Training in progress, step 1100, checkpoint
Browse files- .gitattributes +1 -0
- checkpoint-1100/added_tokens.json +24 -0
- checkpoint-1100/config.json +28 -0
- checkpoint-1100/generation_config.json +9 -0
- checkpoint-1100/global_step1099/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
- checkpoint-1100/global_step1099/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt +3 -0
- checkpoint-1100/global_step1099/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt +3 -0
- checkpoint-1100/global_step1099/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt +3 -0
- checkpoint-1100/global_step1099/bf16_zero_pp_rank_4_mp_rank_00_optim_states.pt +3 -0
- checkpoint-1100/global_step1099/bf16_zero_pp_rank_5_mp_rank_00_optim_states.pt +3 -0
- checkpoint-1100/global_step1099/bf16_zero_pp_rank_6_mp_rank_00_optim_states.pt +3 -0
- checkpoint-1100/global_step1099/bf16_zero_pp_rank_7_mp_rank_00_optim_states.pt +3 -0
- checkpoint-1100/global_step1099/zero_pp_rank_0_mp_rank_00_model_states.pt +3 -0
- checkpoint-1100/global_step1099/zero_pp_rank_1_mp_rank_00_model_states.pt +3 -0
- checkpoint-1100/global_step1099/zero_pp_rank_2_mp_rank_00_model_states.pt +3 -0
- checkpoint-1100/global_step1099/zero_pp_rank_3_mp_rank_00_model_states.pt +3 -0
- checkpoint-1100/global_step1099/zero_pp_rank_4_mp_rank_00_model_states.pt +3 -0
- checkpoint-1100/global_step1099/zero_pp_rank_5_mp_rank_00_model_states.pt +3 -0
- checkpoint-1100/global_step1099/zero_pp_rank_6_mp_rank_00_model_states.pt +3 -0
- checkpoint-1100/global_step1099/zero_pp_rank_7_mp_rank_00_model_states.pt +3 -0
- checkpoint-1100/latest +1 -0
- checkpoint-1100/merges.txt +0 -0
- checkpoint-1100/model-00001-of-00004.safetensors +3 -0
- checkpoint-1100/model-00002-of-00004.safetensors +3 -0
- checkpoint-1100/model-00003-of-00004.safetensors +3 -0
- checkpoint-1100/model-00004-of-00004.safetensors +3 -0
- checkpoint-1100/model.safetensors.index.json +346 -0
- checkpoint-1100/rng_state_0.pth +3 -0
- checkpoint-1100/rng_state_1.pth +3 -0
- checkpoint-1100/rng_state_2.pth +3 -0
- checkpoint-1100/rng_state_3.pth +3 -0
- checkpoint-1100/rng_state_4.pth +3 -0
- checkpoint-1100/rng_state_5.pth +3 -0
- checkpoint-1100/rng_state_6.pth +3 -0
- checkpoint-1100/rng_state_7.pth +3 -0
- checkpoint-1100/scheduler.pt +3 -0
- checkpoint-1100/special_tokens_map.json +25 -0
- checkpoint-1100/tokenizer.json +3 -0
- checkpoint-1100/tokenizer_config.json +208 -0
- checkpoint-1100/trainer_state.json +1794 -0
- checkpoint-1100/training_args.bin +3 -0
- checkpoint-1100/vocab.json +0 -0
- checkpoint-1100/zero_to_fp32.py +674 -0
.gitattributes
CHANGED
@@ -35,3 +35,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
37 |
checkpoint-550/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
|
|
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
37 |
checkpoint-550/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
38 |
+
checkpoint-1100/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
checkpoint-1100/added_tokens.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"</tool_call>": 151658,
|
3 |
+
"<tool_call>": 151657,
|
4 |
+
"<|box_end|>": 151649,
|
5 |
+
"<|box_start|>": 151648,
|
6 |
+
"<|endoftext|>": 151643,
|
7 |
+
"<|file_sep|>": 151664,
|
8 |
+
"<|fim_middle|>": 151660,
|
9 |
+
"<|fim_pad|>": 151662,
|
10 |
+
"<|fim_prefix|>": 151659,
|
11 |
+
"<|fim_suffix|>": 151661,
|
12 |
+
"<|im_end|>": 151645,
|
13 |
+
"<|im_start|>": 151644,
|
14 |
+
"<|image_pad|>": 151655,
|
15 |
+
"<|object_ref_end|>": 151647,
|
16 |
+
"<|object_ref_start|>": 151646,
|
17 |
+
"<|quad_end|>": 151651,
|
18 |
+
"<|quad_start|>": 151650,
|
19 |
+
"<|repo_name|>": 151663,
|
20 |
+
"<|video_pad|>": 151656,
|
21 |
+
"<|vision_end|>": 151653,
|
22 |
+
"<|vision_pad|>": 151654,
|
23 |
+
"<|vision_start|>": 151652
|
24 |
+
}
|
checkpoint-1100/config.json
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"Qwen2ForCausalLM"
|
4 |
+
],
|
5 |
+
"attention_dropout": 0.0,
|
6 |
+
"bos_token_id": 151643,
|
7 |
+
"eos_token_id": 151645,
|
8 |
+
"hidden_act": "silu",
|
9 |
+
"hidden_size": 3584,
|
10 |
+
"initializer_range": 0.02,
|
11 |
+
"intermediate_size": 18944,
|
12 |
+
"max_position_embeddings": 32768,
|
13 |
+
"max_window_layers": 28,
|
14 |
+
"model_type": "qwen2",
|
15 |
+
"num_attention_heads": 28,
|
16 |
+
"num_hidden_layers": 28,
|
17 |
+
"num_key_value_heads": 4,
|
18 |
+
"rms_norm_eps": 1e-06,
|
19 |
+
"rope_scaling": null,
|
20 |
+
"rope_theta": 300000.0,
|
21 |
+
"sliding_window": null,
|
22 |
+
"tie_word_embeddings": false,
|
23 |
+
"torch_dtype": "bfloat16",
|
24 |
+
"transformers_version": "4.50.0",
|
25 |
+
"use_cache": false,
|
26 |
+
"use_sliding_window": false,
|
27 |
+
"vocab_size": 152064
|
28 |
+
}
|
checkpoint-1100/generation_config.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token_id": 151643,
|
3 |
+
"eos_token_id": [
|
4 |
+
151645,
|
5 |
+
151643
|
6 |
+
],
|
7 |
+
"pad_token_id": 151643,
|
8 |
+
"transformers_version": "4.50.0"
|
9 |
+
}
|
checkpoint-1100/global_step1099/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6740b33d9972e271db9911eac65876a43732c6bc099b464a321678b5dbc112f4
|
3 |
+
size 11423429708
|
checkpoint-1100/global_step1099/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e074a9277348441d640bcc1d62472d1d5b38551138ada272369fb5b1bc715abc
|
3 |
+
size 11423429708
|
checkpoint-1100/global_step1099/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:165ae64dce3d04f5a82c31d5d7a56a85c026258bb957f2f4f5c171f1aee6c397
|
3 |
+
size 11423429708
|
checkpoint-1100/global_step1099/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1113b75cd2c0178e77dccbe248fb55b56426db69bf44ef894e518e3fa186e5ca
|
3 |
+
size 11423429708
|
checkpoint-1100/global_step1099/bf16_zero_pp_rank_4_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:782481a4e0933b1ee2da7b7ea16488821963add1ddac04747b83c3a73bbae750
|
3 |
+
size 11423429708
|
checkpoint-1100/global_step1099/bf16_zero_pp_rank_5_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:da750056dbe42e977756736edcccce27ef41a624231b655b77b7053c785b52c6
|
3 |
+
size 11423429708
|
checkpoint-1100/global_step1099/bf16_zero_pp_rank_6_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:349e9bbebc2edf182c2ce6ca74beb4f1518fe10cdcebdb0d73c6b40c1d58432a
|
3 |
+
size 11423429708
|
checkpoint-1100/global_step1099/bf16_zero_pp_rank_7_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0cf534df7c789e671e5b8ffa973d95c10eb7006d353c1f37c7af1176647d7eb5
|
3 |
+
size 11423429708
|
checkpoint-1100/global_step1099/zero_pp_rank_0_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2eda453b4ca24fadae3b34f97a3770eb88ca9babe3d0fc719c6d3322bdaf3d3f
|
3 |
+
size 166293
|
checkpoint-1100/global_step1099/zero_pp_rank_1_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:50fa92a7a93a31af307d1672f32236d7ee7fdf5a221a6cf395aa888582db83a2
|
3 |
+
size 166293
|
checkpoint-1100/global_step1099/zero_pp_rank_2_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:12b3d92910cb25a27250c545097ec1af59bea6e43f9fac51e7c834c054d11198
|
3 |
+
size 166293
|
checkpoint-1100/global_step1099/zero_pp_rank_3_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a2650b2b6261b06cf2bd094937aeb48ae5d9f341d2ada07ecf7a45ed597d83eb
|
3 |
+
size 166293
|
checkpoint-1100/global_step1099/zero_pp_rank_4_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:882296d504c589a08d22de812051d3502c7182f8fdce540b1430079339892b7c
|
3 |
+
size 166293
|
checkpoint-1100/global_step1099/zero_pp_rank_5_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0e919741a2d1beed4136cb82539b6022a774e852d62ee0a86f5670aad77afe66
|
3 |
+
size 166293
|
checkpoint-1100/global_step1099/zero_pp_rank_6_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:957e31b922e57c67b9a3ac1f18f7574cbf6de0d33409f5de2b0ef9b8cf66e47d
|
3 |
+
size 166293
|
checkpoint-1100/global_step1099/zero_pp_rank_7_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c6a274b2df9e3c48408967ad4e11b6df1de3913174c034ad632b4a3d50310b06
|
3 |
+
size 166293
|
checkpoint-1100/latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step1099
|
checkpoint-1100/merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
checkpoint-1100/model-00001-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ed472d7a80ba716c13e1b7a69b5025e14e29ffd92d3e9c4cf00900c3da38bfaa
|
3 |
+
size 4877660776
|
checkpoint-1100/model-00002-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4b1dbcc4e359dcbbdc8cf2fecd2e1a98fc9afa1929cd843c581899b9158e90cf
|
3 |
+
size 4932751008
|
checkpoint-1100/model-00003-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:09d0f529c0e00b8feb8256de6add3f2bc50000ee5fc0d552b27c6e430f773606
|
3 |
+
size 4330865200
|
checkpoint-1100/model-00004-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:63bedbf1ed7a8c34596dde5c921af707f0ad8ec6d794e8e8db014b692004bb23
|
3 |
+
size 1089994880
|
checkpoint-1100/model.safetensors.index.json
ADDED
@@ -0,0 +1,346 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 15231233024
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"lm_head.weight": "model-00004-of-00004.safetensors",
|
7 |
+
"model.embed_tokens.weight": "model-00001-of-00004.safetensors",
|
8 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
9 |
+
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
10 |
+
"model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
11 |
+
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
12 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
13 |
+
"model.layers.0.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
14 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
15 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
16 |
+
"model.layers.0.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
17 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
18 |
+
"model.layers.0.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
19 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
20 |
+
"model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
21 |
+
"model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
22 |
+
"model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
23 |
+
"model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
24 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
25 |
+
"model.layers.1.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
26 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
27 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
28 |
+
"model.layers.1.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
29 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
30 |
+
"model.layers.1.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
31 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
32 |
+
"model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
33 |
+
"model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
34 |
+
"model.layers.10.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
35 |
+
"model.layers.10.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
36 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
37 |
+
"model.layers.10.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
38 |
+
"model.layers.10.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
39 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
40 |
+
"model.layers.10.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
41 |
+
"model.layers.10.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
42 |
+
"model.layers.10.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
43 |
+
"model.layers.10.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
44 |
+
"model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
45 |
+
"model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
46 |
+
"model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
47 |
+
"model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
48 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
49 |
+
"model.layers.11.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
50 |
+
"model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
51 |
+
"model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
52 |
+
"model.layers.11.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
53 |
+
"model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
54 |
+
"model.layers.11.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
55 |
+
"model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
56 |
+
"model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
57 |
+
"model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
58 |
+
"model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
59 |
+
"model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
60 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
61 |
+
"model.layers.12.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
62 |
+
"model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
63 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
64 |
+
"model.layers.12.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
65 |
+
"model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
66 |
+
"model.layers.12.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
67 |
+
"model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
68 |
+
"model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
69 |
+
"model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
70 |
+
"model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
71 |
+
"model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
72 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
73 |
+
"model.layers.13.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
74 |
+
"model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
75 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
76 |
+
"model.layers.13.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
77 |
+
"model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
78 |
+
"model.layers.13.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
79 |
+
