199
+ "h.20.mlp.c_fc2.weight": "model-00001-of-00002.safetensors",
200
+ "h.20.mlp.c_proj.bias": "model-00001-of-00002.safetensors",
201
+ "h.20.mlp.c_proj.weight": "model-00001-of-00002.safetensors",
202
+ "h.21.attn.c_attn.bias": "model-00001-of-00002.safetensors",
203
+ "h.21.attn.c_attn.weight": "model-00001-of-00002.safetensors",
204
+ "h.21.attn.c_proj.bias": "model-00001-of-00002.safetensors",
205
+ "h.21.attn.c_proj.weight": "model-00001-of-00002.safetensors",
206
+ "h.21.ln_1.bias": "model-00001-of-00002.safetensors",
207
+ "h.21.ln_1.weight": "model-00001-of-00002.safetensors",
208
+ "h.21.ln_2.bias": "model-00001-of-00002.safetensors",
209
+ "h.21.ln_2.weight": "model-00001-of-00002.safetensors",
210
+ "h.21.mlp.c_fc.bias": "model-00002-of-00002.safetensors",
211
+ "h.21.mlp.c_fc.weight": "model-00002-of-00002.safetensors",
212
+ "h.21.mlp.c_fc2.bias": "model-00002-of-00002.safetensors",
213
+ "h.21.mlp.c_fc2.weight": "model-00002-of-00002.safetensors",
214
+ "h.21.mlp.c_proj.bias": "model-00002-of-00002.safetensors",
215
+ "h.21.mlp.c_proj.weight": "model-00002-of-00002.safetensors",
216
+ "h.22.attn.c_attn.bias": "model-00002-of-00002.safetensors",
217
+ "h.22.attn.c_attn.weight": "model-00002-of-00002.safetensors",
218
+ "h.22.attn.c_proj.bias": "model-00002-of-00002.safetensors",
219
+ "h.22.attn.c_proj.weight": "model-00002-of-00002.safetensors",
220
+ "h.22.ln_1.bias": "model-00002-of-00002.safetensors",
221
+ "h.22.ln_1.weight": "model-00002-of-00002.safetensors",
222
+ "h.22.ln_2.bias": "model-00002-of-00002.safetensors",
223
+ "h.22.ln_2.weight": "model-00002-of-00002.safetensors",
224
+ "h.22.mlp.c_fc.bias": "model-00002-of-00002.safetensors",
225
+ "h.22.mlp.c_fc.weight": "model-00002-of-00002.safetensors",
226
+ "h.22.mlp.c_fc2.bias": "model-00002-of-00002.safetensors",
227
+ "h.22.mlp.c_fc2.weight": "model-00002-of-00002.safetensors",
228
+ "h.22.mlp.c_proj.bias": "model-00002-of-00002.safetensors",
229
+ "h.22.mlp.c_proj.weight": "model-00002-of-00002.safetensors",
230
+ "h.23.attn.c_attn.bias": "model-00002-of-00002.safetensors",
231
+ "h.23.attn.c_attn.weight": "model-00002-of-00002.safetensors",
232
+ "h.23.attn.c_proj.bias": "model-00002-of-00002.safetensors",
233
+ "h.23.attn.c_proj.weight": "model-00002-of-00002.safetensors",
234
+ "h.23.ln_1.bias": "model-00002-of-00002.safetensors",
235
+ "h.23.ln_1.weight": "model-00002-of-00002.safetensors",
236
+ "h.23.ln_2.bias": "model-00002-of-00002.safetensors",
237
+ "h.23.ln_2.weight": "model-00002-of-00002.safetensors",
238
+ "h.23.mlp.c_fc.bias": "model-00002-of-00002.safetensors",
239
+ "h.23.mlp.c_fc.weight": "model-00002-of-00002.safetensors",
240
+ "h.23.mlp.c_fc2.bias": "model-00002-of-00002.safetensors",
241
+ "h.23.mlp.c_fc2.weight": "model-00002-of-00002.safetensors",
242
+ "h.23.mlp.c_proj.bias": "model-00002-of-00002.safetensors",
243
+ "h.23.mlp.c_proj.weight": "model-00002-of-00002.safetensors",
244
+ "h.3.attn.c_attn.bias": "model-00001-of-00002.safetensors",
245
+ "h.3.attn.c_attn.weight": "model-00001-of-00002.safetensors",
246
+ "h.3.attn.c_proj.bias": "model-00001-of-00002.safetensors",
247
