Upload model
Browse files- README.md +199 -0
- config.json +43 -0
- configuration_jais.py +196 -0
- model-00001-of-00002.safetensors +3 -0
- model-00002-of-00002.safetensors +3 -0
- model.safetensors.index.json +347 -0
README.md
ADDED
@@ -0,0 +1,199 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
tags: []
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
config.json
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "/content/jais-arabic-math-tutor",
|
3 |
+
"activation_function": "swiglu",
|
4 |
+
"alibi_scaling": null,
|
5 |
+
"architectures": [
|
6 |
+
"JAISModel"
|
7 |
+
],
|
8 |
+
"attn_pdrop": 0.0,
|
9 |
+
"auto_map": {
|
10 |
+
"AutoConfig": "configuration_jais.JAISConfig",
|
11 |
+
"AutoModel": "inceptionai/jais-family-1p3b-chat--modeling_jais.JAISModel",
|
12 |
+
"AutoModelForCausalLM": "inceptionai/jais-family-1p3b-chat--modeling_jais.JAISLMHeadModel",
|
13 |
+
"AutoModelForQuestionAnswering": "inceptionai/jais-family-1p3b-chat--modeling_jais.JAISForQuestionAnswering",
|
14 |
+
"AutoModelForSequenceClassification": "inceptionai/jais-family-1p3b-chat--modeling_jais.JAISForSequenceClassification",
|
15 |
+
"AutoModelForTokenClassification": "inceptionai/jais-family-1p3b-chat--modeling_jais.JAISForTokenClassification"
|
16 |
+
},
|
17 |
+
"bos_token_id": 0,
|
18 |
+
"embd_pdrop": 0.0,
|
19 |
+
"eos_token_id": 0,
|
20 |
+
"initializer_range": 0.02,
|
21 |
+
"layer_norm_epsilon": 1e-05,
|
22 |
+
"model_type": "jais",
|
23 |
+
"mup_embeddings_scale": 9.1705785388303,
|
24 |
+
"mup_output_alpha": 1.09518349815769,
|
25 |
+
"mup_scale_qk_dot_by_d": true,
|
26 |
+
"mup_width_scale": 0.125,
|
27 |
+
"n_embd": 2048,
|
28 |
+
"n_head": 16,
|
29 |
+
"n_inner": 5472,
|
30 |
+
"n_layer": 24,
|
31 |
+
"n_positions": 2048,
|
32 |
+
"pad_token_id": 0,
|
33 |
+
"position_embedding_type": "alibi",
|
34 |
+
"reorder_and_upcast_attn": false,
|
35 |
+
"resid_pdrop": 0.0,
|
36 |
+
"rotary_dim": null,
|
37 |
+
"scale_attn_by_inverse_layer_idx": false,
|
38 |
+
"scale_attn_weights": true,
|
39 |
+
"torch_dtype": "float32",
|
40 |
+
"transformers_version": "4.49.0",
|
41 |
+
"use_cache": true,
|
42 |
+
"vocab_size": 84992
|
43 |
+
}
|
configuration_jais.py
ADDED
@@ -0,0 +1,196 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 The OpenAI Team Authors and HuggingFace Inc. team.
|
3 |
+
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
4 |
+
# Copyright 2023 Cerebras Systems.
|
5 |
+
#
|
6 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
7 |
+
# you may not use this file except in compliance with the License.
|
8 |
+
# You may obtain a copy of the License at
|
9 |
+
#
|
10 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
11 |
+
#
|
12 |
+
# Unless required by applicable law or agreed to in writing, software
|
13 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
14 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
15 |
+
# See the License for the specific language governing permissions and
|
16 |
+
# limitations under the License.
|
17 |
+
""" JAIS configuration"""
|
18 |
+
|
19 |
+
from transformers.configuration_utils import PretrainedConfig
|
20 |
+
from transformers.utils import logging
|
21 |
+
|
22 |
+
|
23 |
+
logger = logging.get_logger(__name__)
|
24 |
+
|
25 |
+
class JAISConfig(PretrainedConfig):
|
26 |
+
"""
|
27 |
+
This is the configuration class to store the configuration of a [`JAISModel`]. It is used to instantiate a JAIS
|
28 |
+
model according to the specified arguments, defining the model architecture.
|
29 |
+
|
30 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
31 |
+
documentation from [`PretrainedConfig`] for more information.
|
32 |
+
|
33 |
+
|
34 |
+
Args:
|
35 |
+
vocab_size (`int`, *optional*, defaults to 50257):
|
36 |
+
Vocabulary size of the JAIS model. Defines the number of different tokens that can be represented by the
|
37 |
+
`inputs_ids` passed when calling [`JAISModel`].
|
38 |
+
n_positions (`int`, *optional*, defaults to 1024):
|
39 |
+
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
40 |
+
just in case (e.g., 512 or 1024 or 2048).
|
41 |
+
n_embd (`int`, *optional*, defaults to 768):
|
42 |
+
Dimensionality of the embeddings and hidden states.
|
43 |
+
n_layer (`int`, *optional*, defaults to 12):
|
44 |
+
Number of hidden layers in the Transformer encoder.
|
45 |
+
n_head (`int`, *optional*, defaults to 12):
|
46 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
47 |
+
n_inner (`int`, *optional*, defaults to None):
|
48 |
+
Dimensionality of the inner feed-forward layers. `None` will set it to 4 times n_embd
|
49 |
+
activation_function (`str`, *optional*, defaults to `"gelu"`):
|
50 |
+
Activation function, to be selected in the list `["relu", "silu", "gelu", "tanh", "gelu_new", "swiglu"]`.
|
51 |
+
resid_pdrop (`float`, *optional*, defaults to 0.1):
|
52 |
+
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
53 |
+
embd_pdrop (`float`, *optional*, defaults to 0.1):
|
54 |
+
The dropout ratio for the embeddings.
|
55 |
+
attn_pdrop (`float`, *optional*, defaults to 0.1):
|
56 |
+
The dropout ratio for the attention.
|
57 |
+
layer_norm_epsilon (`float`, *optional*, defaults to 1e-5):
|
58 |
+
The epsilon to use in the layer normalization layers.