"model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
80 |
+
"model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
81 |
+
"model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
82 |
+
"model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
83 |
+
"model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
84 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
85 |
+
"model.layers.14.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
86 |
+
"model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
87 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
88 |
+
"model.layers.14.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
89 |
+
"model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
90 |
+
"model.layers.14.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
91 |
+
"model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
92 |
+
"model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
93 |
+
"model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
94 |
+
"model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
95 |
+
"model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
96 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
97 |
+
"model.layers.15.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
98 |
+
"model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
99 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
100 |
+
"model.layers.15.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
101 |
+
"model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
102 |
+
"model.layers.15.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
103 |
+
"model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
104 |
+
"model.layers.16.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
105 |
+
"model.layers.16.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
106 |
+
"model.layers.16.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
107 |
+
"model.layers.16.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
108 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
109 |
+
"model.layers.16.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
110 |
+
"model.layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
111 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
112 |
+
"model.layers.16.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
113 |
+
"model.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
114 |
+
"model.layers.16.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
115 |
+
"model.layers.16.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
116 |
+
"model.layers.17.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
117 |
+
"model.layers.17.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
118 |
+
"model.layers.17.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
119 |
+
"model.layers.17.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
120 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
121 |
+
"model.layers.17.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
122 |
+
"model.layers.17.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
123 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
124 |
+
"model.layers.17.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
125 |
+
"model.layers.17.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
126 |
+
"model.layers.17.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
127 |
+
"model.layers.17.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
128 |
+
"model.layers.18.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
129 |
+
"model.layers.18.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
130 |
+
"model.layers.18.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
131 |
+
"model.layers.18.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
132 |
+
"model.layers.18.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
133 |
+
"model.layers.18.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
134 |
+
"model.layers.18.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
135 |
+
"model.layers.18.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
136 |
+
"model.layers.18.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
137 |
+
"model.layers.18.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
138 |
+
"model.layers.18.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
139 |
+
"model.layers.18.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
140 |
+
"model.layers.19.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
141 |
+
"model.layers.19.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
142 |
+
"model.layers.19.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
143 |
+
"model.layers.19.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
144 |
+
"model.layers.19.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
145 |
+
"model.layers.19.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
146 |
+
"model.layers.19.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
147 |
+
"model.layers.19.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
148 |
+
"model.layers.19.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
149 |
+
"model.layers.19.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
150 |
+
"model.layers.19.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
151 |
+
"model.layers.19.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
152 |
+
"model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
153 |
+
"model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
154 |
+
"model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
155 |
+
"model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
156 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
157 |
+
"model.layers.2.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
158 |
+
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
159 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
160 |
+
"model.layers.2.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
161 |
+
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
162 |
+
"model.layers.2.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
163 |
+
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
164 |
+
"model.layers.20.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
165 |
+
"model.layers.20.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
166 |
+
"model.layers.20.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
167 |
+
"model.layers.20.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
168 |
+
"model.layers.20.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
169 |
+
"model.layers.20.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
170 |
+
"model.layers.20.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
171 |
+
"model.layers.20.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
172 |
+
"model.layers.20.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
173 |
+
"model.layers.20.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
174 |
+
"model.layers.20.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
175 |
+
"model.layers.20.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
176 |
+
"model.layers.21.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
177 |
+
"model.layers.21.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
178 |
+
"model.layers.21.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
179 |
+
"model.layers.21.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
180 |
+
"model.layers.21.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
181 |
+
"model.layers.21.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
182 |
+
"model.layers.21.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
183 |
+
"model.layers.21.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
184 |
+
"model.layers.21.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
185 |
+
"model.layers.21.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
186 |
+
"model.layers.21.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
187 |
+
"model.layers.21.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
188 |
+
"model.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
189 |
+
"model.layers.22.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
190 |
+
"model.layers.22.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
191 |
+
"model.layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
192 |
+
"model.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
193 |
+
"model.layers.22.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
194 |
+
"model.layers.22.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
195 |
+
"model.layers.22.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
196 |
+
"model.layers.22.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
197 |
+
"model.layers.22.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
198 |
+
"model.layers.22.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
199 |
+
"model.layers.22.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
200 |
+
"model.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
201 |
+
"model.layers.23.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
202 |
+
"model.layers.23.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
203 |
+
"model.layers.23.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
204 |
+
"model.layers.23.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
205 |
+
"model.layers.23.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
206 |
+
"model.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
207 |
+
"model.layers.23.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
208 |
+
"model.layers.23.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
209 |
+
"model.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
210 |
+
"model.layers.23.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
211 |
+
"model.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
212 |
+
"model.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
213 |
+
"model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
214 |
+
"model.layers.24.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
215 |
+
"model.layers.24.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
216 |
+
"model.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
217 |
+
"model.layers.24.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
218 |
+
"model.layers.24.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
219 |
+
"model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
220 |
+
"model.layers.24.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
221 |
+
"model.layers.24.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
222 |
+
"model.layers.24.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
223 |
+
"model.layers.24.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
224 |
+
"model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
225 |
+
"model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
226 |
+
"model.layers.25.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
227 |
+
"model.layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
228 |
+
"model.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
229 |
+
"model.layers.25.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
230 |
+
"model.layers.25.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
231 |
+
"model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
232 |
+
"model.layers.25.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
233 |
+
"model.layers.25.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
234 |
+
"model.layers.25.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
235 |
+
"model.layers.25.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
236 |
+
"model.layers.26.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
237 |
+
"model.layers.26.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
238 |
+
"model.layers.26.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
239 |
+
"model.layers.26.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
240 |
+
"model.layers.26.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
241 |
+
"model.layers.26.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
242 |
+
"model.layers.26.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
243 |
+
"model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
244 |
+
"model.layers.26.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
245 |
+
"model.layers.26.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
246 |
+
"model.layers.26.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
247 |
+
"model.layers.26.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
248 |
+
"model.layers.27.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
249 |
+
"model.layers.27.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
250 |
+
"model.layers.27.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
251 |
+
"model.layers.27.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
252 |
+
"model.layers.27.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
253 |
+
"model.layers.27.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
254 |
+
"model.layers.27.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
255 |
+
"model.layers.27.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
256 |
+
"model.layers.27.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
257 |
+
"model.layers.27.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
258 |
+
"model.layers.27.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
259 |
+
"model.layers.27.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
260 |
+
"model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
261 |
+
"model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
262 |
+
"model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
263 |
+
"model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
264 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
265 |
+