+ "h.3.attn.c_proj.weight": "model-00001-of-00002.safetensors",
248
+ "h.3.ln_1.bias": "model-00001-of-00002.safetensors",
249
+ "h.3.ln_1.weight": "model-00001-of-00002.safetensors",
250
+ "h.3.ln_2.bias": "model-00001-of-00002.safetensors",
251
+ "h.3.ln_2.weight": "model-00001-of-00002.safetensors",
252
+ "h.3.mlp.c_fc.bias": "model-00001-of-00002.safetensors",
253
+ "h.3.mlp.c_fc.weight": "model-00001-of-00002.safetensors",
254
+ "h.3.mlp.c_fc2.bias": "model-00001-of-00002.safetensors",
255
+ "h.3.mlp.c_fc2.weight": "model-00001-of-00002.safetensors",
256
+ "h.3.mlp.c_proj.bias": "model-00001-of-00002.safetensors",
257
+ "h.3.mlp.c_proj.weight": "model-00001-of-00002.safetensors",
258
+ "h.4.attn.c_attn.bias": "model-00001-of-00002.safetensors",
259
+ "h.4.attn.c_attn.weight": "model-00001-of-00002.safetensors",
260
+ "h.4.attn.c_proj.bias": "model-00001-of-00002.safetensors",
261
+ "h.4.attn.c_proj.weight": "model-00001-of-00002.safetensors",
262
+ "h.4.ln_1.bias": "model-00001-of-00002.safetensors",
263
+ "h.4.ln_1.weight": "model-00001-of-00002.safetensors",
264
+ "h.4.ln_2.bias": "model-00001-of-00002.safetensors",
265
+ "h.4.ln_2.weight": "model-00001-of-00002.safetensors",
266
+ "h.4.mlp.c_fc.bias": "model-00001-of-00002.safetensors",
267
+ "h.4.mlp.c_fc.weight": "model-00001-of-00002.safetensors",
268
+ "h.4.mlp.c_fc2.bias": "model-00001-of-00002.safetensors",
269
+ "h.4.mlp.c_fc2.weight": "model-00001-of-00002.safetensors",
270
+ "h.4.mlp.c_proj.bias": "model-00001-of-00002.safetensors",
271
+ "h.4.mlp.c_proj.weight": "model-00001-of-00002.safetensors",
272
+ "h.5.attn.c_attn.bias": "model-00001-of-00002.safetensors",
273
+ "h.5.attn.c_attn.weight": "model-00001-of-00002.safetensors",
274
+ "h.5.attn.c_proj.bias": "model-00001-of-00002.safetensors",
275
+ "h.5.attn.c_proj.weight": "model-00001-of-00002.safetensors",
276
+ "h.5.ln_1.bias": "model-00001-of-00002.safetensors",
277
+ "h.5.ln_1.weight": "model-00001-of-00002.safetensors",
278
+ "h.5.ln_2.bias": "model-00001-of-00002.safetensors",
279
+ "h.5.ln_2.weight": "model-00001-of-00002.safetensors",
280
+ "h.5.mlp.c_fc.bias": "model-00001-of-00002.safetensors",
281
+ "h.5.mlp.c_fc.weight": "model-00001-of-00002.safetensors",
282
+ "h.5.mlp.c_fc2.bias": "model-00001-of-00002.safetensors",
283
+ "h.5.mlp.c_fc2.weight": "model-00001-of-00002.safetensors",
284
+ "h.5.mlp.c_proj.bias": "model-00001-of-00002.safetensors",
285
+ "h.5.mlp.c_proj.weight": "model-00001-of-00002.safetensors",
286
+ "h.6.attn.c_attn.bias": "model-00001-of-00002.safetensors",
287
+ "h.6.attn.c_attn.weight": "model-00001-of-00002.safetensors",
288
+ "h.6.attn.c_proj.bias": "model-00001-of-00002.safetensors",
289
+ "h.6.attn.c_proj.weight": "model-00001-of-00002.safetensors",
290
+ "h.6.ln_1.bias": "model-00001-of-00002.safetensors",
291
+ "h.6.ln_1.weight": "model-00001-of-00002.safetensors",
292
+ "h.6.ln_2.bias": "model-00001-of-00002.safetensors",
293
+ "h.6.ln_2.weight": "model-00001-of-00002.safetensors",
294
+ "h.6.mlp.c_fc.bias": "model-00001-of-00002.safetensors",
295
+ "h.6.mlp.c_fc.weight": "model-00001-of-00002.safetensors",
296
+ "h.6.mlp.c_fc2.bias": "model-00001-of-00002.safetensors",