|
59 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
60 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
61 |
+
scale_attn_weights (`bool`, *optional*, defaults to `True`):
|
62 |
+
Scale attention weights by dividing by sqrt(hidden_size)..
|
63 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
64 |
+
Whether or not the model should return the last key/values attentions (not used by all models).
|
65 |
+
scale_attn_by_inverse_layer_idx (`bool`, *optional*, defaults to `False`):
|
66 |
+
Whether to additionally scale attention weights by `1 / layer_idx + 1`.
|
67 |
+
reorder_and_upcast_attn (`bool`, *optional*, defaults to `False`):
|
68 |
+
Whether to scale keys (K) prior to computing attention (dot-product) and upcast attention
|
69 |
+
dot-product/softmax to float() when training with mixed precision.
|
70 |
+
position_embedding_type (`str`, *optional*, defaults to `"learned"`):
|
71 |
+
Positional embedding can be either `"alibi"` or `"learned"`.
|
72 |
+
mup_width_scale (`float`, *optional*, defaults to 1.0):
|
73 |
+
muP parameter to scale learning rate and initializers. Calculated as (`d_model,0 / d_model`), where
|
74 |
+
`d_model` is the model's width and `d_model,0` is the proxy model's width.
|
75 |
+
mup_embeddings_scale (`float`, *optional*, defaults to 1.0):
|
76 |
+
muP parameter to scale token and position embeddings.
|
77 |
+
mup_output_alpha (`float`, *optional*, defaults to 1.0):
|
78 |
+
muP parameter to scale output logits (`output_logits_scale = mup_output_alpha * mup_width_scale`).
|
79 |
+
mup_scale_qk_dot_by_d (`bool`, *optional*, defaults to `False`):
|
80 |
+
Scale attention weights by dividing by hidden_size instead of sqrt(hidden_size). Need to set
|
81 |
+
scale_attn_weights to `True` as well.
|
82 |
+
alibi_scaling (`Dict`, *optional*):
|
83 |
+
Dictionary containing the scaling configuration for ALiBi embeddings. Currently only supports linear
|
84 |
+
scaling strategy. Can specify either the scaling `factor` (must be a float greater than 1) for fixed scaling
|
85 |
+
or `train_seq_len` for dynamic scaling on input samples with sequence length > `train_seq_len`. The expected
|
86 |
+
formats are `{"type": strategy name, "factor": scaling factor}` or
|
87 |
+
`{"type": strategy name, "train_seq_len": training sequence length}`.
|
88 |
+
|
89 |
+
Example:
|
90 |
+
|
91 |
+
```python
|
92 |
+
>>> from transformers import JAISConfig, JAISModel
|
93 |
+
|
94 |
+
>>> # Initializing a JAIS configuration
|
95 |
+
>>> configuration = JAISConfig()
|
96 |
+
|
97 |
+
>>> # Initializing a model (with random weights) from the configuration
|
98 |
+
>>> model = JAISModel(configuration)
|
99 |
+
|
100 |
+
>>> # Accessing the model configuration
|
101 |
+
>>> configuration = model.config
|
102 |
+
```"""
|
103 |
+
|
104 |
+
model_type = "jais"
|
105 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
106 |
+
attribute_map = {
|
107 |
+
"hidden_size": "n_embd",
|
108 |
+
"max_position_embeddings": "n_positions",
|
109 |
+
"num_attention_heads": "n_head",
|
110 |
+
"num_hidden_layers": "n_layer",
|
111 |
+
}
|
112 |
+
|
113 |
+
def __init__(
|
114 |
+
self,
|
115 |
+
vocab_size=50257,
|
116 |
+
n_positions=1024,
|
117 |
+
n_embd=768,
|
118 |
+
n_layer=12,
|
119 |
+
n_head=12,
|
120 |
+
n_inner=None,
|
121 |
+
activation_function="gelu_new",
|
122 |
+
resid_pdrop=0.1,
|
123 |
+
embd_pdrop=0.1,
|
124 |
+
attn_pdrop=0.1,
|
125 |
+
layer_norm_epsilon=1e-5,
|
126 |
+
initializer_range=0.02,
|
127 |
+
scale_attn_weights=True,
|
128 |
+
use_cache=True,
|
129 |
+
bos_token_id=50256,
|
130 |
+
eos_token_id=50256,
|
131 |
+
scale_attn_by_inverse_layer_idx=False,
|
132 |
+
reorder_and_upcast_attn=False,
|
133 |
+
position_embedding_type="learned",
|
134 |
+
mup_width_scale=1.0,
|
135 |
+
mup_embeddings_scale=1.0,
|
136 |
+
mup_output_alpha=1.0,
|
137 |
+
mup_scale_qk_dot_by_d=False,
|
138 |
+
alibi_scaling=None,
|
139 |
+
**kwargs,
|
140 |
+
):
|
141 |
+
self.vocab_size = vocab_size
|
142 |
+
self.n_positions = n_positions
|
143 |
+
self.n_embd = n_embd
|
144 |
+
self.n_layer = n_layer
|
145 |
+
self.n_head = n_head
|
146 |
+
self.n_inner = n_inner
|
147 |
+
self.activation_function = activation_function
|
148 |
+
self.resid_pdrop = resid_pdrop
|
149 |
+
self.embd_pdrop = embd_pdrop
|
150 |
+
self.attn_pdrop = attn_pdrop
|
151 |
+
self.layer_norm_epsilon = layer_norm_epsilon
|
152 |
+
self.initializer_range = initializer_range
|
153 |
+
self.scale_attn_weights = scale_attn_weights
|
154 |
+
self.use_cache = use_cache
|
155 |
+
self.scale_attn_by_inverse_layer_idx = scale_attn_by_inverse_layer_idx
|
156 |
+
self.reorder_and_upcast_attn = reorder_and_upcast_attn
|
157 |
+
|
158 |
+
self.bos_token_id = bos_token_id
|
159 |
+
self.eos_token_id = eos_token_id
|
160 |
+
|
161 |
+
self.position_embedding_type = position_embedding_type
|
162 |
+
self.mup_width_scale = mup_width_scale
|
163 |
+
self.mup_embeddings_scale = mup_embeddings_scale
|
164 |
+
self.mup_output_alpha = mup_output_alpha
|
165 |
+
self.mup_scale_qk_dot_by_d = mup_scale_qk_dot_by_d
|
166 |
+
|
167 |
+
self.alibi_scaling = alibi_scaling
|
168 |
+
self._alibi_scaling_validation()
|
169 |
+
|
170 |
+
super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
|
171 |
+
|
172 |
+
def _alibi_scaling_validation(self):
|
173 |
+
"""
|
174 |
+
Validate the `alibi_scaling` configuration.