"model.layers.3.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
266 |
+
"model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
267 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
268 |
+
"model.layers.3.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
269 |
+
"model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
270 |
+
"model.layers.3.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
271 |
+
"model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
272 |
+
"model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
273 |
+
"model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
274 |
+
"model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
275 |
+
"model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
276 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
277 |
+
"model.layers.4.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
278 |
+
"model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
279 |
+
"model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
280 |
+
"model.layers.4.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
281 |
+
"model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
282 |
+
"model.layers.4.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
283 |
+
"model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
284 |
+
"model.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
285 |
+
"model.layers.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
286 |
+
"model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
287 |
+
"model.layers.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
288 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
289 |
+
"model.layers.5.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
290 |
+
"model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
291 |
+
"model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
292 |
+
"model.layers.5.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
293 |
+
"model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
294 |
+
"model.layers.5.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
295 |
+
"model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
296 |
+
"model.layers.6.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
297 |
+
"model.layers.6.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
298 |
+
"model.layers.6.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
299 |
+
"model.layers.6.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
300 |
+
"model.layers.6.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
301 |
+
"model.layers.6.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
302 |
+
"model.layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
303 |
+
"model.layers.6.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
304 |
+
"model.layers.6.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
305 |
+
"model.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
306 |
+
"model.layers.6.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
307 |
+
"model.layers.6.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
308 |
+
"model.layers.7.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
309 |
+
"model.layers.7.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
310 |
+
"model.layers.7.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
311 |
+
"model.layers.7.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
312 |
+
"model.layers.7.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
313 |
+
"model.layers.7.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
314 |
+
"model.layers.7.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
315 |
+
"model.layers.7.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
316 |
+
"model.layers.7.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
317 |
+
"model.layers.7.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
318 |
+
"model.layers.7.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
319 |
+
"model.layers.7.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
320 |
+
"model.layers.8.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
321 |
+
"model.layers.8.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
322 |
+
"model.layers.8.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
323 |
+
"model.layers.8.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
324 |
+
"model.layers.8.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
325 |
+
"model.layers.8.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
326 |
+
"model.layers.8.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
327 |
+
"model.layers.8.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
328 |
+
"model.layers.8.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
329 |
+
"model.layers.8.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
330 |
+
"model.layers.8.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
331 |
+
"model.layers.8.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
332 |
+
"model.layers.9.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
333 |
+
"model.layers.9.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
334 |
+
"model.layers.9.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
335 |
+
"model.layers.9.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
336 |
+
"model.layers.9.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
337 |
+
"model.layers.9.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
338 |
+
"model.layers.9.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
339 |
+
"model.layers.9.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
340 |
+
"model.layers.9.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
341 |
+
"model.layers.9.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
342 |
+
"model.layers.9.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
343 |
+
"model.layers.9.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
344 |
+
"model.norm.weight": "model-00003-of-00004.safetensors"
|
345 |
+
}
|
346 |
+
}
|
checkpoint-1100/rng_state_0.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ad8a35afd8967cbb748405387e44426e43ad127028e826eddc9b67d2ca873c85
|
3 |
+
size 15984
|
checkpoint-1100/rng_state_1.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f338ce80d7c441076bfc8c53b84067a0181f5a14e80c13d5acb8150b659f4d73
|
3 |
+
size 15984
|
checkpoint-1100/rng_state_2.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c9fbc9fa428939be10b46779f0eb5cd833e0da426b1cbdee77b3a55b6952235b
|
3 |
+
size 15984
|
checkpoint-1100/rng_state_3.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ac55dba0b79d5fa4699d239da2f966d52040d576d31234ac8d4632e6956481bc
|
3 |
+
size 15984
|
checkpoint-1100/rng_state_4.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:af2d0c015100768ffa23faf3b6c2d54ea89eb045603e30e55cd211e06ff34972
|
3 |
+
size 15984
|
checkpoint-1100/rng_state_5.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c60a1b40608e34bc801c8231f97b81c53b5290dfaed1b9cd0ccbeca29574a991
|
3 |
+
size 15984
|
checkpoint-1100/rng_state_6.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3ad6a142a403eb9aafc4a3a9a856bca648fe31fd22d796867baca31fb13656aa
|
3 |
+
size 15984
|
checkpoint-1100/rng_state_7.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:38bc23a138cc800b22881742c0f3f9a71731a9a7111c6058a0077e6274d21773
|
3 |
+
size 15984
|
checkpoint-1100/scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b22b78b992313259665933ffb95329dafb0479c70eaba6cb51b4c7ef9e90af3b
|
3 |
+
size 1064
|
checkpoint-1100/special_tokens_map.json
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<|im_start|>",
|
4 |
+
"<|im_end|>",
|
5 |
+
"<|object_ref_start|>",
|
6 |
+
"<|object_ref_end|>",
|
7 |
+
"<|box_start|>",
|
8 |
+
"<|box_end|>",
|
9 |
+
"<|quad_start|>",
|
10 |
+
"<|quad_end|>",
|
11 |
+
"<|vision_start|>",
|
12 |
+
"<|vision_end|>",
|
13 |
+
"<|vision_pad|>",
|
14 |
+
"<|image_pad|>",
|
15 |
+
"<|video_pad|>"
|
16 |
+
],
|
17 |
+
"eos_token": {
|
18 |
+
"content": "<|im_end|>",
|
19 |
+
"lstrip": false,
|
20 |
+
"normalized": false,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
},
|
24 |
+
"pad_token": "<|im_end|>"
|
25 |
+
}
|
checkpoint-1100/tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9c5ae00e602b8860cbd784ba82a8aa14e8feecec692e7076590d014d7b7fdafa
|
3 |
+
size 11421896
|
checkpoint-1100/tokenizer_config.json
ADDED
@@ -0,0 +1,208 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": false,
|
3 |
+
"add_prefix_space": false,
|
4 |
+
"added_tokens_decoder": {
|
5 |
+
"151643": {
|
6 |
+
"content": "<|endoftext|>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false,
|
11 |
+
"special": true
|
12 |
+
},
|
13 |
+
"151644": {
|
14 |
+
"content": "<|im_start|>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false,
|
19 |
+
"special": true
|
20 |
+
},
|
21 |
+
"151645": {
|
22 |
+
"content": "<|im_end|>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": false,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": false,
|
27 |
+
"special": true
|
28 |
+
},
|
29 |
+
"151646": {
|
30 |
+
"content": "<|object_ref_start|>",
|
31 |
+
"lstrip": false,
|
32 |
+
"normalized": false,
|
33 |
+
"rstrip": false,
|
34 |
+
"single_word": false,
|
35 |
+
"special": true
|
36 |
+
},
|
37 |
+
"151647": {
|
38 |
+
"content": "<|object_ref_end|>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false,
|
43 |
+
"special": true
|
44 |
+
},
|
45 |
+
"151648": {
|
46 |
+
"content": "<|box_start|>",
|
47 |
+
"lstrip": false,
|
48 |
+
"normalized": false,
|
49 |
+
"rstrip": false,
|
50 |
+
"single_word": false,
|
51 |
+
"special": true
|
52 |
+
},
|
53 |
+
"151649": {
|
54 |
+
"content": "<|box_end|>",
|
55 |
+
"lstrip": false,
|
56 |
+
"normalized": false,
|
57 |
+
"rstrip": false,
|
58 |
+
"single_word": false,
|
59 |
+
"special": true
|
60 |
+
},
|
61 |
+
"151650": {
|
62 |
+
"content": "<|quad_start|>",
|
63 |
+
"lstrip": false,
|
64 |
+
"normalized": false,
|
65 |
+
"rstrip": false,
|
66 |
+
"single_word": false,
|
67 |
+
"special": true
|
68 |
+
},
|
69 |
+
"151651": {
|
70 |
+
"content": "<|quad_end|>",
|
71 |
+
"lstrip": false,
|
72 |
+
"normalized": false,
|
73 |
+
"rstrip": false,
|
74 |
+
"single_word": false,
|
75 |
+
"special": true
|
76 |
+
},
|
77 |
+
"151652": {
|
78 |
+
"content": "<|vision_start|>",
|
79 |
+
"lstrip": false,
|
80 |
+
"normalized": false,
|
81 |
+
"rstrip": false,
|
82 |
+
"single_word": false,
|
83 |
+
"special": true
|
84 |
+
},
|
85 |
+
"151653": {
|
86 |
+
"content": "<|vision_end|>",
|
87 |
+
"lstrip": false,
|
88 |
+
"normalized": false,
|
89 |
+
"rstrip": false,
|
90 |
+
"single_word": false,
|
91 |
+
"special": true
|
92 |
+
},
|
93 |
+
"151654": {
|
94 |
+
"content": "<|vision_pad|>",
|
95 |
+
"lstrip": false,
|
96 |
+
"normalized": false,
|
97 |
+
"rstrip": false,
|
98 |
+
"single_word": false,
|
99 |
+
"special": true
|
100 |
+
},
|
101 |
+
"151655": {
|
102 |
+
"content": "<|image_pad|>",
|
103 |
+
"lstrip": false,
|
104 |
+
"normalized": false,
|
105 |
+
"rstrip": false,
|
106 |
+
"single_word": false,
|
107 |
+
"special": true
|
108 |
+
},
|
109 |
+
"151656": {
|
110 |
+
"content": "<|video_pad|>",
|
111 |
+
"lstrip": false,
|
112 |
+
"normalized": false,
|
113 |
+
"rstrip": false,
|
114 |
+
"single_word": false,
|
115 |
+
"special": true
|
116 |
+
},
|
117 |
+
"151657": {
|
118 |
+
"content": "<tool_call>",
|
119 |
+
"lstrip": false,
|
120 |
+
"normalized": false,
|
121 |
+
"rstrip": false,
|
122 |
+
"single_word": false,
|
123 |
+
"special": false
|
124 |
+
},
|
125 |
+
"151658": {
|
126 |
+
"content": "</tool_call>",
|
127 |
+
"lstrip": false,
|
128 |
+
"normalized": false,
|
129 |
+
"rstrip": false,
|
130 |
+
"single_word": false,
|
131 |
+
"special": false
|
132 |
+
},
|
133 |
+
"151659": {
|
134 |
+
"content": "<|fim_prefix|>",
|
135 |
+
"lstrip": false,
|
136 |
+
"normalized": false,
|
137 |
+
"rstrip": false,
|
138 |
+
"single_word": false,
|
139 |
+
"special": false
|
140 |
+
},
|
141 |
+
"151660": {
|
142 |
+
"content": "<|fim_middle|>",
|
143 |
+
"lstrip": false,
|
144 |
+
"normalized": false,
|
145 |
+
"rstrip": false,
|
146 |
+
"single_word": false,
|
147 |
+
"special": false
|
148 |
+
},
|
149 |
+
"151661": {
|
150 |
+
"content": "<|fim_suffix|>",
|
151 |
+
"lstrip": false,
|
152 |
+
"normalized": false,
|
153 |
+
"rstrip": false,
|
154 |
+
"single_word": false,
|
155 |
+
"special": false
|
156 |
+
},
|
157 |
+
"151662": {
|
158 |
+
"content": "<|fim_pad|>",
|
159 |
+
"lstrip": false,
|
160 |
+
"normalized": false,
|
161 |
+
"rstrip": false,
|
162 |
+
"single_word": false,
|
163 |
+
"special": false
|
164 |
+
},
|
165 |
+
"151663": {
|
166 |
+
"content": "<|repo_name|>",
|
167 |
+
"lstrip": false,
|
168 |
+
"normalized": false,
|
169 |
+
"rstrip": false,
|
170 |
+
"single_word": false,
|
171 |
+
"special": false
|
172 |
+
},
|
173 |
+
"151664": {
|
174 |
+
"content": "<|file_sep|>",
|
175 |
+
"lstrip": false,
|
176 |
+
"normalized": false,
|
177 |
+
"rstrip": false,
|
178 |
+
"single_word": false,
|
179 |
+
"special": false
|
180 |
+
}
|
181 |
+
},
|
182 |
+
"additional_special_tokens": [
|
183 |
+
"<|im_start|>",
|
184 |
+
"<|im_end|>",
|
185 |
+
"<|object_ref_start|>",
|
186 |
+
"<|object_ref_end|>",
|
187 |
+
"<|box_start|>",
|
188 |
+
"<|box_end|>",
|
189 |
+
"<|quad_start|>",
|
190 |
+
"<|quad_end|>",
|
191 |
+
"<|vision_start|>",
|
192 |
+
"<|vision_end|>",
|
193 |
+
"<|vision_pad|>",
|
194 |
+
"<|image_pad|>",
|
195 |
+
"<|video_pad|>"
|
196 |
+
],
|
197 |
+
"bos_token": null,
|
198 |
+
"chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'Please reason step by step, and put your final answer within \\\\boxed{}.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nPlease reason step by step, and put your final answer within \\\\boxed{}.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
|
199 |
+
"clean_up_tokenization_spaces": false,
|
200 |
+
"eos_token": "<|im_end|>",
|
201 |
+
"errors": "replace",
|
202 |
+
"extra_special_tokens": {},
|
203 |
+