297
+ "h.6.mlp.c_fc2.weight": "model-00001-of-00002.safetensors",
298
+ "h.6.mlp.c_proj.bias": "model-00001-of-00002.safetensors",
299
+ "h.6.mlp.c_proj.weight": "model-00001-of-00002.safetensors",
300
+ "h.7.attn.c_attn.bias": "model-00001-of-00002.safetensors",
301
+ "h.7.attn.c_attn.weight": "model-00001-of-00002.safetensors",
302
+ "h.7.attn.c_proj.bias": "model-00001-of-00002.safetensors",
303
+ "h.7.attn.c_proj.weight": "model-00001-of-00002.safetensors",
304
+ "h.7.ln_1.bias": "model-00001-of-00002.safetensors",
305
+ "h.7.ln_1.weight": "model-00001-of-00002.safetensors",
306
+ "h.7.ln_2.bias": "model-00001-of-00002.safetensors",
307
+ "h.7.ln_2.weight": "model-00001-of-00002.safetensors",
308
+ "h.7.mlp.c_fc.bias": "model-00001-of-00002.safetensors",
309
+ "h.7.mlp.c_fc.weight": "model-00001-of-00002.safetensors",
310
+ "h.7.mlp.c_fc2.bias": "model-00001-of-00002.safetensors",
311
+ "h.7.mlp.c_fc2.weight": "model-00001-of-00002.safetensors",
312
+ "h.7.mlp.c_proj.bias": "model-00001-of-00002.safetensors",
313
+ "h.7.mlp.c_proj.weight": "model-00001-of-00002.safetensors",
314
+ "h.8.attn.c_attn.bias": "model-00001-of-00002.safetensors",
315
+ "h.8.attn.c_attn.weight": "model-00001-of-00002.safetensors",
316
+ "h.8.attn.c_proj.bias": "model-00001-of-00002.safetensors",
317
+ "h.8.attn.c_proj.weight": "model-00001-of-00002.safetensors",
318
+ "h.8.ln_1.bias": "model-00001-of-00002.safetensors",
319
+ "h.8.ln_1.weight": "model-00001-of-00002.safetensors",
320
+ "h.8.ln_2.bias": "model-00001-of-00002.safetensors",
321
+ "h.8.ln_2.weight": "model-00001-of-00002.safetensors",
322
+ "h.8.mlp.c_fc.bias": "model-00001-of-00002.safetensors",
323
+ "h.8.mlp.c_fc.weight": "model-00001-of-00002.safetensors",
324
+ "h.8.mlp.c_fc2.bias": "model-00001-of-00002.safetensors",
325
+ "h.8.mlp.c_fc2.weight": "model-00001-of-00002.safetensors",
326
+ "h.8.mlp.c_proj.bias": "model-00001-of-00002.safetensors",
327
+ "h.8.mlp.c_proj.weight": "model-00001-of-00002.safetensors",
328
+ "h.9.attn.c_attn.bias": "model-00001-of-00002.safetensors",
329
+ "h.9.attn.c_attn.weight": "model-00001-of-00002.safetensors",
330
+ "h.9.attn.c_proj.bias": "model-00001-of-00002.safetensors",
331
+ "h.9.attn.c_proj.weight": "model-00001-of-00002.safetensors",
332
+ "h.9.ln_1.bias": "model-00001-of-00002.safetensors",
333
+ "h.9.ln_1.weight": "model-00001-of-00002.safetensors",
334
+ "h.9.ln_2.bias": "model-00001-of-00002.safetensors",
335
+ "h.9.ln_2.weight": "model-00001-of-00002.safetensors",
336
+ "h.9.mlp.c_fc.bias": "model-00001-of-00002.safetensors",
337
+ "h.9.mlp.c_fc.weight": "model-00001-of-00002.safetensors",
338
+ "h.9.mlp.c_fc2.bias": "model-00001-of-00002.safetensors",
339
+ "h.9.mlp.c_fc2.weight": "model-00001-of-00002.safetensors",
340
+ "h.9.mlp.c_proj.bias": "model-00001-of-00002.safetensors",
341
+ "h.9.mlp.c_proj.weight": "model-00001-of-00002.safetensors",
342
+ "ln_f.bias": "model-00002-of-00002.safetensors",
343
+ "ln_f.weight": "model-00002-of-00002.safetensors",
344
+ "relative_pe.slopes": "model-00002-of-00002.safetensors",
345
+ "wte.weight": "model-00001-of-00002.safetensors"
346
+ }
347
+ }