|
175 |
+
"""
|
176 |
+
if self.alibi_scaling is None:
|
177 |
+
return
|
178 |
+
|
179 |
+
if not isinstance(self.alibi_scaling, dict) or len(self.alibi_scaling) != 2:
|
180 |
+
raise ValueError(
|
181 |
+
"`alibi_scaling` must be a dictionary with two fields, `type` and `factor` or `type` and `train_seq_len`, "
|
182 |
+
f"got {self.alibi_scaling}"
|
183 |
+
)
|
184 |
+
alibi_scaling_type = self.alibi_scaling.get("type", None)
|
185 |
+
alibi_scaling_factor = self.alibi_scaling.get("factor", None)
|
186 |
+
alibi_dynamic_scaling = self.alibi_scaling.get("train_seq_len", None)
|
187 |
+
if alibi_scaling_type is None or alibi_scaling_type != "linear":
|
188 |
+
raise ValueError(
|
189 |
+
f"`alibi_scaling`'s type field must be 'linear', got {alibi_scaling_type}"
|
190 |
+
)
|
191 |
+
if alibi_scaling_factor is not None:
|
192 |
+
if not isinstance(alibi_scaling_factor, float) or alibi_scaling_factor <= 1.0:
|
193 |
+
raise ValueError(f"`alibi_scaling`'s factor field must be a float > 1.0, got {alibi_scaling_factor}")
|
194 |
+
if alibi_dynamic_scaling is not None:
|
195 |
+
if not isinstance(alibi_dynamic_scaling, int) or alibi_dynamic_scaling <= 1:
|
196 |
+
raise ValueError(f"`alibi_scaling`'s `train_seq_len` field must be an integer > 1, got {alibi_dynamic_scaling}")
|
model-00001-of-00002.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:70e4852297f6afe2b380df70f8cf1f60360a817b02e0ac006c10183ddfc2ed9f
|
3 |
+
size 4999288080
|
model-00002-of-00002.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cca18b961eda21cdb208a556702a9b6b90a72753633de4fe5bc4d8cc9f4ac1ef
|
3 |
+
size 537964176
|
model.safetensors.index.json
ADDED
@@ -0,0 +1,347 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 5537220672
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"h.0.attn.c_attn.bias": "model-00001-of-00002.safetensors",
|
7 |
+
"h.0.attn.c_attn.weight": "model-00001-of-00002.safetensors",
|
8 |
+
"h.0.attn.c_proj.bias": "model-00001-of-00002.safetensors",
|
9 |
+
"h.0.attn.c_proj.weight": "model-00001-of-00002.safetensors",
|
10 |
+
"h.0.ln_1.bias": "model-00001-of-00002.safetensors",
|
11 |
+
"h.0.ln_1.weight": "model-00001-of-00002.safetensors",
|
12 |
+
"h.0.ln_2.bias": "model-00001-of-00002.safetensors",
|
13 |
+
"h.0.ln_2.weight": "model-00001-of-00002.safetensors",
|
14 |
+
"h.0.mlp.c_fc.bias": "model-00001-of-00002.safetensors",
|
15 |
+
"h.0.mlp.c_fc.weight": "model-00001-of-00002.safetensors",
|
16 |
+
"h.0.mlp.c_fc2.bias": "model-00001-of-00002.safetensors",
|
17 |
+
"h.0.mlp.c_fc2.weight": "model-00001-of-00002.safetensors",
|
18 |
+
"h.0.mlp.c_proj.bias": "model-00001-of-00002.safetensors",
|
19 |
+
"h.0.mlp.c_proj.weight": "model-00001-of-00002.safetensors",
|
20 |
+
"h.1.attn.c_attn.bias": "model-00001-of-00002.safetensors",
|
21 |
+
"h.1.attn.c_attn.weight": "model-00001-of-00002.safetensors",
|
22 |
+
"h.1.attn.c_proj.bias": "model-00001-of-00002.safetensors",
|
23 |
+
"h.1.attn.c_proj.weight": "model-00001-of-00002.safetensors",
|
24 |
+
"h.1.ln_1.bias": "model-00001-of-00002.safetensors",
|
25 |
+
"h.1.ln_1.weight": "model-00001-of-00002.safetensors",
|
26 |
+
"h.1.ln_2.bias": "model-00001-of-00002.safetensors",
|
27 |
+
"h.1.ln_2.weight": "model-00001-of-00002.safetensors",
|
28 |
+
"h.1.mlp.c_fc.bias": "model-00001-of-00002.safetensors",
|
29 |
+
"h.1.mlp.c_fc.weight": "model-00001-of-00002.safetensors",
|
30 |
+
"h.1.mlp.c_fc2.bias": "model-00001-of-00002.safetensors",
|
31 |
+
"h.1.mlp.c_fc2.weight": "model-00001-of-00002.safetensors",
|
32 |
+
"h.1.mlp.c_proj.bias": "model-00001-of-00002.safetensors",
|
33 |
+
"h.1.mlp.c_proj.weight": "model-00001-of-00002.safetensors",
|
34 |
+
"h.10.attn.c_attn.bias": "model-00001-of-00002.safetensors",
|
35 |
+
"h.10.attn.c_attn.weight": "model-00001-of-00002.safetensors",
|
36 |
+
"h.10.attn.c_proj.bias": "model-00001-of-00002.safetensors",
|
37 |
+
"h.10.attn.c_proj.weight": "model-00001-of-00002.safetensors",
|
38 |
+
"h.10.ln_1.bias": "model-00001-of-00002.safetensors",
|
39 |
+
"h.10.ln_1.weight": "model-00001-of-00002.safetensors",
|
40 |
+
"h.10.ln_2.bias": "model-00001-of-00002.safetensors",
|
41 |
+
"h.10.ln_2.weight": "model-00001-of-00002.safetensors",