"model_max_length": 131072,
|
204 |
+
"pad_token": "<|im_end|>",
|
205 |
+
"split_special_tokens": false,
|
206 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
207 |
+
"unk_token": null
|
208 |
+
}
|
checkpoint-1100/trainer_state.json
ADDED
@@ -0,0 +1,1794 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_global_step": null,
|
3 |
+
"best_metric": null,
|
4 |
+
"best_model_checkpoint": null,
|
5 |
+
"epoch": 1.024219841639497,
|
6 |
+
"eval_steps": 500,
|
7 |
+
"global_step": 1100,
|
8 |
+
"is_hyper_param_search": false,
|
9 |
+
"is_local_process_zero": true,
|
10 |
+
"is_world_process_zero": true,
|
11 |
+
"log_history": [
|
12 |
+
{
|
13 |
+
"epoch": 0.004657661853749418,
|
14 |
+
"grad_norm": 82.05587354646646,
|
15 |
+
"learning_rate": 7.763975155279503e-07,
|
16 |
+
"loss": 9.9438,
|
17 |
+
"num_tokens": 5242880.0,
|
18 |
+
"step": 5
|
19 |
+
},
|
20 |
+
{
|
21 |
+
"epoch": 0.009315323707498836,
|
22 |
+
"grad_norm": 98.0190156931495,
|
23 |
+
"learning_rate": 1.5527950310559006e-06,
|
24 |
+
"loss": 9.6475,
|
25 |
+
"num_tokens": 10485760.0,
|
26 |
+
"step": 10
|
27 |
+
},
|
28 |
+
{
|
29 |
+
"epoch": 0.013972985561248253,
|
30 |
+
"grad_norm": 113.69325621752397,
|
31 |
+
"learning_rate": 2.329192546583851e-06,
|
32 |
+
"loss": 7.5009,
|
33 |
+
"num_tokens": 15691438.0,
|
34 |
+
"step": 15
|
35 |
+
},
|
36 |
+
{
|
37 |
+
"epoch": 0.018630647414997672,
|
38 |
+
"grad_norm": 20.08992771959664,
|
39 |
+
"learning_rate": 3.1055900621118013e-06,
|
40 |
+
"loss": 2.3962,
|
41 |
+
"num_tokens": 20915252.0,
|
42 |
+
"step": 20
|
43 |
+
},
|
44 |
+
{
|
45 |
+
"epoch": 0.02328830926874709,
|
46 |
+
"grad_norm": 3.796391559366892,
|
47 |
+
"learning_rate": 3.881987577639752e-06,
|
48 |
+
"loss": 1.3249,
|
49 |
+
"num_tokens": 26134828.0,
|
50 |
+
"step": 25
|
51 |
+
},
|
52 |
+
{
|
53 |
+
"epoch": 0.027945971122496506,
|
54 |
+
"grad_norm": 1.897340748140379,
|
55 |
+
"learning_rate": 4.658385093167702e-06,
|
56 |
+
"loss": 1.063,
|
57 |
+
"num_tokens": 31377708.0,
|
58 |
+
"step": 30
|
59 |
+
},
|
60 |
+
{
|
61 |
+
"epoch": 0.032603632976245925,
|
62 |
+
"grad_norm": 0.9353460581126074,
|
63 |
+
"learning_rate": 5.4347826086956525e-06,
|
64 |
+
"loss": 0.891,
|
65 |
+
"num_tokens": 36557688.0,
|
66 |
+
"step": 35
|
67 |
+
},
|
68 |
+
{
|
69 |
+
"epoch": 0.037261294829995344,
|
70 |
+
"grad_norm": 0.6860451736359767,
|
71 |
+
"learning_rate": 6.2111801242236025e-06,
|
72 |
+
"loss": 0.8014,
|
73 |
+
"num_tokens": 41800322.0,
|
74 |
+
"step": 40
|
75 |
+
},
|
76 |
+
{
|
77 |
+
"epoch": 0.04191895668374476,
|
78 |
+
"grad_norm": 0.4462391543288957,
|
79 |
+
"learning_rate": 6.9875776397515525e-06,
|
80 |
+
"loss": 0.702,
|
81 |
+
"num_tokens": 47043202.0,
|
82 |
+
"step": 45
|
83 |
+
},
|
84 |
+
{
|
85 |
+
"epoch": 0.04657661853749418,
|
86 |
+
"grad_norm": 0.5658389980406826,
|
87 |
+
"learning_rate": 7.763975155279503e-06,
|
88 |
+
"loss": 0.679,
|
89 |
+
"num_tokens": 52286082.0,
|
90 |
+
"step": 50
|
91 |
+
},
|
92 |
+
{
|
93 |
+
"epoch": 0.05123428039124359,
|
94 |
+
"grad_norm": 0.39716601221628856,
|
95 |
+
"learning_rate": 8.540372670807453e-06,
|
96 |
+
"loss": 0.6432,
|
97 |
+
"num_tokens": 57528962.0,
|
98 |
+
"step": 55
|
99 |
+
},
|
100 |
+
{
|
101 |
+
"epoch": 0.05589194224499301,
|
102 |
+
"grad_norm": 0.3576561966497444,
|
103 |
+
"learning_rate": 9.316770186335403e-06,
|
104 |
+
"loss": 0.6268,
|
105 |
+
"num_tokens": 62771842.0,
|
106 |
+
"step": 60
|
107 |
+
},
|
108 |
+
{
|
109 |
+
"epoch": 0.06054960409874243,
|
110 |
+
"grad_norm": 0.3690305804361313,
|
111 |
+
"learning_rate": 1.0093167701863353e-05,
|
112 |
+
"loss": 0.6062,
|
113 |
+
"num_tokens": 67980354.0,
|
114 |
+
"step": 65
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 0.06520726595249185,
|
118 |
+
"grad_norm": 0.30904022597752495,
|
119 |
+
"learning_rate": 1.0869565217391305e-05,
|
120 |
+
"loss": 0.5755,
|
121 |
+
"num_tokens": 73223234.0,
|
122 |
+
"step": 70
|
123 |
+
},
|
124 |
+
{
|
125 |
+
"epoch": 0.06986492780624126,
|
126 |
+
"grad_norm": 0.33381487552443856,
|
127 |
+
"learning_rate": 1.1645962732919255e-05,
|
128 |
+
"loss": 0.5722,
|
129 |
+
"num_tokens": 78437814.0,
|
130 |
+
"step": 75
|
131 |
+
},
|
132 |
+
{
|
133 |
+
"epoch": 0.07452258965999069,
|
134 |
+
"grad_norm": 0.29018900181654517,
|
135 |
+
"learning_rate": 1.2422360248447205e-05,
|
136 |
+
"loss": 0.5787,
|
137 |
+
"num_tokens": 83680694.0,
|
138 |
+
"step": 80
|
139 |
+
},
|
140 |
+
{
|
141 |
+
"epoch": 0.0791802515137401,
|
142 |
+
"grad_norm": 0.31193541739320246,
|
143 |
+
"learning_rate": 1.3198757763975155e-05,
|
144 |
+
"loss": 0.5484,
|
145 |
+
"num_tokens": 88923574.0,
|
146 |
+
"step": 85
|
147 |
+
},
|
148 |
+
{
|
149 |
+
"epoch": 0.08383791336748952,
|
150 |
+
"grad_norm": 0.36013559560524766,
|
151 |
+
"learning_rate": 1.3975155279503105e-05,
|
152 |
+
"loss": 0.551,
|
153 |
+
"num_tokens": 94166454.0,
|
154 |
+
"step": 90
|
155 |
+
},
|
156 |
+
{
|
157 |
+
"epoch": 0.08849557522123894,
|
158 |
+
"grad_norm": 0.29887540089263853,
|
159 |
+
"learning_rate": 1.4751552795031057e-05,
|
160 |
+
"loss": 0.5556,
|
161 |
+
"num_tokens": 99409334.0,
|
162 |
+
"step": 95
|
163 |
+
},
|
164 |
+
{
|
165 |
+
"epoch": 0.09315323707498836,
|
166 |
+
"grad_norm": 0.31777202176514885,
|
167 |
+
"learning_rate": 1.5527950310559007e-05,
|
168 |
+
"loss": 0.5419,
|
169 |
+
"num_tokens": 104652214.0,
|
170 |
+
"step": 100
|
171 |
+
},
|
172 |
+
{
|
173 |
+
"epoch": 0.09781089892873777,
|
174 |
+
"grad_norm": 0.3039817792088042,
|
175 |
+
"learning_rate": 1.630434782608696e-05,
|
176 |
+
"loss": 0.5397,
|
177 |
+
"num_tokens": 109895094.0,
|
178 |
+
"step": 105
|
179 |
+
},
|
180 |
+
{
|
181 |
+
"epoch": 0.10246856078248719,
|
182 |
+
"grad_norm": 0.3024257620617263,
|
183 |
+
"learning_rate": 1.7080745341614907e-05,
|
184 |
+
"loss": 0.5252,
|
185 |
+
"num_tokens": 115137974.0,
|
186 |
+
"step": 110
|
187 |
+
},
|
188 |
+
{
|
189 |
+
"epoch": 0.10712622263623661,
|
190 |
+
"grad_norm": 0.31140997132030224,
|
191 |
+
"learning_rate": 1.785714285714286e-05,
|
192 |
+
"loss": 0.5238,
|
193 |
+
"num_tokens": 120380854.0,
|
194 |
+
"step": 115
|
195 |
+
},
|
196 |
+
{
|
197 |
+
"epoch": 0.11178388448998602,
|
198 |
+
"grad_norm": 0.35218239712763794,
|
199 |
+
"learning_rate": 1.8633540372670807e-05,
|
200 |
+
"loss": 0.5345,
|
201 |
+
"num_tokens": 125623734.0,
|
202 |
+
"step": 120
|
203 |
+
},
|
204 |
+
{
|
205 |
+
"epoch": 0.11644154634373545,
|
206 |
+
"grad_norm": 0.34642949453466215,
|
207 |
+
"learning_rate": 1.940993788819876e-05,
|
208 |
+
"loss": 0.5095,
|
209 |
+
"num_tokens": 130866614.0,
|
210 |
+
"step": 125
|
211 |
+
},
|
212 |
+
{
|
213 |
+
"epoch": 0.12109920819748486,
|
214 |
+
"grad_norm": 0.3148152432452141,
|
215 |
+
"learning_rate": 2.0186335403726707e-05,
|
216 |
+
"loss": 0.5097,
|
217 |
+
"num_tokens": 136068456.0,
|
218 |
+
"step": 130
|
219 |
+
},
|
220 |
+
{
|
221 |
+
"epoch": 0.1257568700512343,
|
222 |
+
"grad_norm": 0.3218897464063567,
|
223 |
+
"learning_rate": 2.096273291925466e-05,
|
224 |
+
"loss": 0.5178,
|
225 |
+
"num_tokens": 141311336.0,
|
226 |
+
"step": 135
|
227 |
+
},
|
228 |
+
{
|
229 |
+
"epoch": 0.1304145319049837,
|
230 |
+
"grad_norm": 0.30116924097164377,
|
231 |
+
"learning_rate": 2.173913043478261e-05,
|
232 |
+
"loss": 0.5075,
|
233 |
+
"num_tokens": 146554216.0,
|
234 |
+
"step": 140
|
235 |
+
},
|
236 |
+
{
|
237 |
+
"epoch": 0.1350721937587331,
|
238 |
+
"grad_norm": 0.3941017670817498,
|
239 |
+
"learning_rate": 2.2515527950310562e-05,
|
240 |
+
"loss": 0.5181,
|
241 |
+
"num_tokens": 151797096.0,
|
242 |
+
"step": 145
|
243 |
+
},
|
244 |
+
{
|
245 |
+
"epoch": 0.13972985561248252,
|
246 |
+
"grad_norm": 0.38992413690107575,
|
247 |
+
"learning_rate": 2.329192546583851e-05,
|
248 |
+
"loss": 0.5091,
|
249 |
+
"num_tokens": 157039976.0,
|
250 |
+
"step": 150
|
251 |
+
},
|
252 |
+
{
|
253 |
+
"epoch": 0.14438751746623196,
|
254 |
+
"grad_norm": 0.3299485605544544,
|
255 |
+
"learning_rate": 2.4068322981366462e-05,
|
256 |
+
"loss": 0.4893,
|
257 |
+
"num_tokens": 162282856.0,
|
258 |
+
"step": 155
|
259 |
+
},
|
260 |
+
{
|
261 |
+
"epoch": 0.14904517931998137,
|
262 |
+
"grad_norm": 0.398285302815728,
|
263 |
+
"learning_rate": 2.484472049689441e-05,
|
264 |
+
"loss": 0.498,
|
265 |
+
"num_tokens": 167466294.0,
|
266 |
+
"step": 160
|
267 |
+
},
|
268 |
+
{
|
269 |
+
"epoch": 0.1537028411737308,
|
270 |
+
"grad_norm": 0.464751877974553,
|
271 |
+
"learning_rate": 2.5621118012422362e-05,
|
272 |
+
"loss": 0.4952,
|
273 |
+
"num_tokens": 172703130.0,
|
274 |
+
"step": 165
|
275 |
+
},
|
276 |
+
{
|
277 |
+
"epoch": 0.1583605030274802,
|
278 |
+
"grad_norm": 0.5494333844825245,
|
279 |
+
"learning_rate": 2.639751552795031e-05,
|
280 |
+
"loss": 0.4927,
|
281 |
+
"num_tokens": 177946010.0,
|
282 |
+
"step": 170
|
283 |
+
},
|
284 |
+
{
|
285 |
+
"epoch": 0.1630181648812296,
|
286 |
+
"grad_norm": 0.4673335432920727,
|
287 |
+
"learning_rate": 2.7173913043478262e-05,
|
288 |
+
"loss": 0.5052,
|
289 |
+
"num_tokens": 183145930.0,
|
290 |
+
"step": 175
|
291 |
+
},
|
292 |
+
{
|
293 |
+
"epoch": 0.16767582673497905,
|
294 |
+
"grad_norm": 0.40861619513411185,
|
295 |
+
"learning_rate": 2.795031055900621e-05,
|
296 |
+
"loss": 0.4964,
|
297 |
+
"num_tokens": 188388810.0,
|
298 |
+
"step": 180
|
299 |
+
},
|
300 |
+
{
|
301 |
+
"epoch": 0.17233348858872846,
|
302 |
+
"grad_norm": 0.4257074069728051,
|
303 |
+
"learning_rate": 2.8726708074534165e-05,
|
304 |
+
"loss": 0.4966,
|
305 |
+
"num_tokens": 193628148.0,
|
306 |
+
"step": 185
|
307 |
+
},
|
308 |
+
{
|
309 |
+
"epoch": 0.17699115044247787,
|
310 |
+
"grad_norm": 0.38423446067890304,
|
311 |
+
"learning_rate": 2.9503105590062114e-05,
|
312 |
+
"loss": 0.4874,
|
313 |
+
"num_tokens": 198871028.0,
|
314 |
+
"step": 190
|
315 |
+
},
|
316 |
+
{
|
317 |
+
"epoch": 0.18164881229622729,
|
318 |
+
"grad_norm": 0.5665394970476383,
|
319 |
+
"learning_rate": 3.0279503105590062e-05,
|
320 |
+
"loss": 0.4931,
|
321 |
+
"num_tokens": 204113908.0,
|
322 |
+
"step": 195
|
323 |
+
},
|
324 |
+
{
|
325 |
+
"epoch": 0.18630647414997673,
|
326 |
+
"grad_norm": 0.4873250722559478,
|
327 |
+
"learning_rate": 3.1055900621118014e-05,
|
328 |
+
"loss": 0.4632,
|
329 |
+
"num_tokens": 209266418.0,
|
330 |
+
"step": 200
|
331 |
+
},
|
332 |
+
{
|
333 |
+
"epoch": 0.19096413600372614,
|
334 |
+
"grad_norm": 0.5150102284421441,
|
335 |
+
"learning_rate": 3.183229813664597e-05,
|
336 |
+
"loss": 0.4857,
|
337 |
+
"num_tokens": 214355738.0,
|
338 |
+
"step": 205
|
339 |
+
},
|
340 |
+
{
|
341 |
+
"epoch": 0.19562179785747555,
|
342 |
+
"grad_norm": 0.4984697478657664,
|
343 |
+
"learning_rate": 3.260869565217392e-05,
|
344 |
+
"loss": 0.4728,
|
345 |
+
"num_tokens": 219598618.0,
|
346 |
+
"step": 210
|
347 |
+
},
|
348 |
+
{
|
349 |
+
"epoch": 0.20027945971122496,
|
350 |
+
"grad_norm": 0.6451003628441052,
|
351 |
+
"learning_rate": 3.3385093167701865e-05,
|
352 |
+
"loss": 0.4856,
|
353 |
+
"num_tokens": 224779924.0,
|
354 |
+
"step": 215
|
355 |
+
},
|
356 |
+
{
|
357 |
+
"epoch": 0.20493712156497437,
|
358 |
+
"grad_norm": 0.6652150575437156,
|
359 |
+
"learning_rate": 3.4161490683229814e-05,
|
360 |
+
"loss": 0.4823,
|
361 |
+
"num_tokens": 230001220.0,
|
362 |
+
"step": 220
|
363 |
+
},
|
364 |
+
{
|
365 |
+
"epoch": 0.2095947834187238,
|
366 |
+
"grad_norm": 0.49487018926010595,
|
367 |
+
"learning_rate": 3.493788819875777e-05,
|
368 |
+
"loss": 0.4828,
|
369 |
+
"num_tokens": 235244100.0,
|
370 |
+
"step": 225
|
371 |
+
},
|
372 |
+
{
|
373 |
+
"epoch": 0.21425244527247322,
|
374 |
+
"grad_norm": 0.5752941558981775,
|
375 |
+
"learning_rate": 3.571428571428572e-05,
|
376 |
+
"loss": 0.4814,
|
377 |
+
"num_tokens": 240459436.0,
|
378 |
+
"step": 230
|
379 |
+
},
|
380 |
+
{
|
381 |
+
"epoch": 0.21891010712622264,
|
382 |
+
"grad_norm": 0.4619284425777841,
|
383 |
+
"learning_rate": 3.6490683229813665e-05,
|
384 |
+
"loss": 0.4743,
|
385 |
+
"num_tokens": 245702316.0,
|
386 |
+
"step": 235
|
387 |
+
},
|
388 |
+
{
|
389 |
+
"epoch": 0.22356776897997205,
|
390 |
+
"grad_norm": 0.7391653942740258,
|
391 |
+
"learning_rate": 3.7267080745341614e-05,
|
392 |
+
"loss": 0.474,
|
393 |
+
"num_tokens": 250945196.0,
|
394 |
+
"step": 240
|
395 |
+
},
|
396 |
+
{
|
397 |
+
"epoch": 0.22822543083372146,
|
398 |
+
"grad_norm": 0.6338388924664621,
|
399 |
+
"learning_rate": 3.804347826086957e-05,
|
400 |
+
"loss": 0.4614,
|
401 |
+
"num_tokens": 256130440.0,
|
402 |
+
"step": 245
|
403 |
+
},
|
404 |
+
{
|
405 |
+
"epoch": 0.2328830926874709,
|
406 |
+
"grad_norm": 0.4960164973911761,
|
407 |
+
"learning_rate": 3.881987577639752e-05,
|
408 |
+
"loss": 0.4577,
|
409 |
+
"num_tokens": 261373320.0,
|
410 |
+
"step": 250
|
411 |
+
},
|
412 |
+
{
|
413 |
+
"epoch": 0.2375407545412203,
|
414 |
+
"grad_norm": 0.3662549013001617,
|
415 |
+
"learning_rate": 3.9596273291925465e-05,
|
416 |
+
"loss": 0.4701,
|
417 |
+
"num_tokens": 266595056.0,
|
418 |
+
"step": 255
|
419 |
+
},
|
420 |
+
{
|
421 |
+
"epoch": 0.24219841639496972,
|
422 |
+
"grad_norm": 0.40055322139053984,
|
423 |
+
"learning_rate": 4.0372670807453414e-05,
|
424 |
+
"loss": 0.4749,
|
425 |
+
"num_tokens": 271837936.0,
|
426 |
+
"step": 260
|
427 |
+
},
|
428 |
+
{
|
429 |
+
"epoch": 0.24685607824871914,
|
430 |
+
"grad_norm": 0.5265912543642953,
|
431 |
+
"learning_rate": 4.114906832298137e-05,
|
432 |
+
"loss": 0.4682,
|
433 |
+
"num_tokens": 277080816.0,
|
434 |
+
"step": 265
|
435 |
+
},
|
436 |
+
{
|
437 |
+
"epoch": 0.2515137401024686,
|
438 |
+
"grad_norm": 0.516959496135824,
|
439 |
+
"learning_rate": 4.192546583850932e-05,
|
440 |
+
"loss": 0.4563,
|
441 |
+
"num_tokens": 282323696.0,
|
442 |
+
"step": 270
|
443 |
+
},
|
444 |
+
{
|
445 |
+
"epoch": 0.25617140195621796,
|
446 |
+
"grad_norm": 0.42466326053184844,
|
447 |
+
"learning_rate": 4.270186335403727e-05,
|
448 |
+
"loss": 0.4725,
|
449 |
+
"num_tokens": 287548638.0,
|
450 |
+
"step": 275
|
451 |
+
},
|
452 |
+
{
|
453 |
+
