--- language: - en license: apache-2.0 model-index: - name: firefly-mixtral-8x7b-v0.1 results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 68.09 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=YeungNLP/firefly-mixtral-8x7b-v0.1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 85.76 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=YeungNLP/firefly-mixtral-8x7b-v0.1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 71.49 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=YeungNLP/firefly-mixtral-8x7b-v0.1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 55.31 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=YeungNLP/firefly-mixtral-8x7b-v0.1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 82.08 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=YeungNLP/firefly-mixtral-8x7b-v0.1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 59.29 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=YeungNLP/firefly-mixtral-8x7b-v0.1 name: Open LLM Leaderboard --- This model is finetuend based on "mistralai/Mixtral-8x7B-v0.1" with [Firefly](https://github.com/yangjianxin1/Firefly) and 48k data from ultrachat. ## Evaluation Though we finetune with only 48k data, our model can also achieve excellent performance. | Model | Open LLM Leaderboard | |------------------------------------------------------------------------------------------------|---------------------------------------------| | Qwen-72B | 73.6 | | Mixtral-8x7B-Instruct-v0.1 | 72.62 | |**Firefly-Mixtral-8x7B**|**70.34**| |Yi-34B|69.42| |Mixtral-8x7B-v0.1|68.42| |Llama2-65B-Chat|67.87| |Qwen-14B|65.86| |Vicuna-33B-v1.3 |58.54| ## Run the model ```python from transformers import AutoModelForCausalLM, AutoTokenizer import torch model_name_or_path = 'YeungNLP/firefly-mixtral-8x7b' max_new_tokens = 500 top_p = 0.9 temperature = 0.35 repetition_penalty = 1.0 model = AutoModelForCausalLM.from_pretrained( model_name_or_path, trust_remote_code=True, low_cpu_mem_usage=True, torch_dtype=torch.float16, device_map='auto' ) model = model.eval() tokenizer = AutoTokenizer.from_pretrained(model_name_or_path) text = "Compose an engaging travel blog post about a recent trip to Hawaii, highlighting cultural experiences and must-see attractions." inst_begin_tokens = tokenizer.encode('[INST]', add_special_tokens=False) inst_end_tokens = tokenizer.encode('[/INST]', add_special_tokens=False) human_tokens = tokenizer.encode(text, add_special_tokens=False) input_ids = [tokenizer.bos_token_id] + inst_begin_tokens + human_tokens + inst_end_tokens # input_ids = human_tokens input_ids = torch.tensor([input_ids], dtype=torch.long).cuda() with torch.no_grad(): outputs = model.generate( input_ids=input_ids, max_new_tokens=max_new_tokens, do_sample=True, top_p=top_p, temperature=temperature, repetition_penalty=repetition_penalty, eos_token_id=tokenizer.eos_token_id ) outputs = outputs.tolist()[0][len(input_ids[0]):] response = tokenizer.decode(outputs) response = response.strip().replace(tokenizer.eos_token, "").strip() print("Chatbot:{}".format(response)) ``` # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_YeungNLP__firefly-mixtral-8x7b-v0.1) | Metric |Value| |---------------------------------|----:| |Avg. |70.34| |AI2 Reasoning Challenge (25-Shot)|68.09| |HellaSwag (10-Shot) |85.76| |MMLU (5-Shot) |71.49| |TruthfulQA (0-shot) |55.31| |Winogrande (5-shot) |82.08| |GSM8k (5-shot) |59.29|