|
42 |
+
"h.10.mlp.c_fc.bias": "model-00001-of-00002.safetensors",
|
43 |
+
"h.10.mlp.c_fc.weight": "model-00001-of-00002.safetensors",
|
44 |
+
"h.10.mlp.c_fc2.bias": "model-00001-of-00002.safetensors",
|
45 |
+
"h.10.mlp.c_fc2.weight": "model-00001-of-00002.safetensors",
|
46 |
+
"h.10.mlp.c_proj.bias": "model-00001-of-00002.safetensors",
|
47 |
+
"h.10.mlp.c_proj.weight": "model-00001-of-00002.safetensors",
|
48 |
+
"h.11.attn.c_attn.bias": "model-00001-of-00002.safetensors",
|
49 |
+
"h.11.attn.c_attn.weight": "model-00001-of-00002.safetensors",
|
50 |
+
"h.11.attn.c_proj.bias": "model-00001-of-00002.safetensors",
|
51 |
+
"h.11.attn.c_proj.weight": "model-00001-of-00002.safetensors",
|
52 |
+
"h.11.ln_1.bias": "model-00001-of-00002.safetensors",
|
53 |
+
"h.11.ln_1.weight": "model-00001-of-00002.safetensors",
|
54 |
+
"h.11.ln_2.bias": "model-00001-of-00002.safetensors",
|
55 |
+
"h.11.ln_2.weight": "model-00001-of-00002.safetensors",
|
56 |
+
"h.11.mlp.c_fc.bias": "model-00001-of-00002.safetensors",
|
57 |
+
"h.11.mlp.c_fc.weight": "model-00001-of-00002.safetensors",
|
58 |
+
"h.11.mlp.c_fc2.bias": "model-00001-of-00002.safetensors",
|
59 |
+
"h.11.mlp.c_fc2.weight": "model-00001-of-00002.safetensors",
|
60 |
+
"h.11.mlp.c_proj.bias": "model-00001-of-00002.safetensors",
|
61 |
+
"h.11.mlp.c_proj.weight": "model-00001-of-00002.safetensors",
|
62 |
+
"h.12.attn.c_attn.bias": "model-00001-of-00002.safetensors",
|
63 |
+
"h.12.attn.c_attn.weight": "model-00001-of-00002.safetensors",
|
64 |
+
"h.12.attn.c_proj.bias": "model-00001-of-00002.safetensors",
|
65 |
+
"h.12.attn.c_proj.weight": "model-00001-of-00002.safetensors",
|
66 |
+
"h.12.ln_1.bias": "model-00001-of-00002.safetensors",
|
67 |
+
"h.12.ln_1.weight": "model-00001-of-00002.safetensors",
|
68 |
+
"h.12.ln_2.bias": "model-00001-of-00002.safetensors",
|
69 |
+
"h.12.ln_2.weight": "model-00001-of-00002.safetensors",
|
70 |
+
"h.12.mlp.c_fc.bias": "model-00001-of-00002.safetensors",
|
71 |
+
"h.12.mlp.c_fc.weight": "model-00001-of-00002.safetensors",
|
72 |
+
"h.12.mlp.c_fc2.bias": "model-00001-of-00002.safetensors",
|
73 |
+
"h.12.mlp.c_fc2.weight": "model-00001-of-00002.safetensors",
|
74 |
+
"h.12.mlp.c_proj.bias": "model-00001-of-00002.safetensors",
|
75 |
+
"h.12.mlp.c_proj.weight": "model-00001-of-00002.safetensors",
|
76 |
+
"h.13.attn.c_attn.bias": "model-00001-of-00002.safetensors",
|
77 |
+
"h.13.attn.c_attn.weight": "model-00001-of-00002.safetensors",
|
78 |
+
"h.13.attn.c_proj.bias": "model-00001-of-00002.safetensors",
|
79 |
+
"h.13.attn.c_proj.weight": "model-00001-of-00002.safetensors",
|
80 |
+
"h.13.ln_1.bias": "model-00001-of-00002.safetensors",
|
81 |
+
"h.13.ln_1.weight": "model-00001-of-00002.safetensors",
|
82 |
+
"h.13.ln_2.bias": "model-00001-of-00002.safetensors",
|
83 |
+
"h.13.ln_2.weight": "model-00001-of-00002.safetensors",
|
84 |
+
"h.13.mlp.c_fc.bias": "model-00001-of-00002.safetensors",
|
85 |
+
"h.13.mlp.c_fc.weight": "model-00001-of-00002.safetensors",
|
86 |
+
"h.13.mlp.c_fc2.bias": "model-00001-of-00002.safetensors",
|
87 |
+
"h.13.mlp.c_fc2.weight": "model-00001-of-00002.safetensors",
|
88 |
+
"h.13.mlp.c_proj.bias": "model-00001-of-00002.safetensors",
|
89 |
+
"h.13.mlp.c_proj.weight": "model-00001-of-00002.safetensors",
|
90 |
+
"h.14.attn.c_attn.bias": "model-00001-of-00002.safetensors",
|
91 |
+
"h.14.attn.c_attn.weight": "model-00001-of-00002.safetensors",
|
92 |
+
"h.14.attn.c_proj.bias": "model-00001-of-00002.safetensors",
|
93 |
+
"h.14.attn.c_proj.weight": "model-00001-of-00002.safetensors",
|
94 |
+
"h.14.ln_1.bias": "model-00001-of-00002.safetensors",
|
95 |
+
"h.14.ln_1.weight": "model-00001-of-00002.safetensors",
|
96 |
+
"h.14.ln_2.bias": "model-00001-of-00002.safetensors",
|
97 |
+
"h.14.ln_2.weight": "model-00001-of-00002.safetensors",
|
98 |
+
"h.14.mlp.c_fc.bias": "model-00001-of-00002.safetensors",
|
99 |
+
"h.14.mlp.c_fc.weight": "model-00001-of-00002.safetensors",
|
100 |
+
"h.14.mlp.c_fc2.bias": "model-00001-of-00002.safetensors",
|
101 |
+
"h.14.mlp.c_fc2.weight": "model-00001-of-00002.safetensors",
|
102 |
+
"h.14.mlp.c_proj.bias": "model-00001-of-00002.safetensors",