"epoch": 0.2608290638099674,
|
454 |
+
"grad_norm": 0.6461617346625652,
|
455 |
+
"learning_rate": 4.347826086956522e-05,
|
456 |
+
"loss": 0.4614,
|
457 |
+
"num_tokens": 292791518.0,
|
458 |
+
"step": 280
|
459 |
+
},
|
460 |
+
{
|
461 |
+
"epoch": 0.26548672566371684,
|
462 |
+
"grad_norm": 0.5162643395814067,
|
463 |
+
"learning_rate": 4.425465838509317e-05,
|
464 |
+
"loss": 0.4583,
|
465 |
+
"num_tokens": 298034398.0,
|
466 |
+
"step": 285
|
467 |
+
},
|
468 |
+
{
|
469 |
+
"epoch": 0.2701443875174662,
|
470 |
+
"grad_norm": 0.4606739995726742,
|
471 |
+
"learning_rate": 4.5031055900621124e-05,
|
472 |
+
"loss": 0.4564,
|
473 |
+
"num_tokens": 303277278.0,
|
474 |
+
"step": 290
|
475 |
+
},
|
476 |
+
{
|
477 |
+
"epoch": 0.27480204937121566,
|
478 |
+
"grad_norm": 0.5165208655712867,
|
479 |
+
"learning_rate": 4.580745341614907e-05,
|
480 |
+
"loss": 0.4502,
|
481 |
+
"num_tokens": 308520158.0,
|
482 |
+
"step": 295
|
483 |
+
},
|
484 |
+
{
|
485 |
+
"epoch": 0.27945971122496505,
|
486 |
+
"grad_norm": 0.3993911836573598,
|
487 |
+
"learning_rate": 4.658385093167702e-05,
|
488 |
+
"loss": 0.4634,
|
489 |
+
"num_tokens": 313763038.0,
|
490 |
+
"step": 300
|
491 |
+
},
|
492 |
+
{
|
493 |
+
"epoch": 0.2841173730787145,
|
494 |
+
"grad_norm": 0.6185284048775294,
|
495 |
+
"learning_rate": 4.736024844720497e-05,
|
496 |
+
"loss": 0.4678,
|
497 |
+
"num_tokens": 318941236.0,
|
498 |
+
"step": 305
|
499 |
+
},
|
500 |
+
{
|
501 |
+
"epoch": 0.2887750349324639,
|
502 |
+
"grad_norm": 0.6607767188478789,
|
503 |
+
"learning_rate": 4.8136645962732924e-05,
|
504 |
+
"loss": 0.4634,
|
505 |
+
"num_tokens": 324184116.0,
|
506 |
+
"step": 310
|
507 |
+
},
|
508 |
+
{
|
509 |
+
"epoch": 0.2934326967862133,
|
510 |
+
"grad_norm": 0.6792865629186282,
|
511 |
+
"learning_rate": 4.891304347826087e-05,
|
512 |
+
"loss": 0.4531,
|
513 |
+
"num_tokens": 329426996.0,
|
514 |
+
"step": 315
|
515 |
+
},
|
516 |
+
{
|
517 |
+
"epoch": 0.29809035863996275,
|
518 |
+
"grad_norm": 0.5370350636249767,
|
519 |
+
"learning_rate": 4.968944099378882e-05,
|
520 |
+
"loss": 0.4604,
|
521 |
+
"num_tokens": 334669876.0,
|
522 |
+
"step": 320
|
523 |
+
},
|
524 |
+
{
|
525 |
+
"epoch": 0.30274802049371213,
|
526 |
+
"grad_norm": 0.5243165861771709,
|
527 |
+
"learning_rate": 4.994822229892993e-05,
|
528 |
+
"loss": 0.4626,
|
529 |
+
"num_tokens": 339912756.0,
|
530 |
+
"step": 325
|
531 |
+
},
|
532 |
+
{
|
533 |
+
"epoch": 0.3074056823474616,
|
534 |
+
"grad_norm": 0.6658402668928456,
|
535 |
+
"learning_rate": 4.986192613047981e-05,
|
536 |
+
"loss": 0.4615,
|
537 |
+
"num_tokens": 345155636.0,
|
538 |
+
"step": 330
|
539 |
+
},
|
540 |
+
{
|
541 |
+
"epoch": 0.312063344201211,
|
542 |
+
"grad_norm": 0.4658973380194966,
|
543 |
+
"learning_rate": 4.977562996202969e-05,
|
544 |
+
"loss": 0.4444,
|
545 |
+
"num_tokens": 350398516.0,
|
546 |
+
"step": 335
|
547 |
+
},
|
548 |
+
{
|
549 |
+
"epoch": 0.3167210060549604,
|
550 |
+
"grad_norm": 0.513098874415573,
|
551 |
+
"learning_rate": 4.968933379357957e-05,
|
552 |
+
"loss": 0.4583,
|
553 |
+
"num_tokens": 355641396.0,
|
554 |
+
"step": 340
|
555 |
+
},
|
556 |
+
{
|
557 |
+
"epoch": 0.32137866790870984,
|
558 |
+
"grad_norm": 0.43639797114828116,
|
559 |
+
"learning_rate": 4.9603037625129445e-05,
|
560 |
+
"loss": 0.4462,
|
561 |
+
"num_tokens": 360884276.0,
|
562 |
+
"step": 345
|
563 |
+
},
|
564 |
+
{
|
565 |
+
"epoch": 0.3260363297624592,
|
566 |
+
"grad_norm": 0.41532792848046246,
|
567 |
+
"learning_rate": 4.951674145667933e-05,
|
568 |
+
"loss": 0.4483,
|
569 |
+
"num_tokens": 366127156.0,
|
570 |
+
"step": 350
|
571 |
+
},
|
572 |
+
{
|
573 |
+
"epoch": 0.33069399161620866,
|
574 |
+
"grad_norm": 0.4148646031554546,
|
575 |
+
"learning_rate": 4.94304452882292e-05,
|
576 |
+
"loss": 0.4452,
|
577 |
+
"num_tokens": 371370036.0,
|
578 |
+
"step": 355
|
579 |
+
},
|
580 |
+
{
|
581 |
+
"epoch": 0.3353516534699581,
|
582 |
+
"grad_norm": 0.5641848552142894,
|
583 |
+
"learning_rate": 4.934414911977908e-05,
|
584 |
+
"loss": 0.4553,
|
585 |
+
"num_tokens": 376600048.0,
|
586 |
+
"step": 360
|
587 |
+
},
|
588 |
+
{
|
589 |
+
"epoch": 0.3400093153237075,
|
590 |
+
"grad_norm": 0.37381304489035017,
|
591 |
+
"learning_rate": 4.9257852951328965e-05,
|
592 |
+
"loss": 0.4527,
|
593 |
+
"num_tokens": 381842928.0,
|
594 |
+
"step": 365
|
595 |
+
},
|
596 |
+
{
|
597 |
+
"epoch": 0.3446669771774569,
|
598 |
+
"grad_norm": 0.4749170963347877,
|
599 |
+
"learning_rate": 4.917155678287884e-05,
|
600 |
+
"loss": 0.4663,
|
601 |
+
"num_tokens": 387073976.0,
|
602 |
+
"step": 370
|
603 |
+
},
|
604 |
+
{
|
605 |
+
"epoch": 0.3493246390312063,
|
606 |
+
"grad_norm": 0.5043241941069802,
|
607 |
+
"learning_rate": 4.908526061442872e-05,
|
608 |
+
"loss": 0.4579,
|
609 |
+
"num_tokens": 392316856.0,
|
610 |
+
"step": 375
|
611 |
+
},
|
612 |
+
{
|
613 |
+
"epoch": 0.35398230088495575,
|
614 |
+
"grad_norm": 0.39517110563197555,
|
615 |
+
"learning_rate": 4.89989644459786e-05,
|
616 |
+
"loss": 0.4446,
|
617 |
+
"num_tokens": 397559736.0,
|
618 |
+
"step": 380
|
619 |
+
},
|
620 |
+
{
|
621 |
+
"epoch": 0.3586399627387052,
|
622 |
+
"grad_norm": 0.37708532711839055,
|
623 |
+
"learning_rate": 4.891266827752848e-05,
|
624 |
+
"loss": 0.4391,
|
625 |
+
"num_tokens": 402802616.0,
|
626 |
+
"step": 385
|
627 |
+
},
|
628 |
+
{
|
629 |
+
"epoch": 0.36329762459245457,
|
630 |
+
"grad_norm": 0.4975840523986466,
|
631 |
+
"learning_rate": 4.882637210907836e-05,
|
632 |
+
"loss": 0.4425,
|
633 |
+
"num_tokens": 408014414.0,
|
634 |
+
"step": 390
|
635 |
+
},
|
636 |
+
{
|
637 |
+
"epoch": 0.367955286446204,
|
638 |
+
"grad_norm": 0.5319257453602194,
|
639 |
+
"learning_rate": 4.874007594062824e-05,
|
640 |
+
"loss": 0.4379,
|
641 |
+
"num_tokens": 413257294.0,
|
642 |
+
"step": 395
|
643 |
+
},
|
644 |
+
{
|
645 |
+
"epoch": 0.37261294829995345,
|
646 |
+
"grad_norm": 0.4531992500866268,
|
647 |
+
"learning_rate": 4.865377977217811e-05,
|
648 |
+
"loss": 0.4369,
|
649 |
+
"num_tokens": 418500174.0,
|
650 |
+
"step": 400
|
651 |
+
},
|
652 |
+
{
|
653 |
+
"epoch": 0.37727061015370283,
|
654 |
+
"grad_norm": 0.4918946640070345,
|
655 |
+
"learning_rate": 4.8567483603728e-05,
|
656 |
+
"loss": 0.437,
|
657 |
+
"num_tokens": 423692782.0,
|
658 |
+
"step": 405
|
659 |
+
},
|
660 |
+
{
|
661 |
+
"epoch": 0.3819282720074523,
|
662 |
+
"grad_norm": 0.4204196435564102,
|
663 |
+
"learning_rate": 4.8481187435277875e-05,
|
664 |
+
"loss": 0.4439,
|
665 |
+
"num_tokens": 428845062.0,
|
666 |
+
"step": 410
|
667 |
+
},
|
668 |
+
{
|
669 |
+
"epoch": 0.38658593386120166,
|
670 |
+
"grad_norm": 0.48787071943190957,
|
671 |
+
"learning_rate": 4.839489126682776e-05,
|
672 |
+
"loss": 0.4426,
|
673 |
+
"num_tokens": 434087942.0,
|
674 |
+
"step": 415
|
675 |
+
},
|
676 |
+
{
|
677 |
+
"epoch": 0.3912435957149511,
|
678 |
+
"grad_norm": 0.4530000025912301,
|
679 |
+
"learning_rate": 4.830859509837763e-05,
|
680 |
+
"loss": 0.4337,
|
681 |
+
"num_tokens": 439278078.0,
|
682 |
+
"step": 420
|
683 |
+
},
|
684 |
+
{
|
685 |
+
"epoch": 0.39590125756870054,
|
686 |
+
"grad_norm": 0.4001439902959063,
|
687 |
+
"learning_rate": 4.822229892992751e-05,
|
688 |
+
"loss": 0.4501,
|
689 |
+
"num_tokens": 444520958.0,
|
690 |
+
"step": 425
|
691 |
+
},
|
692 |
+
{
|
693 |
+
"epoch": 0.4005589194224499,
|
694 |
+
"grad_norm": 0.5763435863000469,
|
695 |
+
"learning_rate": 4.8136002761477395e-05,
|
696 |
+
"loss": 0.4424,
|
697 |
+
"num_tokens": 449763838.0,
|
698 |
+
"step": 430
|
699 |
+
},
|
700 |
+
{
|
701 |
+
"epoch": 0.40521658127619936,
|
702 |
+
"grad_norm": 0.41267081555819357,
|
703 |
+
"learning_rate": 4.804970659302727e-05,
|
704 |
+
"loss": 0.4465,
|
705 |
+
"num_tokens": 454963270.0,
|
706 |
+
"step": 435
|
707 |
+
},
|
708 |
+
{
|
709 |
+
"epoch": 0.40987424312994875,
|
710 |
+
"grad_norm": 0.5198402187503036,
|
711 |
+
"learning_rate": 4.796341042457715e-05,
|
712 |
+
"loss": 0.4562,
|
713 |
+
"num_tokens": 460206150.0,
|
714 |
+
"step": 440
|
715 |
+
},
|
716 |
+
{
|
717 |
+
"epoch": 0.4145319049836982,
|
718 |
+
"grad_norm": 0.4804770546328782,
|
719 |
+
"learning_rate": 4.787711425612703e-05,
|
720 |
+
"loss": 0.4316,
|
721 |
+
"num_tokens": 465378662.0,
|
722 |
+
"step": 445
|
723 |
+
},
|
724 |
+
{
|
725 |
+
"epoch": 0.4191895668374476,
|
726 |
+
"grad_norm": 0.3573229568827099,
|
727 |
+
"learning_rate": 4.779081808767691e-05,
|
728 |
+
"loss": 0.4348,
|
729 |
+
"num_tokens": 470602566.0,
|
730 |
+
"step": 450
|
731 |
+
},
|
732 |
+
{
|
733 |
+
"epoch": 0.423847228691197,
|
734 |
+
"grad_norm": 0.48298666415576386,
|
735 |
+
"learning_rate": 4.770452191922679e-05,
|
736 |
+
"loss": 0.4567,
|
737 |
+
"num_tokens": 475800020.0,
|
738 |
+
"step": 455
|
739 |
+
},
|
740 |
+
{
|
741 |
+
"epoch": 0.42850489054494645,
|
742 |
+
"grad_norm": 0.4293786343270861,
|
743 |
+
"learning_rate": 4.761822575077667e-05,
|
744 |
+
"loss": 0.4356,
|
745 |
+
"num_tokens": 481042900.0,
|
746 |
+
"step": 460
|
747 |
+
},
|
748 |
+
{
|
749 |
+
"epoch": 0.43316255239869583,
|
750 |
+
"grad_norm": 0.40640797330880013,
|
751 |
+
"learning_rate": 4.753192958232654e-05,
|
752 |
+
"loss": 0.4451,
|
753 |
+
"num_tokens": 486220500.0,
|
754 |
+
"step": 465
|
755 |
+
},
|
756 |
+
{
|
757 |
+
"epoch": 0.43782021425244527,
|
758 |
+
"grad_norm": 0.3620709663973599,
|
759 |
+
"learning_rate": 4.744563341387643e-05,
|
760 |
+
"loss": 0.4366,
|
761 |
+
"num_tokens": 491463380.0,
|
762 |
+
"step": 470
|
763 |
+
},
|
764 |
+
{
|
765 |
+
"epoch": 0.4424778761061947,
|
766 |
+
"grad_norm": 0.3689460832182135,
|
767 |
+
"learning_rate": 4.7359337245426306e-05,
|
768 |
+
"loss": 0.4454,
|
769 |
+
"num_tokens": 496706260.0,
|
770 |
+
"step": 475
|
771 |
+
},
|
772 |
+
{
|
773 |
+
"epoch": 0.4471355379599441,
|
774 |
+
"grad_norm": 0.3235598346166627,
|
775 |
+
"learning_rate": 4.7273041076976184e-05,
|
776 |
+
"loss": 0.4297,
|
777 |
+
"num_tokens": 501949140.0,
|
778 |
+
"step": 480
|
779 |
+
},
|
780 |
+
{
|
781 |
+
"epoch": 0.45179319981369354,
|
782 |
+
"grad_norm": 0.3539771478611738,
|
783 |
+
"learning_rate": 4.718674490852606e-05,
|
784 |
+
"loss": 0.433,
|
785 |
+
"num_tokens": 507192020.0,
|
786 |
+
"step": 485
|
787 |
+
},
|
788 |
+
{
|
789 |
+
"epoch": 0.4564508616674429,
|
790 |
+
"grad_norm": 0.3776299787194787,
|
791 |
+
"learning_rate": 4.710044874007594e-05,
|
792 |
+
"loss": 0.4365,
|
793 |
+
"num_tokens": 512433054.0,
|
794 |
+
"step": 490
|
795 |
+
},
|
796 |
+
{
|
797 |
+
"epoch": 0.46110852352119236,
|
798 |
+
"grad_norm": 0.36237963146891655,
|
799 |
+
"learning_rate": 4.7014152571625826e-05,
|
800 |
+
"loss": 0.4273,
|
801 |
+
"num_tokens": 517658160.0,
|
802 |
+
"step": 495
|
803 |
+
},
|
804 |
+
{
|
805 |
+
"epoch": 0.4657661853749418,
|
806 |
+
"grad_norm": 0.4084396998076576,
|
807 |
+
"learning_rate": 4.6927856403175704e-05,
|
808 |
+
"loss": 0.4358,
|
809 |
+
"num_tokens": 522901040.0,
|
810 |
+
"step": 500
|
811 |
+
},
|
812 |
+
{
|
813 |
+
"epoch": 0.4704238472286912,
|
814 |
+
"grad_norm": 0.32563088148769737,
|
815 |
+
"learning_rate": 4.684156023472558e-05,
|
816 |
+
"loss": 0.4293,
|
817 |
+
"num_tokens": 528127586.0,
|
818 |
+
"step": 505
|
819 |
+
},
|
820 |
+
{
|
821 |
+
"epoch": 0.4750815090824406,
|
822 |
+
"grad_norm": 0.46748215510130064,
|
823 |
+
"learning_rate": 4.675526406627546e-05,
|
824 |
+
"loss": 0.4253,
|
825 |
+
"num_tokens": 533355284.0,
|
826 |
+
"step": 510
|
827 |
+
},
|
828 |
+
{
|
829 |
+
"epoch": 0.47973917093619,
|
830 |
+
"grad_norm": 0.5058103175826015,
|
831 |
+
"learning_rate": 4.666896789782534e-05,
|
832 |
+
"loss": 0.4382,
|
833 |
+
"num_tokens": 538598164.0,
|
834 |
+
"step": 515
|
835 |
+
},
|
836 |
+
{
|
837 |
+
"epoch": 0.48439683278993945,
|
838 |
+
"grad_norm": 0.48239977250625826,
|
839 |
+
"learning_rate": 4.658267172937522e-05,
|
840 |
+
"loss": 0.4342,
|
841 |
+
"num_tokens": 543841044.0,
|
842 |
+
"step": 520
|
843 |
+
},
|
844 |
+
{
|
845 |
+
"epoch": 0.4890544946436889,
|
846 |
+
"grad_norm": 0.6331188841101223,
|
847 |
+
"learning_rate": 4.64963755609251e-05,
|
848 |
+
"loss": 0.4418,
|
849 |
+
"num_tokens": 549083924.0,
|
850 |
+
"step": 525
|
851 |
+
},
|
852 |
+
{
|
853 |
+
"epoch": 0.49371215649743827,
|
854 |
+
"grad_norm": 0.48500000646310354,
|
855 |
+
"learning_rate": 4.641007939247497e-05,
|
856 |
+
"loss": 0.4277,
|
857 |
+
"num_tokens": 554323932.0,
|
858 |
+
"step": 530
|
859 |
+
},
|
860 |
+
{
|
861 |
+
"epoch": 0.4983698183511877,
|
862 |
+
"grad_norm": 0.6606771561537853,
|
863 |
+
"learning_rate": 4.632378322402486e-05,
|
864 |
+
"loss": 0.4367,
|
865 |
+
"num_tokens": 559555680.0,
|
866 |
+
"step": 535
|
867 |
+
},
|
868 |
+
{
|
869 |
+
"epoch": 0.5030274802049371,
|
870 |
+
"grad_norm": 0.47177575989233334,
|
871 |
+
"learning_rate": 4.6237487055574736e-05,
|
872 |
+
"loss": 0.4395,
|
873 |
+
"num_tokens": 564798560.0,
|
874 |
+
"step": 540
|
875 |
+
},
|
876 |
+
{
|
877 |
+
"epoch": 0.5076851420586865,
|
878 |
+
"grad_norm": 0.35505752604264607,
|
879 |
+
"learning_rate": 4.6151190887124615e-05,
|
880 |
+
"loss": 0.4273,
|
881 |
+
"num_tokens": 569918486.0,
|
882 |
+
"step": 545
|
883 |
+
},
|
884 |
+
{
|
885 |
+
"epoch": 0.5123428039124359,
|
886 |
+
"grad_norm": 0.5805428989783042,
|
887 |
+
"learning_rate": 4.606489471867449e-05,
|
888 |
+
"loss": 0.4427,
|
889 |
+
"num_tokens": 575160720.0,
|
890 |
+
"step": 550
|
891 |
+
},
|
892 |
+
{
|
893 |
+
"epoch": 0.5170004657661854,
|
894 |
+
"grad_norm": 0.4481109935171867,
|
895 |
+
"learning_rate": 4.597859855022437e-05,
|
896 |
+
"loss": 0.429,
|
897 |
+
"num_tokens": 580403600.0,
|
898 |
+
"step": 555
|
899 |
+
},
|
900 |
+
{
|
901 |
+
"epoch": 0.5216581276199348,
|
902 |
+
"grad_norm": 0.4306150535473462,
|
903 |
+
"learning_rate": 4.589230238177425e-05,
|
904 |
+
"loss": 0.4334,
|
905 |
+
"num_tokens": 585635440.0,
|
906 |
+
"step": 560
|
907 |
+
},
|
908 |
+
{
|
909 |
+
"epoch": 0.5263157894736842,
|
910 |
+
"grad_norm": 0.4218043527459623,
|
911 |
+
"learning_rate": 4.5806006213324134e-05,
|
