Add pipeline tag to model card (#1)
Browse files- Add pipeline tag to model card (9fa6488a0ccf210e47416974dcfbf8ede8a0466a)
Co-authored-by: Niels Rogge <[email protected]>
README.md
CHANGED
|
@@ -1,3 +1,144 @@
|
|
| 1 |
-
---
|
| 2 |
-
license: mit
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: mit
|
| 3 |
+
pipeline_tag: image-to-image
|
| 4 |
+
---
|
| 5 |
+
|
| 6 |
+
<h2 align="center"> <a href="https://arxiv.org/abs/2503.14325">LeanVAE: An Ultra-Efficient Reconstruction VAE for Video Diffusion Models</a></h2>
|
| 7 |
+
|
| 8 |
+
https://github.com/user-attachments/assets/a2a4814a-192b-4cc4-b1a3-d612caa1d872
|
| 9 |
+
|
| 10 |
+
We present **LeanVAE**, a lightweight Video VAE designed for ultra-efficient video compression and scalable generation in Latent Video Diffusion Models (LVDMs).
|
| 11 |
+
|
| 12 |
+
- **Lightweight & Efficient**: Only **40M parameters**, significantly reducing computational overhead π
|
| 13 |
+
- **Optimized for High-Resolution Videos**: Encodes and decodes a **17-frame 1080p video** in **3 seconds** using only **15GB of GPU memory** *(without tiling inference)* π―
|
| 14 |
+
- **State-of-the-Art Video Reconstruction**: Competes with leading Video VAEs π
|
| 15 |
+
- **Versatile**: Supports both **images and videos**, preserving **causality in latent space** π½οΈ
|
| 16 |
+
- **Evidenced by Diffusion Model**: Enhances visual quality in video generation β¨
|
| 17 |
+
|
| 18 |
+
---
|
| 19 |
+
## π οΈ **Installation**
|
| 20 |
+
Clone the repository and install dependencies:
|
| 21 |
+
```
|
| 22 |
+
git clone https://github.com/westlake-repl/LeanVAE
|
| 23 |
+
cd LeanVAE
|
| 24 |
+
pip install -r requirements.txt
|
| 25 |
+
```
|
| 26 |
+
---
|
| 27 |
+
## π― **Quick Start**
|
| 28 |
+
**Train LeanVAE**
|
| 29 |
+
```bash
|
| 30 |
+
bash scripts/train.sh
|
| 31 |
+
```
|
| 32 |
+
|
| 33 |
+
**Run Video Reconstruction**
|
| 34 |
+
```bash
|
| 35 |
+
bash scripts/inference.sh
|
| 36 |
+
```
|
| 37 |
+
|
| 38 |
+
**Evaluate Reconstruction Quality**
|
| 39 |
+
```bash
|
| 40 |
+
bash scripts/eval.sh
|
| 41 |
+
```
|
| 42 |
+
---
|
| 43 |
+
|
| 44 |
+
## π **Pretrained Models**
|
| 45 |
+
### Video VAE Model:
|
| 46 |
+
| Model | PSNR β¬οΈ | LPIPS β¬οΈ | Params π¦ | TFLOPs β‘ | Checkpoint π₯ |
|
| 47 |
+
| ---------------- | ------ | ------- | -------- | -------- | ----------------------------------- |
|
| 48 |
+
| **LeanVAE-4ch** | 26.04 | 0.0899 | 39.8M | 0.203 | [LeanVAE-chn4.ckpt](https://huggingface.co/Yumic/LeanVAE/resolve/main/LeanVAE-dim4.ckpt?download=true) |
|
| 49 |
+
| **LeanVAE-16ch** | 30.15 | 0.0461 | 39.8M | 0.203 | [LeanVAE-chn16.ckpt](https://huggingface.co/Yumic/LeanVAE/resolve/main/LeanVAE-dim16.ckpt?download=true) |
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
### Latte Model:
|
| 53 |
+
The code and pretrained weights for video generation will be released soon. Stay tuned!
|
| 54 |
+
| Model | Dataset | FVD β¬οΈ | Checkpoint π₯ |
|
| 55 |
+
| ---------- | ---------- | ---------- | ----------- |
|
| 56 |
+
| Latte + LeanVAE-chn4 | SkyTimelapse |49.59 | sky-chn4.ckpt |
|
| 57 |
+
| Latte + LeanVAE-chn4 | UCF101 |164.45 | ucf-chn4.ckpt |
|
| 58 |
+
| Latte + LeanVAE-chn16 | SkyTimelapse |95.15 | sky-chn16.ckpt |
|
| 59 |
+
| Latte + LeanVAE-chn16 | UCF101 |175.33 | ucf-chn16.ckpt |
|
| 60 |
+
|
| 61 |
+
---
|
| 62 |
+
## π§ **Using LeanVAE in Your Project**
|
| 63 |
+
|
| 64 |
+
```python
|
| 65 |
+
from LeanVAE import LeanVAE
|
| 66 |
+
|
| 67 |
+
# Load pretrained model
|
| 68 |
+
model = LeanVAE.load_from_checkpoint("path/to/ckpt", strict=False)
|
| 69 |
+
|
| 70 |
+
# π Encode & Decode an Image
|
| 71 |
+
image, image_rec = model.inference(image)
|
| 72 |
+
|
| 73 |
+
# πΌοΈ Encode an image β Get latent :
|
| 74 |
+
latent = model.encode(image) # (B, C, H, W) β (B, d, 1, H/8, W/8), where d=4 or 16
|
| 75 |
+
|
| 76 |
+
# πΌοΈ Decode latent representation β Reconstruct image
|
| 77 |
+
image = model.decode(latent, is_image=True) # (B, d, 1, H/8, W/8) β (B, C, H, W)
|
| 78 |
+
|
| 79 |
+
|
| 80 |
+
# π Encode & Decode a Video
|
| 81 |
+
video, video_rec = model.inference(video) ## Frame count must be 4n+1 (e.g., 5, 9, 13, 17...)