|
103 |
+
"h.14.mlp.c_proj.weight": "model-00001-of-00002.safetensors",
|
104 |
+
"h.15.attn.c_attn.bias": "model-00001-of-00002.safetensors",
|
105 |
+
"h.15.attn.c_attn.weight": "model-00001-of-00002.safetensors",
|
106 |
+
"h.15.attn.c_proj.bias": "model-00001-of-00002.safetensors",
|
107 |
+
"h.15.attn.c_proj.weight": "model-00001-of-00002.safetensors",
|
108 |
+
"h.15.ln_1.bias": "model-00001-of-00002.safetensors",
|
109 |
+
"h.15.ln_1.weight": "model-00001-of-00002.safetensors",
|
110 |
+
"h.15.ln_2.bias": "model-00001-of-00002.safetensors",
|
111 |
+
"h.15.ln_2.weight": "model-00001-of-00002.safetensors",
|
112 |
+
"h.15.mlp.c_fc.bias": "model-00001-of-00002.safetensors",
|
113 |
+
"h.15.mlp.c_fc.weight": "model-00001-of-00002.safetensors",
|
114 |
+
"h.15.mlp.c_fc2.bias": "model-00001-of-00002.safetensors",
|
115 |
+
"h.15.mlp.c_fc2.weight": "model-00001-of-00002.safetensors",
|
116 |
+
"h.15.mlp.c_proj.bias": "model-00001-of-00002.safetensors",
|
117 |
+
"h.15.mlp.c_proj.weight": "model-00001-of-00002.safetensors",
|
118 |
+
"h.16.attn.c_attn.bias": "model-00001-of-00002.safetensors",
|
119 |
+
"h.16.attn.c_attn.weight": "model-00001-of-00002.safetensors",
|
120 |
+
"h.16.attn.c_proj.bias": "model-00001-of-00002.safetensors",
|
121 |
+
"h.16.attn.c_proj.weight": "model-00001-of-00002.safetensors",
|
122 |
+
"h.16.ln_1.bias": "model-00001-of-00002.safetensors",
|
123 |
+
"h.16.ln_1.weight": "model-00001-of-00002.safetensors",
|
124 |
+
"h.16.ln_2.bias": "model-00001-of-00002.safetensors",
|
125 |
+
"h.16.ln_2.weight": "model-00001-of-00002.safetensors",
|
126 |
+
"h.16.mlp.c_fc.bias": "model-00001-of-00002.safetensors",
|
127 |
+
"h.16.mlp.c_fc.weight": "model-00001-of-00002.safetensors",
|
128 |
+
"h.16.mlp.c_fc2.bias": "model-00001-of-00002.safetensors",
|
129 |
+
"h.16.mlp.c_fc2.weight": "model-00001-of-00002.safetensors",
|
130 |
+
"h.16.mlp.c_proj.bias": "model-00001-of-00002.safetensors",
|
131 |
+
"h.16.mlp.c_proj.weight": "model-00001-of-00002.safetensors",
|
132 |
+
"h.17.attn.c_attn.bias": "model-00001-of-00002.safetensors",
|
133 |
+
"h.17.attn.c_attn.weight": "model-00001-of-00002.safetensors",
|
134 |
+
"h.17.attn.c_proj.bias": "model-00001-of-00002.safetensors",
|
135 |
+
"h.17.attn.c_proj.weight": "model-00001-of-00002.safetensors",
|
136 |
+
"h.17.ln_1.bias": "model-00001-of-00002.safetensors",
|
137 |
+
"h.17.ln_1.weight": "model-00001-of-00002.safetensors",
|
138 |
+
"h.17.ln_2.bias": "model-00001-of-00002.safetensors",
|
139 |
+
"h.17.ln_2.weight": "model-00001-of-00002.safetensors",
|
140 |
+
"h.17.mlp.c_fc.bias": "model-00001-of-00002.safetensors",
|
141 |
+
"h.17.mlp.c_fc.weight": "model-00001-of-00002.safetensors",
|
142 |
+
"h.17.mlp.c_fc2.bias": "model-00001-of-00002.safetensors",
|
143 |
+
"h.17.mlp.c_fc2.weight": "model-00001-of-00002.safetensors",
|
144 |
+
"h.17.mlp.c_proj.bias": "model-00001-of-00002.safetensors",
|
145 |
+
"h.17.mlp.c_proj.weight": "model-00001-of-00002.safetensors",
|
146 |
+
"h.18.attn.c_attn.bias": "model-00001-of-00002.safetensors",
|
147 |
+
"h.18.attn.c_attn.weight": "model-00001-of-00002.safetensors",
|
148 |
+
"h.18.attn.c_proj.bias": "model-00001-of-00002.safetensors",
|
149 |
+
"h.18.attn.c_proj.weight": "model-00001-of-00002.safetensors",
|
150 |
+
"h.18.ln_1.bias": "model-00001-of-00002.safetensors",
|
151 |
+
"h.18.ln_1.weight": "model-00001-of-00002.safetensors",
|
152 |
+
"h.18.ln_2.bias": "model-00001-of-00002.safetensors",
|
153 |
+
"h.18.ln_2.weight": "model-00001-of-00002.safetensors",
|
154 |
+
"h.18.mlp.c_fc.bias": "model-00001-of-00002.safetensors",
|
155 |
+
"h.18.mlp.c_fc.weight": "model-00001-of-00002.safetensors",
|
156 |
+
"h.18.mlp.c_fc2.bias": "model-00001-of-00002.safetensors",
|
157 |
+
"h.18.mlp.c_fc2.weight": "model-00001-of-00002.safetensors",
|
158 |
+
"h.18.mlp.c_proj.bias": "model-00001-of-00002.safetensors",
|
159 |
+
"h.18.mlp.c_proj.weight": "model-00001-of-00002.safetensors",
|
160 |
+
"h.19.attn.c_attn.bias": "model-00001-of-00002.safetensors",
|
161 |
+
"h.19.attn.c_attn.weight": "model-00001-of-00002.safetensors",
|
162 |
+
"h.19.attn.c_proj.bias": "model-00001-of-00002.safetensors",
|