912 |
+
"loss": 0.4319,
|
913 |
+
"num_tokens": 590878320.0,
|
914 |
+
"step": 565
|
915 |
+
},
|
916 |
+
{
|
917 |
+
"epoch": 0.5309734513274337,
|
918 |
+
"grad_norm": 0.3773682370056681,
|
919 |
+
"learning_rate": 4.5719710044874006e-05,
|
920 |
+
"loss": 0.4309,
|
921 |
+
"num_tokens": 596063606.0,
|
922 |
+
"step": 570
|
923 |
+
},
|
924 |
+
{
|
925 |
+
"epoch": 0.5356311131811831,
|
926 |
+
"grad_norm": 0.3725777888860041,
|
927 |
+
"learning_rate": 4.563341387642389e-05,
|
928 |
+
"loss": 0.4298,
|
929 |
+
"num_tokens": 601306486.0,
|
930 |
+
"step": 575
|
931 |
+
},
|
932 |
+
{
|
933 |
+
"epoch": 0.5402887750349324,
|
934 |
+
"grad_norm": 0.32850168482374853,
|
935 |
+
"learning_rate": 4.554711770797377e-05,
|
936 |
+
"loss": 0.4317,
|
937 |
+
"num_tokens": 606451006.0,
|
938 |
+
"step": 580
|
939 |
+
},
|
940 |
+
{
|
941 |
+
"epoch": 0.5449464368886818,
|
942 |
+
"grad_norm": 0.3344939451761741,
|
943 |
+
"learning_rate": 4.546082153952365e-05,
|
944 |
+
"loss": 0.426,
|
945 |
+
"num_tokens": 611693886.0,
|
946 |
+
"step": 585
|
947 |
+
},
|
948 |
+
{
|
949 |
+
"epoch": 0.5496040987424313,
|
950 |
+
"grad_norm": 0.4068375974188898,
|
951 |
+
"learning_rate": 4.5374525371073526e-05,
|
952 |
+
"loss": 0.4421,
|
953 |
+
"num_tokens": 616936766.0,
|
954 |
+
"step": 590
|
955 |
+
},
|
956 |
+
{
|
957 |
+
"epoch": 0.5542617605961807,
|
958 |
+
"grad_norm": 0.4761673073396981,
|
959 |
+
"learning_rate": 4.5288229202623404e-05,
|
960 |
+
"loss": 0.4329,
|
961 |
+
"num_tokens": 622179646.0,
|
962 |
+
"step": 595
|
963 |
+
},
|
964 |
+
{
|
965 |
+
"epoch": 0.5589194224499301,
|
966 |
+
"grad_norm": 0.44663542891933206,
|
967 |
+
"learning_rate": 4.520193303417328e-05,
|
968 |
+
"loss": 0.4365,
|
969 |
+
"num_tokens": 627422526.0,
|
970 |
+
"step": 600
|
971 |
+
},
|
972 |
+
{
|
973 |
+
"epoch": 0.5635770843036796,
|
974 |
+
"grad_norm": 0.44847735353439966,
|
975 |
+
"learning_rate": 4.511563686572317e-05,
|
976 |
+
"loss": 0.412,
|
977 |
+
"num_tokens": 632619928.0,
|
978 |
+
"step": 605
|
979 |
+
},
|
980 |
+
{
|
981 |
+
"epoch": 0.568234746157429,
|
982 |
+
"grad_norm": 0.45628359974960664,
|
983 |
+
"learning_rate": 4.5029340697273045e-05,
|
984 |
+
"loss": 0.4308,
|
985 |
+
"num_tokens": 637862808.0,
|
986 |
+
"step": 610
|
987 |
+
},
|
988 |
+
{
|
989 |
+
"epoch": 0.5728924080111784,
|
990 |
+
"grad_norm": 0.4800117779432551,
|
991 |
+
"learning_rate": 4.4943044528822923e-05,
|
992 |
+
"loss": 0.4228,
|
993 |
+
"num_tokens": 643105688.0,
|
994 |
+
"step": 615
|
995 |
+
},
|
996 |
+
{
|
997 |
+
"epoch": 0.5775500698649279,
|
998 |
+
"grad_norm": 0.5546132432412902,
|
999 |
+
"learning_rate": 4.48567483603728e-05,
|
1000 |
+
"loss": 0.4269,
|
1001 |
+
"num_tokens": 648348568.0,
|
1002 |
+
"step": 620
|
1003 |
+
},
|
1004 |
+
{
|
1005 |
+
"epoch": 0.5822077317186772,
|
1006 |
+
"grad_norm": 0.4664261556549962,
|
1007 |
+
"learning_rate": 4.477045219192268e-05,
|
1008 |
+
"loss": 0.4368,
|
1009 |
+
"num_tokens": 653591448.0,
|
1010 |
+
"step": 625
|
1011 |
+
},
|
1012 |
+
{
|
1013 |
+
"epoch": 0.5868653935724266,
|
1014 |
+
"grad_norm": 0.42681630594448233,
|
1015 |
+
"learning_rate": 4.4684156023472565e-05,
|
1016 |
+
"loss": 0.4222,
|
1017 |
+
"num_tokens": 658834328.0,
|
1018 |
+
"step": 630
|
1019 |
+
},
|
1020 |
+
{
|
1021 |
+
"epoch": 0.5915230554261761,
|
1022 |
+
"grad_norm": 0.4187275561832938,
|
1023 |
+
"learning_rate": 4.4597859855022436e-05,
|
1024 |
+
"loss": 0.4222,
|
1025 |
+
"num_tokens": 664028780.0,
|
1026 |
+
"step": 635
|
1027 |
+
},
|
1028 |
+
{
|
1029 |
+
"epoch": 0.5961807172799255,
|
1030 |
+
"grad_norm": 0.35933633316781455,
|
1031 |
+
"learning_rate": 4.4511563686572315e-05,
|
1032 |
+
"loss": 0.4281,
|
1033 |
+
"num_tokens": 669256250.0,
|
1034 |
+
"step": 640
|
1035 |
+
},
|
1036 |
+
{
|
1037 |
+
"epoch": 0.6008383791336749,
|
1038 |
+
"grad_norm": 0.3750506834697772,
|
1039 |
+
"learning_rate": 4.44252675181222e-05,
|
1040 |
+
"loss": 0.426,
|
1041 |
+
"num_tokens": 674460550.0,
|
1042 |
+
"step": 645
|
1043 |
+
},
|
1044 |
+
{
|
1045 |
+
"epoch": 0.6054960409874243,
|
1046 |
+
"grad_norm": 0.45094143093344574,
|
1047 |
+
"learning_rate": 4.433897134967208e-05,
|
1048 |
+
"loss": 0.4238,
|
1049 |
+
"num_tokens": 679701528.0,
|
1050 |
+
"step": 650
|
1051 |
+
},
|
1052 |
+
{
|
1053 |
+
"epoch": 0.6101537028411738,
|
1054 |
+
"grad_norm": 0.3686716302533929,
|
1055 |
+
"learning_rate": 4.4252675181221956e-05,
|
1056 |
+
"loss": 0.4311,
|
1057 |
+
"num_tokens": 684944408.0,
|
1058 |
+
"step": 655
|
1059 |
+
},
|
1060 |
+
{
|
1061 |
+
"epoch": 0.6148113646949231,
|
1062 |
+
"grad_norm": 0.4708342271610549,
|
1063 |
+
"learning_rate": 4.4166379012771834e-05,
|
1064 |
+
"loss": 0.4325,
|
1065 |
+
"num_tokens": 690187288.0,
|
1066 |
+
"step": 660
|
1067 |
+
},
|
1068 |
+
{
|
1069 |
+
"epoch": 0.6194690265486725,
|
1070 |
+
"grad_norm": 0.3687257046878129,
|
1071 |
+
"learning_rate": 4.408008284432171e-05,
|
1072 |
+
"loss": 0.4257,
|
1073 |
+
"num_tokens": 695372640.0,
|
1074 |
+
"step": 665
|
1075 |
+
},
|
1076 |
+
{
|
1077 |
+
"epoch": 0.624126688402422,
|
1078 |
+
"grad_norm": 0.34502453479936046,
|
1079 |
+
"learning_rate": 4.39937866758716e-05,
|
1080 |
+
"loss": 0.4287,
|
1081 |
+
"num_tokens": 700615520.0,
|
1082 |
+
"step": 670
|
1083 |
+
},
|
1084 |
+
{
|
1085 |
+
"epoch": 0.6287843502561714,
|
1086 |
+
"grad_norm": 0.57257718960929,
|
1087 |
+
"learning_rate": 4.3907490507421476e-05,
|
1088 |
+
"loss": 0.4216,
|
1089 |
+
"num_tokens": 705831004.0,
|
1090 |
+
"step": 675
|
1091 |
+
},
|
1092 |
+
{
|
1093 |
+
"epoch": 0.6334420121099208,
|
1094 |
+
"grad_norm": 0.40743947034127986,
|
1095 |
+
"learning_rate": 4.382119433897135e-05,
|
1096 |
+
"loss": 0.4254,
|
1097 |
+
"num_tokens": 711015208.0,
|
1098 |
+
"step": 680
|
1099 |
+
},
|
1100 |
+
{
|
1101 |
+
"epoch": 0.6380996739636703,
|
1102 |
+
"grad_norm": 0.4712504333805676,
|
1103 |
+
"learning_rate": 4.373489817052123e-05,
|
1104 |
+
"loss": 0.4357,
|
1105 |
+
"num_tokens": 716205240.0,
|
1106 |
+
"step": 685
|
1107 |
+
},
|
1108 |
+
{
|
1109 |
+
"epoch": 0.6427573358174197,
|
1110 |
+
"grad_norm": 0.31386050500322255,
|
1111 |
+
"learning_rate": 4.364860200207111e-05,
|
1112 |
+
"loss": 0.4245,
|
1113 |
+
"num_tokens": 721448120.0,
|
1114 |
+
"step": 690
|
1115 |
+
},
|
1116 |
+
{
|
1117 |
+
"epoch": 0.6474149976711691,
|
1118 |
+
"grad_norm": 0.34856077066736296,
|
1119 |
+
"learning_rate": 4.356230583362099e-05,
|
1120 |
+
"loss": 0.4243,
|
1121 |
+
"num_tokens": 726691000.0,
|
1122 |
+
"step": 695
|
1123 |
+
},
|
1124 |
+
{
|
1125 |
+
"epoch": 0.6520726595249184,
|
1126 |
+
"grad_norm": 0.35138951547463787,
|
1127 |
+
"learning_rate": 4.347600966517087e-05,
|
1128 |
+
"loss": 0.4208,
|
1129 |
+
"num_tokens": 731930908.0,
|
1130 |
+
"step": 700
|
1131 |
+
},
|
1132 |
+
{
|
1133 |
+
"epoch": 0.6567303213786679,
|
1134 |
+
"grad_norm": 0.3563298490627363,
|
1135 |
+
"learning_rate": 4.3389713496720745e-05,
|
1136 |
+
"loss": 0.4184,
|
1137 |
+
"num_tokens": 737133156.0,
|
1138 |
+
"step": 705
|
1139 |
+
},
|
1140 |
+
{
|
1141 |
+
"epoch": 0.6613879832324173,
|
1142 |
+
"grad_norm": 0.29828582782393925,
|
1143 |
+
"learning_rate": 4.330341732827063e-05,
|
1144 |
+
"loss": 0.4319,
|
1145 |
+
"num_tokens": 742336330.0,
|
1146 |
+
"step": 710
|
1147 |
+
},
|
1148 |
+
{
|
1149 |
+
"epoch": 0.6660456450861667,
|
1150 |
+
"grad_norm": 0.4554868776579047,
|
1151 |
+
"learning_rate": 4.321712115982051e-05,
|
1152 |
+
"loss": 0.4245,
|
1153 |
+
"num_tokens": 747579210.0,
|
1154 |
+
"step": 715
|
1155 |
+
},
|
1156 |
+
{
|
1157 |
+
"epoch": 0.6707033069399162,
|
1158 |
+
"grad_norm": 0.44237565032771087,
|
1159 |
+
"learning_rate": 4.3130824991370387e-05,
|
1160 |
+
"loss": 0.4163,
|
1161 |
+
"num_tokens": 752752000.0,
|
1162 |
+
"step": 720
|
1163 |
+
},
|
1164 |
+
{
|
1165 |
+
"epoch": 0.6753609687936656,
|
1166 |
+
"grad_norm": 0.4203289082659788,
|
1167 |
+
"learning_rate": 4.3044528822920265e-05,
|
1168 |
+
"loss": 0.4204,
|
1169 |
+
"num_tokens": 757994880.0,
|
1170 |
+
"step": 725
|
1171 |
+
},
|
1172 |
+
{
|
1173 |
+
"epoch": 0.680018630647415,
|
1174 |
+
"grad_norm": 0.42671358285819366,
|
1175 |
+
"learning_rate": 4.295823265447014e-05,
|
1176 |
+
"loss": 0.4277,
|
1177 |
+
"num_tokens": 763237760.0,
|
1178 |
+
"step": 730
|
1179 |
+
},
|
1180 |
+
{
|
1181 |
+
"epoch": 0.6846762925011645,
|
1182 |
+
"grad_norm": 0.37538834692647144,
|
1183 |
+
"learning_rate": 4.287193648602002e-05,
|
1184 |
+
"loss": 0.4157,
|
1185 |
+
"num_tokens": 768480640.0,
|
1186 |
+
"step": 735
|
1187 |
+
},
|
1188 |
+
{
|
1189 |
+
"epoch": 0.6893339543549138,
|
1190 |
+
"grad_norm": 0.4556647024263887,
|
1191 |
+
"learning_rate": 4.27856403175699e-05,
|
1192 |
+
"loss": 0.4197,
|
1193 |
+
"num_tokens": 773723520.0,
|
1194 |
+
"step": 740
|
1195 |
+
},
|
1196 |
+
{
|
1197 |
+
"epoch": 0.6939916162086632,
|
1198 |
+
"grad_norm": 0.4811016264457114,
|
1199 |
+
"learning_rate": 4.269934414911978e-05,
|
1200 |
+
"loss": 0.4181,
|
1201 |
+
"num_tokens": 778966400.0,
|
1202 |
+
"step": 745
|
1203 |
+
},
|
1204 |
+
{
|
1205 |
+
"epoch": 0.6986492780624126,
|
1206 |
+
"grad_norm": 0.46408266345529087,
|
1207 |
+
"learning_rate": 4.261304798066966e-05,
|
1208 |
+
"loss": 0.4262,
|
1209 |
+
"num_tokens": 784209280.0,
|
1210 |
+
"step": 750
|
1211 |
+
},
|
1212 |
+
{
|
1213 |
+
"epoch": 0.7033069399161621,
|
1214 |
+
"grad_norm": 0.4571430025824553,
|
1215 |
+
"learning_rate": 4.252675181221954e-05,
|
1216 |
+
"loss": 0.4133,
|
1217 |
+
"num_tokens": 789452160.0,
|
1218 |
+
"step": 755
|
1219 |
+
},
|
1220 |
+
{
|
1221 |
+
"epoch": 0.7079646017699115,
|
1222 |
+
"grad_norm": 0.44928992980297267,
|
1223 |
+
"learning_rate": 4.244045564376942e-05,
|
1224 |
+
"loss": 0.4183,
|
1225 |
+
"num_tokens": 794695040.0,
|
1226 |
+
"step": 760
|
1227 |
+
},
|
1228 |
+
{
|
1229 |
+
"epoch": 0.7126222636236609,
|
1230 |
+
"grad_norm": 0.42294682770420816,
|
1231 |
+
"learning_rate": 4.23541594753193e-05,
|
1232 |
+
"loss": 0.4256,
|
1233 |
+
"num_tokens": 799937676.0,
|
1234 |
+
"step": 765
|
1235 |
+
},
|
1236 |
+
{
|
1237 |
+
"epoch": 0.7172799254774104,
|
1238 |
+
"grad_norm": 0.46170931025430106,
|
1239 |
+
"learning_rate": 4.2267863306869176e-05,
|
1240 |
+
"loss": 0.425,
|
1241 |
+
"num_tokens": 805180556.0,
|
1242 |
+
"step": 770
|
1243 |
+
},
|
1244 |
+
{
|
1245 |
+
"epoch": 0.7219375873311598,
|
1246 |
+
"grad_norm": 0.5782381769703572,
|
1247 |
+
"learning_rate": 4.2181567138419054e-05,
|
1248 |
+
"loss": 0.4136,
|
1249 |
+
"num_tokens": 810397834.0,
|
1250 |
+
"step": 775
|
1251 |
+
},
|
1252 |
+
{
|
1253 |
+
"epoch": 0.7265952491849091,
|
1254 |
+
"grad_norm": 0.41650244211144916,
|
1255 |
+
"learning_rate": 4.209527096996894e-05,
|
1256 |
+
"loss": 0.4304,
|
1257 |
+
"num_tokens": 815565546.0,
|
1258 |
+
"step": 780
|
1259 |
+
},
|
1260 |
+
{
|
1261 |
+
"epoch": 0.7312529110386586,
|
1262 |
+
"grad_norm": 0.43752752013886975,
|
1263 |
+
"learning_rate": 4.200897480151881e-05,
|
1264 |
+
"loss": 0.4228,
|
1265 |
+
"num_tokens": 820802646.0,
|
1266 |
+
"step": 785
|
1267 |
+
},
|
1268 |
+
{
|
1269 |
+
"epoch": 0.735910572892408,
|
1270 |
+
"grad_norm": 0.3573411269154002,
|
1271 |
+
"learning_rate": 4.1922678633068695e-05,
|
1272 |
+
"loss": 0.414,
|
1273 |
+
"num_tokens": 826045526.0,
|
1274 |
+
"step": 790
|
1275 |
+
},
|
1276 |
+
{
|
1277 |
+
"epoch": 0.7405682347461574,
|
1278 |
+
"grad_norm": 0.37034836674225624,
|
1279 |
+
"learning_rate": 4.1836382464618573e-05,
|
1280 |
+
"loss": 0.4235,
|
1281 |
+
"num_tokens": 831245076.0,
|
1282 |
+
"step": 795
|
1283 |
+
},
|
1284 |
+
{
|
1285 |
+
"epoch": 0.7452258965999069,
|
1286 |
+
"grad_norm": 0.3473109235091556,
|
1287 |
+
"learning_rate": 4.175008629616845e-05,
|
1288 |
+
"loss": 0.4174,
|
1289 |
+
"num_tokens": 836487956.0,
|
1290 |
+
"step": 800
|
1291 |
+
},
|
1292 |
+
{
|
1293 |
+
"epoch": 0.7498835584536563,
|
1294 |
+
"grad_norm": 0.3454248879956119,
|
1295 |
+
"learning_rate": 4.166379012771833e-05,
|
1296 |
+
"loss": 0.4343,
|
1297 |
+
"num_tokens": 841670226.0,
|
1298 |
+
"step": 805
|
1299 |
+
},
|
1300 |
+
{
|
1301 |
+
"epoch": 0.7545412203074057,
|
1302 |
+
"grad_norm": 0.45090929011440717,
|
1303 |
+
"learning_rate": 4.157749395926821e-05,
|
1304 |
+
"loss": 0.4188,
|
1305 |
+
"num_tokens": 846891280.0,
|
1306 |
+
"step": 810
|
1307 |
+
},
|
1308 |
+
{
|
1309 |
+
"epoch": 0.759198882161155,
|
1310 |
+
"grad_norm": 0.43284998579291406,
|
1311 |
+
"learning_rate": 4.1491197790818086e-05,
|
1312 |
+
"loss": 0.4216,
|
1313 |
+
"num_tokens": 852076096.0,
|
1314 |
+
"step": 815
|
1315 |
+
},
|
1316 |
+
{
|
1317 |
+
"epoch": 0.7638565440149045,
|
1318 |
+
"grad_norm": 0.3181896282241753,
|
1319 |
+
"learning_rate": 4.140490162236797e-05,
|
1320 |
+
"loss": 0.4204,
|
1321 |
+
"num_tokens": 857318976.0,
|
1322 |
+
"step": 820
|
1323 |
+
},
|
1324 |
+
{
|
1325 |
+
"epoch": 0.7685142058686539,
|
1326 |
+
"grad_norm": 0.46883689539559736,
|
1327 |
+
"learning_rate": 4.131860545391785e-05,
|
1328 |
+
"loss": 0.4102,
|
1329 |
+
"num_tokens": 862561856.0,
|
1330 |
+
"step": 825
|
1331 |
+
},
|
1332 |
+
{
|
1333 |
+
"epoch": 0.7731718677224033,
|
1334 |
+
"grad_norm": 0.43638309621826277,
|
1335 |
+
"learning_rate": 4.123230928546773e-05,
|
1336 |
+
"loss": 0.4193,
|
1337 |
+
"num_tokens": 867804736.0,
|
1338 |
+
"step": 830
|
1339 |
+
},
|
1340 |
+
{
|
1341 |
+
"epoch": 0.7778295295761528,
|
1342 |
+
"grad_norm": 0.5494788138169401,
|
1343 |
+
"learning_rate": 4.1146013117017606e-05,
|
1344 |
+
"loss": 0.4255,
|
1345 |
+
"num_tokens": 873045328.0,
|
1346 |
+
"step": 835
|
1347 |
+
},
|
1348 |
+
{
|
1349 |
+
"epoch": 0.7824871914299022,
|
1350 |
+
"grad_norm": 0.35117057126261253,
|
1351 |
+
"learning_rate": 4.1059716948567484e-05,
|
1352 |
+
"loss": 0.41,
|
1353 |
+
"num_tokens": 878249566.0,
|
1354 |
+
"step": 840
|
1355 |
+
},
|
1356 |
+
{
|
1357 |
+
"epoch": 0.7871448532836516,
|
1358 |
+
"grad_norm": 0.547134386710333,
|
1359 |
+
"learning_rate": 4.097342078011737e-05,
|
1360 |