|
| 82 |
+
|
| 83 |
+
# ποΈ Encode Video β Get Latent Space
|
| 84 |
+
latent = model.encode(video) # (B, C, T+1, H, W) β (B, d, T/4+1, H/8, W/8), where d=4 or 16
|
| 85 |
+
|
| 86 |
+
# ποΈ Decode Latent β Reconstruct Video
|
| 87 |
+
video = model.decode(latent) # (B, d, T/4+1, H/8, W/8) β (B, C, T+1, H, W)
|
| 88 |
+
|
| 89 |
+
# β‘ Enable **Temporal Tiling Inference** for Long Videos
|
| 90 |
+
model.set_tile_inference(True)
|
| 91 |
+
model.chunksize_enc = 5
|
| 92 |
+
model.chunksize_dec = 5
|
| 93 |
+
```
|
| 94 |
+
---
|
| 95 |
+
|
| 96 |
+
## π **Preparing Data for Training**
|
| 97 |
+
To train LeanVAE, you need to create metadata files listing the video paths, grouped by resolution. Each file contains paths to videos of the same resolution.
|
| 98 |
+
```
|
| 99 |
+
π data_list
|
| 100 |
+
βββ π 96x128.txt π # Contains paths to all 96x128 videos
|
| 101 |
+
β βββ /path/to/video_1.mp4
|
| 102 |
+
β βββ /path/to/video_2.mp4
|
| 103 |
+
β βββ ...
|
| 104 |
+
βββ π 256x256.txt π # Contains paths to all 256Γ256 videos
|
| 105 |
+
β βββ /path/to/video_3.mp4
|
| 106 |
+
β βββ /path/to/video_4.mp4
|
| 107 |
+
β βββ ...
|
| 108 |
+
βββ π 352x288.txt π # Contains paths to all 352x288 videos
|
| 109 |
+
β βββ /path/to/video_5.mp4
|
| 110 |
+
β βββ /path/to/video_6.mp4
|
| 111 |
+
β βββ ...
|
| 112 |
+
```
|
| 113 |
+
π Each text file lists video paths corresponding to a specific resolution. Set `args.train_datalist` to the folder containing these files.
|
| 114 |
+
|
| 115 |
+
|
| 116 |
+
---
|
| 117 |
+
## π **License**
|
| 118 |
+
|
| 119 |
+
This project is released under the **MIT License**. See the `LICENSE` file for details.
|
| 120 |
+
|
| 121 |
+
|
| 122 |
+
## π₯ **Why Choose LeanVAE?**
|
| 123 |
+
LeanVAE is **fast, lightweight and powerful**, enabling high-quality video compression and generation with minimal computational cost.
|
| 124 |
+
|
| 125 |
+
If you find this work useful, consider **starring β the repository** and citing our paper!
|
| 126 |
+
|
| 127 |
+
---
|
| 128 |
+
|
| 129 |
+
## π **Cite Us**
|
| 130 |
+
```bibtex
|
| 131 |
+
@misc{cheng2025leanvaeultraefficientreconstructionvae,
|
| 132 |
+
title={LeanVAE: An Ultra-Efficient Reconstruction VAE for Video Diffusion Models},
|
| 133 |
+
author={Yu Cheng and Fajie Yuan},
|
| 134 |
+
year={2025},
|
| 135 |
+
eprint={2503.14325},
|
| 136 |
+
archivePrefix={arXiv},
|
| 137 |
+
primaryClass={cs.CV},
|
| 138 |
+
url={https://arxiv.org/abs/2503.14325},
|
| 139 |
+
}
|
| 140 |
+
```
|
| 141 |
+
---
|
| 142 |
+
|
| 143 |
+
## π **Acknowledgement**
|
| 144 |
+
Our work benefits from the contributions of several open-source projects, including [OmniTokenizer](https://github.com/FoundationVision/OmniTokenizer), [Open-Sora-Plan](https://github.com/PKU-YuanGroup/Open-Sora-Plan), [VidTok](https://github.com/microsoft/VidTok), and [Latte](https://github.com/Vchitect/Latte). We sincerely appreciate their efforts in advancing research and open-source collaboration!
|