163 |
+
"h.19.attn.c_proj.weight": "model-00001-of-00002.safetensors",
|
164 |
+
"h.19.ln_1.bias": "model-00001-of-00002.safetensors",
|
165 |
+
"h.19.ln_1.weight": "model-00001-of-00002.safetensors",
|
166 |
+
"h.19.ln_2.bias": "model-00001-of-00002.safetensors",
|
167 |
+
"h.19.ln_2.weight": "model-00001-of-00002.safetensors",
|
168 |
+
"h.19.mlp.c_fc.bias": "model-00001-of-00002.safetensors",
|
169 |
+
"h.19.mlp.c_fc.weight": "model-00001-of-00002.safetensors",
|
170 |
+
"h.19.mlp.c_fc2.bias": "model-00001-of-00002.safetensors",
|
171 |
+
"h.19.mlp.c_fc2.weight": "model-00001-of-00002.safetensors",
|
172 |
+
"h.19.mlp.c_proj.bias": "model-00001-of-00002.safetensors",
|
173 |
+
"h.19.mlp.c_proj.weight": "model-00001-of-00002.safetensors",
|
174 |
+
"h.2.attn.c_attn.bias": "model-00001-of-00002.safetensors",
|
175 |
+
"h.2.attn.c_attn.weight": "model-00001-of-00002.safetensors",
|
176 |
+
"h.2.attn.c_proj.bias": "model-00001-of-00002.safetensors",
|
177 |
+
"h.2.attn.c_proj.weight": "model-00001-of-00002.safetensors",
|
178 |
+
"h.2.ln_1.bias": "model-00001-of-00002.safetensors",
|
179 |
+
"h.2.ln_1.weight": "model-00001-of-00002.safetensors",
|
180 |
+
"h.2.ln_2.bias": "model-00001-of-00002.safetensors",
|
181 |
+
"h.2.ln_2.weight": "model-00001-of-00002.safetensors",
|
182 |
+
"h.2.mlp.c_fc.bias": "model-00001-of-00002.safetensors",
|
183 |
+
"h.2.mlp.c_fc.weight": "model-00001-of-00002.safetensors",
|
184 |
+
"h.2.mlp.c_fc2.bias": "model-00001-of-00002.safetensors",
|
185 |
+
"h.2.mlp.c_fc2.weight": "model-00001-of-00002.safetensors",
|
186 |
+
"h.2.mlp.c_proj.bias": "model-00001-of-00002.safetensors",
|
187 |
+
"h.2.mlp.c_proj.weight": "model-00001-of-00002.safetensors",
|
188 |
+
"h.20.attn.c_attn.bias": "model-00001-of-00002.safetensors",
|
189 |
+
"h.20.attn.c_attn.weight": "model-00001-of-00002.safetensors",
|
190 |
+
"h.20.attn.c_proj.bias": "model-00001-of-00002.safetensors",
|
191 |
+
"h.20.attn.c_proj.weight": "model-00001-of-00002.safetensors",
|
192 |
+
"h.20.ln_1.bias": "model-00001-of-00002.safetensors",
|
193 |
+
"h.20.ln_1.weight": "model-00001-of-00002.safetensors",
|
194 |
+
"h.20.ln_2.bias": "model-00001-of-00002.safetensors",
|
195 |
+
"h.20.ln_2.weight": "model-00001-of-00002.safetensors",
|
196 |
+
"h.20.mlp.c_fc.bias": "model-00001-of-00002.safetensors",
|
197 |
+
"h.20.mlp.c_fc.weight": "model-00001-of-00002.safetensors",
|
198 |
+
"h.20.mlp.c_fc2.bias": "model-00001-of-00002.safetensors",
|
199 |
+
"h.20.mlp.c_fc2.weight": "model-00001-of-00002.safetensors",
|
200 |
+
"h.20.mlp.c_proj.bias": "model-00001-of-00002.safetensors",
|
201 |
+
"h.20.mlp.c_proj.weight": "model-00001-of-00002.safetensors",
|
202 |
+
"h.21.attn.c_attn.bias": "model-00001-of-00002.safetensors",
|
203 |
+
"h.21.attn.c_attn.weight": "model-00001-of-00002.safetensors",
|
204 |
+
"h.21.attn.c_proj.bias": "model-00001-of-00002.safetensors",
|
205 |
+
"h.21.attn.c_proj.weight": "model-00001-of-00002.safetensors",
|
206 |
+
"h.21.ln_1.bias": "model-00001-of-00002.safetensors",
|
207 |
+
"h.21.ln_1.weight": "model-00001-of-00002.safetensors",
|
208 |
+
"h.21.ln_2.bias": "model-00001-of-00002.safetensors",
|
209 |
+
"h.21.ln_2.weight": "model-00001-of-00002.safetensors",
|
210 |
+
"h.21.mlp.c_fc.bias": "model-00002-of-00002.safetensors",
|
211 |
+
"h.21.mlp.c_fc.weight": "model-00002-of-00002.safetensors",
|
212 |
+
"h.21.mlp.c_fc2.bias": "model-00002-of-00002.safetensors",
|
213 |
+
"h.21.mlp.c_fc2.weight": "model-00002-of-00002.safetensors",
|
214 |
+
"h.21.mlp.c_proj.bias": "model-00002-of-00002.safetensors",
|
215 |
+
"h.21.mlp.c_proj.weight": "model-00002-of-00002.safetensors",
|
216 |
+
"h.22.attn.c_attn.bias": "model-00002-of-00002.safetensors",
|
217 |
+
"h.22.attn.c_attn.weight": "model-00002-of-00002.safetensors",
|
218 |
+
"h.22.attn.c_proj.bias": "model-00002-of-00002.safetensors",
|
219 |
+
"h.22.attn.c_proj.weight": "model-00002-of-00002.safetensors",
|
220 |
+
"h.22.ln_1.bias": "model-00002-of-00002.safetensors",
|
221 |
+
"h.22.ln_1.weight": "model-00002-of-00002.safetensors",
|
222 |
+
"h.22.ln_2.bias": "model-00002-of-00002.safetensors",
|
223 |
+
"h.22.ln_2.weight": "model-00002-of-00002.safetensors",