+
"loss": 0.4179,
|
1361 |
+
"num_tokens": 883492446.0,
|
1362 |
+
"step": 845
|
1363 |
+
},
|
1364 |
+
{
|
1365 |
+
"epoch": 0.7918025151374011,
|
1366 |
+
"grad_norm": 0.3667952082270578,
|
1367 |
+
"learning_rate": 4.088712461166724e-05,
|
1368 |
+
"loss": 0.4179,
|
1369 |
+
"num_tokens": 888735326.0,
|
1370 |
+
"step": 850
|
1371 |
+
},
|
1372 |
+
{
|
1373 |
+
"epoch": 0.7964601769911505,
|
1374 |
+
"grad_norm": 0.35029407025170417,
|
1375 |
+
"learning_rate": 4.080082844321712e-05,
|
1376 |
+
"loss": 0.4093,
|
1377 |
+
"num_tokens": 893978206.0,
|
1378 |
+
"step": 855
|
1379 |
+
},
|
1380 |
+
{
|
1381 |
+
"epoch": 0.8011178388448998,
|
1382 |
+
"grad_norm": 0.39249238026288563,
|
1383 |
+
"learning_rate": 4.0714532274767004e-05,
|
1384 |
+
"loss": 0.4114,
|
1385 |
+
"num_tokens": 899180370.0,
|
1386 |
+
"step": 860
|
1387 |
+
},
|
1388 |
+
{
|
1389 |
+
"epoch": 0.8057755006986492,
|
1390 |
+
"grad_norm": 0.3511762742188835,
|
1391 |
+
"learning_rate": 4.062823610631688e-05,
|
1392 |
+
"loss": 0.4151,
|
1393 |
+
"num_tokens": 904405480.0,
|
1394 |
+
"step": 865
|
1395 |
+
},
|
1396 |
+
{
|
1397 |
+
"epoch": 0.8104331625523987,
|
1398 |
+
"grad_norm": 0.42731908571108257,
|
1399 |
+
"learning_rate": 4.054193993786676e-05,
|
1400 |
+
"loss": 0.4087,
|
1401 |
+
"num_tokens": 909648360.0,
|
1402 |
+
"step": 870
|
1403 |
+
},
|
1404 |
+
{
|
1405 |
+
"epoch": 0.8150908244061481,
|
1406 |
+
"grad_norm": 0.5462125566533138,
|
1407 |
+
"learning_rate": 4.045564376941664e-05,
|
1408 |
+
"loss": 0.4192,
|
1409 |
+
"num_tokens": 914891240.0,
|
1410 |
+
"step": 875
|
1411 |
+
},
|
1412 |
+
{
|
1413 |
+
"epoch": 0.8197484862598975,
|
1414 |
+
"grad_norm": 0.4238114065916947,
|
1415 |
+
"learning_rate": 4.036934760096652e-05,
|
1416 |
+
"loss": 0.4035,
|
1417 |
+
"num_tokens": 920134120.0,
|
1418 |
+
"step": 880
|
1419 |
+
},
|
1420 |
+
{
|
1421 |
+
"epoch": 0.824406148113647,
|
1422 |
+
"grad_norm": 0.4511242532489273,
|
1423 |
+
"learning_rate": 4.02830514325164e-05,
|
1424 |
+
"loss": 0.4193,
|
1425 |
+
"num_tokens": 925348344.0,
|
1426 |
+
"step": 885
|
1427 |
+
},
|
1428 |
+
{
|
1429 |
+
"epoch": 0.8290638099673964,
|
1430 |
+
"grad_norm": 0.3718602180962659,
|
1431 |
+
"learning_rate": 4.019675526406628e-05,
|
1432 |
+
"loss": 0.4183,
|
1433 |
+
"num_tokens": 930591224.0,
|
1434 |
+
"step": 890
|
1435 |
+
},
|
1436 |
+
{
|
1437 |
+
"epoch": 0.8337214718211458,
|
1438 |
+
"grad_norm": 0.42228810579780685,
|
1439 |
+
"learning_rate": 4.011045909561615e-05,
|
1440 |
+
"loss": 0.417,
|
1441 |
+
"num_tokens": 935834104.0,
|
1442 |
+
"step": 895
|
1443 |
+
},
|
1444 |
+
{
|
1445 |
+
"epoch": 0.8383791336748952,
|
1446 |
+
"grad_norm": 0.3343462952586969,
|
1447 |
+
"learning_rate": 4.0024162927166037e-05,
|
1448 |
+
"loss": 0.413,
|
1449 |
+
"num_tokens": 941076984.0,
|
1450 |
+
"step": 900
|
1451 |
+
},
|
1452 |
+
{
|
1453 |
+
"epoch": 0.8430367955286446,
|
1454 |
+
"grad_norm": 0.3695657194075559,
|
1455 |
+
"learning_rate": 3.9937866758715915e-05,
|
1456 |
+
"loss": 0.4166,
|
1457 |
+
"num_tokens": 946319864.0,
|
1458 |
+
"step": 905
|
1459 |
+
},
|
1460 |
+
{
|
1461 |
+
"epoch": 0.847694457382394,
|
1462 |
+
"grad_norm": 0.3692226356910684,
|
1463 |
+
"learning_rate": 3.98515705902658e-05,
|
1464 |
+
"loss": 0.4228,
|
1465 |
+
"num_tokens": 951515422.0,
|
1466 |
+
"step": 910
|
1467 |
+
},
|
1468 |
+
{
|
1469 |
+
"epoch": 0.8523521192361434,
|
1470 |
+
"grad_norm": 0.46933444657499496,
|
1471 |
+
"learning_rate": 3.976527442181567e-05,
|
1472 |
+
"loss": 0.4137,
|
1473 |
+
"num_tokens": 956704248.0,
|
1474 |
+
"step": 915
|
1475 |
+
},
|
1476 |
+
{
|
1477 |
+
"epoch": 0.8570097810898929,
|
1478 |
+
"grad_norm": 0.420307871401766,
|
1479 |
+
"learning_rate": 3.967897825336555e-05,
|
1480 |
+
"loss": 0.4209,
|
1481 |
+
"num_tokens": 961947128.0,
|
1482 |
+
"step": 920
|
1483 |
+
},
|
1484 |
+
{
|
1485 |
+
"epoch": 0.8616674429436423,
|
1486 |
+
"grad_norm": 0.3405221647756501,
|
1487 |
+
"learning_rate": 3.9592682084915434e-05,
|
1488 |
+
"loss": 0.4147,
|
1489 |
+
"num_tokens": 967190008.0,
|
1490 |
+
"step": 925
|
1491 |
+
},
|
1492 |
+
{
|
1493 |
+
"epoch": 0.8663251047973917,
|
1494 |
+
"grad_norm": 0.44331006916678434,
|
1495 |
+
"learning_rate": 3.950638591646531e-05,
|
1496 |
+
"loss": 0.4178,
|
1497 |
+
"num_tokens": 972432888.0,
|
1498 |
+
"step": 930
|
1499 |
+
},
|
1500 |
+
{
|
1501 |
+
"epoch": 0.8709827666511412,
|
1502 |
+
"grad_norm": 0.3422809377363051,
|
1503 |
+
"learning_rate": 3.942008974801519e-05,
|
1504 |
+
"loss": 0.4039,
|
1505 |
+
"num_tokens": 977675768.0,
|
1506 |
+
"step": 935
|
1507 |
+
},
|
1508 |
+
{
|
1509 |
+
"epoch": 0.8756404285048905,
|
1510 |
+
"grad_norm": 0.4174187028348948,
|
1511 |
+
"learning_rate": 3.933379357956507e-05,
|
1512 |
+
"loss": 0.4058,
|
1513 |
+
"num_tokens": 982908826.0,
|
1514 |
+
"step": 940
|
1515 |
+
},
|
1516 |
+
{
|
1517 |
+
"epoch": 0.8802980903586399,
|
1518 |
+
"grad_norm": 0.36023411801863825,
|
1519 |
+
"learning_rate": 3.924749741111495e-05,
|
1520 |
+
"loss": 0.4083,
|
1521 |
+
"num_tokens": 988129568.0,
|
1522 |
+
"step": 945
|
1523 |
+
},
|
1524 |
+
{
|
1525 |
+
"epoch": 0.8849557522123894,
|
1526 |
+
"grad_norm": 0.37697561626191384,
|
1527 |
+
"learning_rate": 3.916120124266483e-05,
|
1528 |
+
"loss": 0.3982,
|
1529 |
+
"num_tokens": 993372448.0,
|
1530 |
+
"step": 950
|
1531 |
+
},
|
1532 |
+
{
|
1533 |
+
"epoch": 0.8896134140661388,
|
1534 |
+
"grad_norm": 0.32970248458357243,
|
1535 |
+
"learning_rate": 3.9074905074214704e-05,
|
1536 |
+
"loss": 0.4124,
|
1537 |
+
"num_tokens": 998615328.0,
|
1538 |
+
"step": 955
|
1539 |
+
},
|
1540 |
+
{
|
1541 |
+
"epoch": 0.8942710759198882,
|
1542 |
+
"grad_norm": 0.6423339790046058,
|
1543 |
+
"learning_rate": 3.898860890576458e-05,
|
1544 |
+
"loss": 0.4188,
|
1545 |
+
"num_tokens": 1003840426.0,
|
1546 |
+
"step": 960
|
1547 |
+
},
|
1548 |
+
{
|
1549 |
+
"epoch": 0.8989287377736377,
|
1550 |
+
"grad_norm": 0.33989654580246514,
|
1551 |
+
"learning_rate": 3.890231273731447e-05,
|
1552 |
+
"loss": 0.4129,
|
1553 |
+
"num_tokens": 1009083306.0,
|
1554 |
+
"step": 965
|
1555 |
+
},
|
1556 |
+
{
|
1557 |
+
"epoch": 0.9035863996273871,
|
1558 |
+
"grad_norm": 0.4253291410824839,
|
1559 |
+
"learning_rate": 3.8816016568864345e-05,
|
1560 |
+
"loss": 0.4156,
|
1561 |
+
"num_tokens": 1014326186.0,
|
1562 |
+
"step": 970
|
1563 |
+
},
|
1564 |
+
{
|
1565 |
+
"epoch": 0.9082440614811365,
|
1566 |
+
"grad_norm": 0.4362973979341557,
|
1567 |
+
"learning_rate": 3.8729720400414224e-05,
|
1568 |
+
"loss": 0.4101,
|
1569 |
+
"num_tokens": 1019569066.0,
|
1570 |
+
"step": 975
|
1571 |
+
},
|
1572 |
+
{
|
1573 |
+
"epoch": 0.9129017233348858,
|
1574 |
+
"grad_norm": 0.3848511989847654,
|
1575 |
+
"learning_rate": 3.86434242319641e-05,
|
1576 |
+
"loss": 0.4133,
|
1577 |
+
"num_tokens": 1024811946.0,
|
1578 |
+
"step": 980
|
1579 |
+
},
|
1580 |
+
{
|
1581 |
+
"epoch": 0.9175593851886353,
|
1582 |
+
"grad_norm": 0.41823519040308965,
|
1583 |
+
"learning_rate": 3.855712806351398e-05,
|
1584 |
+
"loss": 0.4175,
|
1585 |
+
"num_tokens": 1030054826.0,
|
1586 |
+
"step": 985
|
1587 |
+
},
|
1588 |
+
{
|
1589 |
+
"epoch": 0.9222170470423847,
|
1590 |
+
"grad_norm": 0.4588981814462144,
|
1591 |
+
"learning_rate": 3.8470831895063865e-05,
|
1592 |
+
"loss": 0.3901,
|
1593 |
+
"num_tokens": 1035279144.0,
|
1594 |
+
"step": 990
|
1595 |
+
},
|
1596 |
+
{
|
1597 |
+
"epoch": 0.9268747088961341,
|
1598 |
+
"grad_norm": 0.42658567347281534,
|
1599 |
+
"learning_rate": 3.838453572661374e-05,
|
1600 |
+
"loss": 0.4065,
|
1601 |
+
"num_tokens": 1040522024.0,
|
1602 |
+
"step": 995
|
1603 |
+
},
|
1604 |
+
{
|
1605 |
+
"epoch": 0.9315323707498836,
|
1606 |
+
"grad_norm": 0.40893294515048517,
|
1607 |
+
"learning_rate": 3.8298239558163615e-05,
|
1608 |
+
"loss": 0.4098,
|
1609 |
+
"num_tokens": 1045764904.0,
|
1610 |
+
"step": 1000
|
1611 |
+
},
|
1612 |
+
{
|
1613 |
+
"epoch": 0.936190032603633,
|
1614 |
+
"grad_norm": 0.3307735236305363,
|
1615 |
+
"learning_rate": 3.82119433897135e-05,
|
1616 |
+
"loss": 0.4182,
|
1617 |
+
"num_tokens": 1051007784.0,
|
1618 |
+
"step": 1005
|
1619 |
+
},
|
1620 |
+
{
|
1621 |
+
"epoch": 0.9408476944573824,
|
1622 |
+
"grad_norm": 0.37133171698698186,
|
1623 |
+
"learning_rate": 3.812564722126338e-05,
|
1624 |
+
"loss": 0.4096,
|
1625 |
+
"num_tokens": 1056250664.0,
|
1626 |
+
"step": 1010
|
1627 |
+
},
|
1628 |
+
{
|
1629 |
+
"epoch": 0.9455053563111319,
|
1630 |
+
"grad_norm": 0.3254043253190745,
|
1631 |
+
"learning_rate": 3.8039351052813256e-05,
|
1632 |
+
"loss": 0.4104,
|
1633 |
+
"num_tokens": 1061493544.0,
|
1634 |
+
"step": 1015
|
1635 |
+
},
|
1636 |
+
{
|
1637 |
+
"epoch": 0.9501630181648812,
|
1638 |
+
"grad_norm": 0.33341728510354113,
|
1639 |
+
"learning_rate": 3.7953054884363134e-05,
|
1640 |
+
"loss": 0.4187,
|
1641 |
+
"num_tokens": 1066736424.0,
|
1642 |
+
"step": 1020
|
1643 |
+
},
|
1644 |
+
{
|
1645 |
+
"epoch": 0.9548206800186306,
|
1646 |
+
"grad_norm": 0.3507124223156066,
|
1647 |
+
"learning_rate": 3.786675871591301e-05,
|
1648 |
+
"loss": 0.411,
|
1649 |
+
"num_tokens": 1071979304.0,
|
1650 |
+
"step": 1025
|
1651 |
+
},
|
1652 |
+
{
|
1653 |
+
"epoch": 0.95947834187238,
|
1654 |
+
"grad_norm": 0.34950902787772553,
|
1655 |
+
"learning_rate": 3.77804625474629e-05,
|
1656 |
+
"loss": 0.4028,
|
1657 |
+
"num_tokens": 1077222184.0,
|
1658 |
+
"step": 1030
|
1659 |
+
},
|
1660 |
+
{
|
1661 |
+
"epoch": 0.9641360037261295,
|
1662 |
+
"grad_norm": 0.34720406632790546,
|
1663 |
+
"learning_rate": 3.7694166379012776e-05,
|
1664 |
+
"loss": 0.4059,
|
1665 |
+
"num_tokens": 1082465064.0,
|
1666 |
+
"step": 1035
|
1667 |
+
},
|
1668 |
+
{
|
1669 |
+
"epoch": 0.9687936655798789,
|
1670 |
+
"grad_norm": 0.341563694020237,
|
1671 |
+
"learning_rate": 3.7607870210562654e-05,
|
1672 |
+
"loss": 0.405,
|
1673 |
+
"num_tokens": 1087707944.0,
|
1674 |
+
"step": 1040
|
1675 |
+
},
|
1676 |
+
{
|
1677 |
+
"epoch": 0.9734513274336283,
|
1678 |
+
"grad_norm": 0.3609889557327282,
|
1679 |
+
"learning_rate": 3.752157404211253e-05,
|
1680 |
+
"loss": 0.4059,
|
1681 |
+
"num_tokens": 1092923046.0,
|
1682 |
+
"step": 1045
|
1683 |
+
},
|
1684 |
+
{
|
1685 |
+
"epoch": 0.9781089892873778,
|
1686 |
+
"grad_norm": 0.3125635476039176,
|
1687 |
+
"learning_rate": 3.743527787366241e-05,
|
1688 |
+
"loss": 0.4057,
|
1689 |
+
"num_tokens": 1098165926.0,
|
1690 |
+
"step": 1050
|
1691 |
+
},
|
1692 |
+
{
|
1693 |
+
"epoch": 0.9827666511411272,
|
1694 |
+
"grad_norm": 0.3381394074099237,
|
1695 |
+
"learning_rate": 3.734898170521229e-05,
|
1696 |
+
"loss": 0.4098,
|
1697 |
+
"num_tokens": 1103324696.0,
|
1698 |
+
"step": 1055
|
1699 |
+
},
|
1700 |
+
{
|
1701 |
+
"epoch": 0.9874243129948765,
|
1702 |
+
"grad_norm": 0.3968089210296165,
|
1703 |
+
"learning_rate": 3.7262685536762174e-05,
|
1704 |
+
"loss": 0.409,
|
1705 |
+
"num_tokens": 1108567576.0,
|
1706 |
+
"step": 1060
|
1707 |
+
},
|
1708 |
+
{
|
1709 |
+
"epoch": 0.992081974848626,
|
1710 |
+
"grad_norm": 0.4001357948983539,
|
1711 |
+
"learning_rate": 3.7176389368312045e-05,
|
1712 |
+
"loss": 0.4079,
|
1713 |
+
"num_tokens": 1113810456.0,
|
1714 |
+
"step": 1065
|
1715 |
+
},
|
1716 |
+
{
|
1717 |
+
"epoch": 0.9967396367023754,
|
1718 |
+
"grad_norm": 0.36783487639258866,
|
1719 |
+
"learning_rate": 3.709009319986193e-05,
|
1720 |
+
"loss": 0.3987,
|
1721 |
+
"num_tokens": 1119053336.0,
|
1722 |
+
"step": 1070
|
1723 |
+
},
|
1724 |
+
{
|
1725 |
+
"epoch": 1.00093153237075,
|
1726 |
+
"grad_norm": 0.5233605999346443,
|
1727 |
+
"learning_rate": 3.700379703141181e-05,
|
1728 |
+
"loss": 0.4104,
|
1729 |
+
"num_tokens": 1123444248.0,
|
1730 |
+
"step": 1075
|
1731 |
+
},
|
1732 |
+
{
|
1733 |
+
"epoch": 1.0055891942244992,
|
1734 |
+
"grad_norm": 0.35621728589294477,
|
1735 |
+
"learning_rate": 3.6917500862961687e-05,
|
1736 |
+
"loss": 0.3564,
|
1737 |
+
"num_tokens": 1128625632.0,
|
1738 |
+
"step": 1080
|
1739 |
+
},
|
1740 |
+
{
|
1741 |
+
"epoch": 1.0102468560782487,
|
1742 |
+
"grad_norm": 0.3379539324474777,
|
1743 |
+
"learning_rate": 3.6831204694511565e-05,
|
1744 |
+
"loss": 0.3426,
|
1745 |
+
"num_tokens": 1133868512.0,
|
1746 |
+
"step": 1085
|
1747 |
+
},
|
1748 |
+
{
|
1749 |
+
"epoch": 1.0149045179319982,
|
1750 |
+
"grad_norm": 0.3230715626176304,
|
1751 |
+
"learning_rate": 3.674490852606144e-05,
|
1752 |
+
"loss": 0.3558,
|
1753 |
+
"num_tokens": 1139111392.0,
|
1754 |
+
"step": 1090
|
1755 |
+
},
|
1756 |
+
{
|
1757 |
+
"epoch": 1.0195621797857475,
|
1758 |
+
"grad_norm": 0.4474812744659829,
|
1759 |
+
"learning_rate": 3.665861235761132e-05,
|
1760 |
+
"loss": 0.3512,
|
1761 |
+
"num_tokens": 1144313368.0,
|
1762 |
+
"step": 1095
|
1763 |
+
},
|
1764 |
+
{
|
1765 |
+
"epoch": 1.024219841639497,
|
1766 |
+
"grad_norm": 0.3511076125082377,
|
1767 |
+
"learning_rate": 3.6572316189161206e-05,
|
1768 |
+
"loss": 0.3554,
|
1769 |
+
"num_tokens": 1149498184.0,
|
1770 |
+
"step": 1100
|
1771 |
+
}
|
1772 |
+
],
|
1773 |
+
"logging_steps": 5,
|
1774 |
+
"max_steps": 3219,
|
1775 |
+
"num_input_tokens_seen": 0,
|
1776 |
+
"num_train_epochs": 3,
|
1777 |
+
"save_steps": 550,
|
1778 |
+
"stateful_callbacks": {
|
1779 |
+
"TrainerControl": {
|
1780 |
+
"args": {
|
1781 |
+
"should_epoch_stop": false,
|
1782 |
+
"should_evaluate": false,
|
1783 |
+
"should_log": false,
|
1784 |
+
"should_save": true,
|
1785 |
+
"should_training_stop": false
|
1786 |
+
},
|
1787 |
+
"attributes": {}
|
1788 |
+
}
|
1789 |
+
},
|
1790 |
+
"total_flos": 9.419208775350354e+17,
|
1791 |
+
"train_batch_size": 1,
|
1792 |
+
"trial_name": null,
|
1793 |
+
"trial_params": null
|
1794 |
+
}
|
checkpoint-1100/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:899b8628780203e488835cce3e045b8d7ec93acc6ed785462cd6b0f8850577c4
|
3 |
+
size 7800
|
checkpoint-1100/vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
checkpoint-1100/zero_to_fp32.py
ADDED
@@ -0,0 +1,674 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright (c) Microsoft Corporation.