|
224 |
+
"h.22.mlp.c_fc.bias": "model-00002-of-00002.safetensors",
|
225 |
+
"h.22.mlp.c_fc.weight": "model-00002-of-00002.safetensors",
|
226 |
+
"h.22.mlp.c_fc2.bias": "model-00002-of-00002.safetensors",
|
227 |
+
"h.22.mlp.c_fc2.weight": "model-00002-of-00002.safetensors",
|
228 |
+
"h.22.mlp.c_proj.bias": "model-00002-of-00002.safetensors",
|
229 |
+
"h.22.mlp.c_proj.weight": "model-00002-of-00002.safetensors",
|
230 |
+
"h.23.attn.c_attn.bias": "model-00002-of-00002.safetensors",
|
231 |
+
"h.23.attn.c_attn.weight": "model-00002-of-00002.safetensors",
|
232 |
+
"h.23.attn.c_proj.bias": "model-00002-of-00002.safetensors",
|
233 |
+
"h.23.attn.c_proj.weight": "model-00002-of-00002.safetensors",
|
234 |
+
"h.23.ln_1.bias": "model-00002-of-00002.safetensors",
|
235 |
+
"h.23.ln_1.weight": "model-00002-of-00002.safetensors",
|
236 |
+
"h.23.ln_2.bias": "model-00002-of-00002.safetensors",
|
237 |
+
"h.23.ln_2.weight": "model-00002-of-00002.safetensors",
|
238 |
+
"h.23.mlp.c_fc.bias": "model-00002-of-00002.safetensors",
|
239 |
+
"h.23.mlp.c_fc.weight": "model-00002-of-00002.safetensors",
|
240 |
+
"h.23.mlp.c_fc2.bias": "model-00002-of-00002.safetensors",
|
241 |
+
"h.23.mlp.c_fc2.weight": "model-00002-of-00002.safetensors",
|
242 |
+
"h.23.mlp.c_proj.bias": "model-00002-of-00002.safetensors",
|
243 |
+
"h.23.mlp.c_proj.weight": "model-00002-of-00002.safetensors",
|
244 |
+
"h.3.attn.c_attn.bias": "model-00001-of-00002.safetensors",
|
245 |
+
"h.3.attn.c_attn.weight": "model-00001-of-00002.safetensors",
|
246 |
+
"h.3.attn.c_proj.bias": "model-00001-of-00002.safetensors",
|
247 |
+
"h.3.attn.c_proj.weight": "model-00001-of-00002.safetensors",
|
248 |
+
"h.3.ln_1.bias": "model-00001-of-00002.safetensors",
|
249 |
+
"h.3.ln_1.weight": "model-00001-of-00002.safetensors",
|
250 |
+
"h.3.ln_2.bias": "model-00001-of-00002.safetensors",
|
251 |
+
"h.3.ln_2.weight": "model-00001-of-00002.safetensors",
|
252 |
+
"h.3.mlp.c_fc.bias": "model-00001-of-00002.safetensors",
|
253 |
+
"h.3.mlp.c_fc.weight": "model-00001-of-00002.safetensors",
|
254 |
+
"h.3.mlp.c_fc2.bias": "model-00001-of-00002.safetensors",
|
255 |
+
"h.3.mlp.c_fc2.weight": "model-00001-of-00002.safetensors",
|
256 |
+
"h.3.mlp.c_proj.bias": "model-00001-of-00002.safetensors",
|
257 |
+
"h.3.mlp.c_proj.weight": "model-00001-of-00002.safetensors",
|
258 |
+
"h.4.attn.c_attn.bias": "model-00001-of-00002.safetensors",
|
259 |
+
"h.4.attn.c_attn.weight": "model-00001-of-00002.safetensors",
|
260 |
+
"h.4.attn.c_proj.bias": "model-00001-of-00002.safetensors",
|
261 |
+
"h.4.attn.c_proj.weight": "model-00001-of-00002.safetensors",
|
262 |
+
"h.4.ln_1.bias": "model-00001-of-00002.safetensors",
|
263 |
+
"h.4.ln_1.weight": "model-00001-of-00002.safetensors",
|
264 |
+
"h.4.ln_2.bias": "model-00001-of-00002.safetensors",
|
265 |
+
"h.4.ln_2.weight": "model-00001-of-00002.safetensors",
|
266 |
+
"h.4.mlp.c_fc.bias": "model-00001-of-00002.safetensors",
|
267 |
+
"h.4.mlp.c_fc.weight": "model-00001-of-00002.safetensors",
|
268 |
+
"h.4.mlp.c_fc2.bias": "model-00001-of-00002.safetensors",
|
269 |
+
"h.4.mlp.c_fc2.weight": "model-00001-of-00002.safetensors",
|
270 |
+
"h.4.mlp.c_proj.bias": "model-00001-of-00002.safetensors",
|
271 |
+
"h.4.mlp.c_proj.weight": "model-00001-of-00002.safetensors",
|
272 |
+
"h.5.attn.c_attn.bias": "model-00001-of-00002.safetensors",
|
273 |
+
"h.5.attn.c_attn.weight": "model-00001-of-00002.safetensors",
|
274 |
+
"h.5.attn.c_proj.bias": "model-00001-of-00002.safetensors",
|
275 |
+
"h.5.attn.c_proj.weight": "model-00001-of-00002.safetensors",
|
276 |
+
"h.5.ln_1.bias": "model-00001-of-00002.safetensors",
|
277 |
+
"h.5.ln_1.weight": "model-00001-of-00002.safetensors",
|
278 |
+
"h.5.ln_2.bias": "model-00001-of-00002.safetensors",
|
279 |
+
"h.5.ln_2.weight": "model-00001-of-00002.safetensors",
|
280 |
+
"h.5.mlp.c_fc.bias": "model-00001-of-00002.safetensors",
|
281 |
+
"h.5.mlp.c_fc.weight": "model-00001-of-00002.safetensors",
|
282 |
+
"h.5.mlp.c_fc2.bias": "model-00001-of-00002.safetensors",
|
283 |
+
"h.5.mlp.c_fc2.weight": "model-00001-of-00002.safetensors",
|
284 |
+
"h.5.mlp.c_proj.bias": "model-00001-of-00002.safetensors",
|
285 |
+
"h.5.mlp.c_proj.weight": "model-00001-of-00002.safetensors",
|
286 |
+
"h.6.attn.c_attn.bias": "model-00001-of-00002.safetensors",
|
287 |
+
"h.6.attn.c_attn.weight": "model-00001-of-00002.safetensors",
|
288 |
+
"h.6.attn.c_proj.bias": "model-00001-of-00002.safetensors",
|
289 |
+
"h.6.attn.c_proj.weight": "model-00001-of-00002.safetensors",
|
290 |
+
"h.6.ln_1.bias": "model-00001-of-00002.safetensors",
|
291 |
+
"h.6.ln_1.weight": "model-00001-of-00002.safetensors",
|
292 |
+
"h.6.ln_2.bias": "model-00001-of-00002.safetensors",
|
293 |
+
"h.6.ln_2.weight": "model-00001-of-00002.safetensors",
|
294 |
+
"h.6.mlp.c_fc.bias": "model-00001-of-00002.safetensors",
|
295 |
+
"h.6.mlp.c_fc.weight": "model-00001-of-00002.safetensors",
|
296 |
+
"h.6.mlp.c_fc2.bias": "model-00001-of-00002.safetensors",
|
297 |
+
"h.6.mlp.c_fc2.weight": "model-00001-of-00002.safetensors",
|
298 |
+
"h.6.mlp.c_proj.bias": "model-00001-of-00002.safetensors",
|
299 |
+
"h.6.mlp.c_proj.weight": "model-00001-of-00002.safetensors",
|
300 |
+
"h.7.attn.c_attn.bias": "model-00001-of-00002.safetensors",
|
301 |
+
"h.7.attn.c_attn.weight": "model-00001-of-00002.safetensors",
|
302 |
+
"h.7.attn.c_proj.bias": "model-00001-of-00002.safetensors",
|
303 |
+
"h.7.attn.c_proj.weight": "model-00001-of-00002.safetensors",
|
304 |
+
"h.7.ln_1.bias": "model-00001-of-00002.safetensors",
|
305 |
+
"h.7.ln_1.weight": "model-00001-of-00002.safetensors",
|
306 |
+
"h.7.ln_2.bias": "model-00001-of-00002.safetensors",
|
307 |
+
"h.7.ln_2.weight": "model-00001-of-00002.safetensors",
|
308 |
+
"h.7.mlp.c_fc.bias": "model-00001-of-00002.safetensors",
|
309 |
+
"h.7.mlp.c_fc.weight": "model-00001-of-00002.safetensors",
|
310 |
+
"h.7.mlp.c_fc2.bias": "model-00001-of-00002.safetensors",
|
311 |
+
"h.7.mlp.c_fc2.weight": "model-00001-of-00002.safetensors",
|
312 |
+
"h.7.mlp.c_proj.bias": "model-00001-of-00002.safetensors",
|
313 |
+
"h.7.mlp.c_proj.weight": "model-00001-of-00002.safetensors",
|
314 |
+
"h.8.attn.c_attn.bias": "model-00001-of-00002.safetensors",
|
315 |
+
"h.8.attn.c_attn.weight": "model-00001-of-00002.safetensors",
|
316 |
+
"h.8.attn.c_proj.bias": "model-00001-of-00002.safetensors",
|
317 |
+
"h.8.attn.c_proj.weight": "model-00001-of-00002.safetensors",
|
318 |
+
"h.8.ln_1.bias": "model-00001-of-00002.safetensors",
|
319 |
+
"h.8.ln_1.weight": "model-00001-of-00002.safetensors",
|
320 |
+
"h.8.ln_2.bias": "model-00001-of-00002.safetensors",
|
321 |
+
"h.8.ln_2.weight": "model-00001-of-00002.safetensors",
|
322 |
+
"h.8.mlp.c_fc.bias": "model-00001-of-00002.safetensors",
|
323 |
+
"h.8.mlp.c_fc.weight": "model-00001-of-00002.safetensors",
|
324 |
+
"h.8.mlp.c_fc2.bias": "model-00001-of-00002.safetensors",
|
325 |
+
"h.8.mlp.c_fc2.weight": "model-00001-of-00002.safetensors",
|
326 |
+
"h.8.mlp.c_proj.bias": "model-00001-of-00002.safetensors",
|
327 |
+
"h.8.mlp.c_proj.weight": "model-00001-of-00002.safetensors",
|
328 |
+
"h.9.attn.c_attn.bias": "model-00001-of-00002.safetensors",
|
329 |
+
"h.9.attn.c_attn.weight": "model-00001-of-00002.safetensors",
|
330 |
+
"h.9.attn.c_proj.bias": "model-00001-of-00002.safetensors",
|
331 |
+
"h.9.attn.c_proj.weight": "model-00001-of-00002.safetensors",
|
332 |
+
"h.9.ln_1.bias": "model-00001-of-00002.safetensors",
|
333 |
+
"h.9.ln_1.weight": "model-00001-of-00002.safetensors",
|
334 |
+
"h.9.ln_2.bias": "model-00001-of-00002.safetensors",
|
335 |
+
"h.9.ln_2.weight": "model-00001-of-00002.safetensors",
|
336 |
+
"h.9.mlp.c_fc.bias": "model-00001-of-00002.safetensors",
|
337 |
+
"h.9.mlp.c_fc.weight": "model-00001-of-00002.safetensors",
|
338 |
+
"h.9.mlp.c_fc2.bias": "model-00001-of-00002.safetensors",
|
339 |
+
"h.9.mlp.c_fc2.weight": "model-00001-of-00002.safetensors",
|
340 |
+
"h.9.mlp.c_proj.bias": "model-00001-of-00002.safetensors",
|
341 |
+
"h.9.mlp.c_proj.weight": "model-00001-of-00002.safetensors",
|
342 |
+
"ln_f.bias": "model-00002-of-00002.safetensors",
|
343 |
+
"ln_f.weight": "model-00002-of-00002.safetensors",
|
344 |
+
"relative_pe.slopes": "model-00002-of-00002.safetensors",
|
345 |
+
"wte.weight": "model-00001-of-00002.safetensors"
|
346 |
+
}
|
347 |
+
}
|