|
4 |
+
# SPDX-License-Identifier: Apache-2.0
|
5 |
+
|
6 |
+
# DeepSpeed Team
|
7 |
+
|
8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
11 |
+
# application.
|
12 |
+
#
|
13 |
+
# example:
|
14 |
+
# python zero_to_fp32.py . output_dir/
|
15 |
+
# or
|
16 |
+
# python zero_to_fp32.py . output_dir/ --safe_serialization
|
17 |
+
|
18 |
+
import argparse
|
19 |
+
import torch
|
20 |
+
import glob
|
21 |
+
import math
|
22 |
+
import os
|
23 |
+
import re
|
24 |
+
import json
|
25 |
+
from tqdm import tqdm
|
26 |
+
from collections import OrderedDict
|
27 |
+
from dataclasses import dataclass
|
28 |
+
|
29 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
30 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
31 |
+
from deepspeed.utils import logger
|
32 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
33 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
34 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
35 |
+
|
36 |
+
|
37 |
+
@dataclass
|
38 |
+
class zero_model_state:
|
39 |
+
buffers: dict()
|
40 |
+
param_shapes: dict()
|
41 |
+
shared_params: list
|
42 |
+
ds_version: int
|
43 |
+
frozen_param_shapes: dict()
|
44 |
+
frozen_param_fragments: dict()
|
45 |
+
|
46 |
+
|
47 |
+
debug = 0
|
48 |
+
|
49 |
+
# load to cpu
|
50 |
+
device = torch.device('cpu')
|
51 |
+
|
52 |
+
|
53 |
+
def atoi(text):
|
54 |
+
return int(text) if text.isdigit() else text
|
55 |
+
|
56 |
+
|
57 |
+
def natural_keys(text):
|
58 |
+
'''
|
59 |
+
alist.sort(key=natural_keys) sorts in human order
|
60 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
61 |
+
(See Toothy's implementation in the comments)
|
62 |
+
'''
|
63 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
64 |
+
|
65 |
+
|
66 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
67 |
+
if not os.path.isdir(checkpoint_dir):
|
68 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
69 |
+
|
70 |
+
# there should be only one file
|
71 |
+
if zero_stage <= 2:
|
72 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
73 |
+
elif zero_stage == 3:
|
74 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
75 |
+
|
76 |
+
if not os.path.exists(file):
|
77 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
78 |
+
|
79 |
+
return file
|
80 |
+
|
81 |
+
|
82 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
83 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
84 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
85 |
+
|
86 |
+
if len(ckpt_files) == 0:
|
87 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
88 |
+
|
89 |
+
return ckpt_files
|
90 |
+
|
91 |
+
|
92 |
+
def get_optim_files(checkpoint_dir):
|
93 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
94 |
+
|
95 |
+
|
96 |
+
def get_model_state_files(checkpoint_dir):
|
97 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
98 |
+
|
99 |
+
|
100 |
+
def parse_model_states(files):
|
101 |
+
zero_model_states = []
|
102 |
+
for file in files:
|
103 |
+
state_dict = torch.load(file, map_location=device)
|
104 |
+
|
105 |
+
if BUFFER_NAMES not in state_dict:
|
106 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
107 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
108 |
+
if debug:
|
109 |
+
print("Found buffers:", buffer_names)
|
110 |
+
|
111 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
112 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
113 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
114 |
+
|
115 |
+
# collect parameters that are included in param_shapes
|
116 |
+
param_names = []
|
117 |
+
for s in param_shapes:
|
118 |
+
for name in s.keys():
|
119 |
+
param_names.append(name)
|
120 |
+
|
121 |
+
# update with frozen parameters
|
122 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
123 |
+
if frozen_param_shapes is not None:
|
124 |
+
if debug:
|
125 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
126 |
+
param_names += list(frozen_param_shapes.keys())
|
127 |
+
|
128 |
+
# handle shared params
|
129 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
130 |
+
|
131 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
132 |
+
|
133 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
134 |
+
|
135 |
+
z_model_state = zero_model_state(buffers=buffers,
|
136 |
+
param_shapes=param_shapes,
|
137 |
+
shared_params=shared_params,
|
138 |
+
ds_version=ds_version,
|
139 |
+
frozen_param_shapes=frozen_param_shapes,
|
140 |
+
frozen_param_fragments=frozen_param_fragments)
|
141 |
+
zero_model_states.append(z_model_state)
|
142 |
+
|
143 |
+
return zero_model_states
|
144 |
+
|
145 |
+
|
146 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
147 |
+
total_files = len(files)
|
148 |
+
state_dicts = []
|
149 |
+
for f in files:
|
150 |
+
state_dict = torch.load(f, map_location=device)
|
151 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
152 |
+
# and also handle the case where it was already removed by another helper script
|
153 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
154 |
+
state_dicts.append(state_dict)
|
155 |
+
|
156 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
157 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
158 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
159 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
160 |
+
|
161 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
162 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
163 |
+
# use the max of the partition_count to get the dp world_size.
|
164 |
+
|
165 |
+
if type(world_size) is list:
|
166 |
+
world_size = max(world_size)
|
167 |
+
|
168 |
+
if world_size != total_files:
|
169 |
+
raise ValueError(
|
170 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
171 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
172 |
+
)
|
173 |
+
|
174 |
+
# the groups are named differently in each stage
|
175 |
+
if zero_stage <= 2:
|
176 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
177 |
+
elif zero_stage == 3:
|
178 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
179 |
+
else:
|
180 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
181 |
+
|
182 |
+
if zero_stage <= 2:
|
183 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
184 |
+
elif zero_stage == 3:
|
185 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
186 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
187 |
+
#
|
188 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
189 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
190 |
+
|
191 |
+
fp32_flat_groups = [
|
192 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
193 |
+
]
|
194 |
+
|
195 |
+
return zero_stage, world_size, fp32_flat_groups
|
196 |
+
|
197 |
+
|
198 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
|
199 |
+
"""
|
200 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
201 |
+
|
202 |
+
Args:
|
203 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
204 |
+
|
205 |
+
"""
|
206 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
207 |
+
|
208 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
209 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
210 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
211 |
+
|
212 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
213 |
+
|
214 |
+
zero_model_states = parse_model_states(model_files)
|
215 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
216 |
+
|
217 |
+
if zero_stage <= 2:
|
218 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
219 |
+
exclude_frozen_parameters)
|
220 |
+
elif zero_stage == 3:
|
221 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
222 |
+
exclude_frozen_parameters)
|
223 |
+
|
224 |
+
|
225 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
226 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
227 |
+
return
|
228 |
+
|
229 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
230 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
231 |
+
|
232 |
+
if debug:
|
233 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
234 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
235 |
+
|
236 |
+
wanted_params = len(frozen_param_shapes)
|
237 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
238 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
239 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
240 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
241 |
+
|
242 |
+
total_params = 0
|
243 |
+
total_numel = 0
|
244 |
+
for name, shape in frozen_param_shapes.items():
|
245 |
+
total_params += 1
|
246 |
+
unpartitioned_numel = shape.numel()
|
247 |
+
total_numel += unpartitioned_numel
|
248 |
+
|
249 |
+
state_dict[name] = frozen_param_fragments[name]
|
250 |
+
|
251 |
+
if debug:
|
252 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
253 |
+
|
254 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
255 |
+
|
256 |
+
|
257 |
+
def _has_callable(obj, fn):
|
258 |
+
attr = getattr(obj, fn, None)
|
259 |
+
return callable(attr)
|
260 |
+
|
261 |
+
|
262 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
263 |
+
param_shapes = zero_model_states[0].param_shapes
|
264 |
+
|
265 |
+
# Reconstruction protocol:
|
266 |
+
#
|
267 |
+
# XXX: document this
|
268 |
+
|
269 |
+
if debug:
|
270 |
+
for i in range(world_size):
|
271 |
+
for j in range(len(fp32_flat_groups[0])):
|
272 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
273 |
+
|
274 |
+
# XXX: memory usage doubles here (zero2)
|
275 |
+
num_param_groups = len(fp32_flat_groups[0])
|
276 |
+
merged_single_partition_of_fp32_groups = []
|
277 |
+
for i in range(num_param_groups):
|
278 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
279 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
280 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
281 |
+
avail_numel = sum(
|
282 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
283 |
+
|
284 |
+
if debug:
|
285 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
286 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
287 |
+
# not asserting if there is a mismatch due to possible padding
|
288 |
+
print(f"Have {avail_numel} numels to process.")
|
289 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
290 |
+
|
291 |
+
# params
|
292 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
293 |
+
# out-of-core computing solution
|
294 |
+
total_numel = 0
|
295 |
+
total_params = 0
|
296 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
297 |
+
offset = 0
|
298 |
+
avail_numel = full_single_fp32_vector.numel()
|
299 |
+
for name, shape in shapes.items():
|
300 |
+
|
301 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
302 |
+
total_numel += unpartitioned_numel
|
303 |
+
total_params += 1
|
304 |
+
|
305 |
+
if debug:
|
306 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
307 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
308 |
+
offset += unpartitioned_numel
|
309 |
+
|
310 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
311 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
312 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
313 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
314 |
+
align_to = 2 * world_size
|
315 |
+
|
316 |
+
def zero2_align(x):
|
317 |
+
return align_to * math.ceil(x / align_to)
|
318 |
+
|
319 |
+
if debug:
|
320 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
321 |
+
|
322 |
+
offset = zero2_align(offset)
|
323 |
+
avail_numel = zero2_align(avail_numel)
|
324 |
+
|
325 |
+
if debug:
|
326 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
327 |
+
|
328 |
+
# Sanity check
|
329 |
+
if offset != avail_numel:
|
330 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
331 |
+
|
332 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
333 |
+
|
334 |
+
|
335 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
336 |
+
exclude_frozen_parameters):
|
337 |
+
state_dict = OrderedDict()
|
338 |
+
|
339 |
+
# buffers
|
340 |
+
buffers = zero_model_states[0].buffers
|
341 |
+
state_dict.update(buffers)
|
342 |
+
if debug:
|
343 |
+
print(f"added {len(buffers)} buffers")
|
344 |
+
|
345 |
+
if not exclude_frozen_parameters:
|
346 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
347 |
+
|
348 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
349 |
+
|
350 |
+
# recover shared parameters
|
351 |
+
for pair in zero_model_states[0].shared_params:
|
352 |
+
if pair[1] in state_dict:
|
353 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
354 |
+
|
355 |
+
return state_dict
|
356 |
+
|
357 |
+
|
358 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
359 |
+
remainder = unpartitioned_numel % world_size
|
360 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
361 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
362 |
+
return partitioned_numel, padding_numel
|
363 |
+
|
364 |
+
|
365 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
366 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
367 |
+
return
|
368 |
+
|
369 |
+
if debug:
|
370 |
+
for i in range(world_size):
|
371 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
372 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
373 |
+
|
374 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
375 |
+
wanted_params = len(frozen_param_shapes)
|
376 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
377 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
378 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
379 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
380 |
+
|
381 |
+
total_params = 0
|
382 |
+
total_numel = 0
|
383 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
384 |
+
total_params += 1
|
385 |
+
unpartitioned_numel = shape.numel()
|
386 |
+
total_numel += unpartitioned_numel
|
387 |
+
|
388 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
389 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
390 |
+
|
391 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
392 |
+
|
393 |
+
if debug:
|
394 |
+
print(
|
395 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
396 |
+
)
|
397 |
+
|
398 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
399 |
+
|
400 |
+
|
401 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
402 |
+
param_shapes = zero_model_states[0].param_shapes
|
403 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
404 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
405 |
+
# param, re-consolidating each param, while dealing with padding if any
|
406 |
+
|
407 |
+
# merge list of dicts, preserving order
|
408 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
409 |
+
|
410 |
+
if debug:
|
411 |
+
for i in range(world_size):
|
412 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
413 |
+
|
414 |
+
wanted_params = len(param_shapes)
|
415 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
416 |
+
# not asserting if there is a mismatch due to possible padding
|
417 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
418 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
419 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
420 |
+
|
421 |
+
# params
|
422 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
423 |
+
# out-of-core computing solution
|
424 |
+
offset = 0
|
425 |
+
total_numel = 0
|
426 |
+
total_params = 0
|
427 |
+
for name, shape in tqdm(param_shapes.items(), desc='Gathering Sharded Weights'):
|
428 |
+
unpartitioned_numel = shape.numel()
|
429 |
+
total_numel += unpartitioned_numel
|
430 |
+
total_params += 1
|
431 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
432 |
+
|
433 |
+
if debug:
|
434 |
+
print(
|
435 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
436 |
+
)
|
437 |
+
|
438 |
+
# XXX: memory usage doubles here
|
439 |
+
state_dict[name] = torch.cat(
|
440 |
+
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
441 |
+
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
442 |
+
offset += partitioned_numel
|
443 |
+
|
444 |
+
offset *= world_size
|
445 |
+
|
446 |
+
# Sanity check
|
447 |
+
if offset != avail_numel:
|
448 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
449 |
+
|
450 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
451 |
+
|
452 |
+
|
453 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
454 |
+
exclude_frozen_parameters):
|
455 |
+
state_dict = OrderedDict()
|
456 |
+
|
457 |
+
# buffers
|
458 |
+
buffers = zero_model_states[0].buffers
|
459 |
+
state_dict.update(buffers)
|
460 |
+
if debug:
|
461 |
+
print(f"added {len(buffers)} buffers")
|
462 |
+
|
463 |
+
if not exclude_frozen_parameters:
|
464 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
465 |
+
|
466 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
467 |
+
|
468 |
+
# recover shared parameters
|
469 |
+
for pair in zero_model_states[0].shared_params:
|
470 |
+
if pair[1] in state_dict:
|
471 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
472 |
+
|
473 |
+
return state_dict
|
474 |
+
|
475 |
+
|
476 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
|
477 |
+
"""
|
478 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
479 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
480 |
+
via a model hub.
|
481 |
+
|
482 |
+
Args:
|
483 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
484 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
485 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
486 |
+
|
487 |
+
Returns:
|
488 |
+
- pytorch ``state_dict``
|
489 |
+
|
490 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
491 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
492 |
+
the checkpoint.
|
493 |
+
|
494 |
+
A typical usage might be ::
|
495 |
+
|
496 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
497 |
+
# do the training and checkpoint saving
|
498 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
499 |
+
model = model.cpu() # move to cpu
|
500 |
+
model.load_state_dict(state_dict)
|
501 |
+
# submit to model hub or save the model to share with others
|
502 |
+
|
503 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
504 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
505 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
506 |
+
|
507 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
508 |
+
|
509 |
+
"""
|
510 |
+
if tag is None:
|
511 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
512 |
+
if os.path.isfile(latest_path):
|
513 |
+
with open(latest_path, 'r') as fd:
|
514 |
+
tag = fd.read().strip()
|
515 |
+
else:
|
516 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
517 |
+
|
518 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
519 |
+
|
520 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
521 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
522 |
+
|
523 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
|
524 |
+
|
525 |
+
|
526 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
|
527 |
+
output_dir,
|
528 |
+
max_shard_size="5GB",
|
529 |
+
safe_serialization=False,
|
530 |
+
tag=None,
|
531 |
+
exclude_frozen_parameters=False):
|
532 |
+
"""
|
533 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
534 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
535 |
+
|
536 |
+
Args:
|
537 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
538 |
+
- ``output_dir``: directory to the pytorch fp32 state_dict output files
|
539 |
+
- ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
|
540 |
+
- ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
|
541 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
542 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
543 |
+
"""
|
544 |
+
# Dependency pre-check
|
545 |
+
if safe_serialization:
|
546 |
+
try:
|
547 |
+
from safetensors.torch import save_file
|
548 |
+
except ImportError:
|
549 |
+
print('If you want to use `safe_serialization`, please `pip install safetensors`')
|
550 |
+
raise
|
551 |
+
if max_shard_size is not None:
|
552 |
+
try:
|
553 |
+
from huggingface_hub import split_torch_state_dict_into_shards
|
554 |
+
except ImportError:
|
555 |
+
print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
|
556 |
+
raise
|
557 |
+
|
558 |
+
# Convert zero checkpoint to state_dict
|
559 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
|
560 |
+
|
561 |
+
# Shard the model if it is too big.
|
562 |
+
weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
|
563 |
+
if max_shard_size is not None:
|
564 |
+
filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
|
565 |
+
state_dict_split = split_torch_state_dict_into_shards(state_dict,
|
566 |
+
filename_pattern=filename_pattern,
|
567 |
+
max_shard_size=max_shard_size)
|
568 |
+
else:
|
569 |
+
from collections import namedtuple
|
570 |
+
StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
|
571 |
+
state_dict_split = StateDictSplit(is_sharded=False,
|
572 |
+
filename_to_tensors={weights_name: list(state_dict.keys())})
|
573 |
+
|
574 |
+
# Save the model
|
575 |
+
filename_to_tensors = state_dict_split.filename_to_tensors.items()
|
576 |
+
for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
|
577 |
+
shard = {tensor: state_dict[tensor].contiguous() for tensor in tensors}
|
578 |
+
output_path = os.path.join(output_dir, shard_file)
|
579 |
+
if safe_serialization:
|
580 |
+
save_file(shard, output_path, metadata={"format": "pt"})
|
581 |
+
else:
|
582 |
+
torch.save(shard, output_path)
|
583 |
+
|
584 |
+
# Save index if sharded
|
585 |
+
if state_dict_split.is_sharded:
|
586 |
+
index = {
|
587 |
+
"metadata": state_dict_split.metadata,
|
588 |
+
"weight_map": state_dict_split.tensor_to_filename,
|
589 |
+
}
|
590 |
+
save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
|
591 |
+
save_index_file = os.path.join(output_dir, save_index_file)
|
592 |
+
with open(save_index_file, "w", encoding="utf-8") as f:
|
593 |
+
content = json.dumps(index, indent=2, sort_keys=True) + "\n"
|
594 |
+
f.write(content)
|
595 |
+
|
596 |
+
|
597 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
598 |
+
"""
|
599 |
+
1. Put the provided model to cpu
|
600 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
601 |
+
3. Load it into the provided model
|
602 |
+
|
603 |
+
Args:
|
604 |
+
- ``model``: the model object to update
|
605 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
606 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
607 |
+
|
608 |
+
Returns:
|
609 |
+
- ``model`: modified model
|
610 |
+
|
611 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
612 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
613 |
+
conveniently placed for you in the checkpoint folder.
|
614 |
+
|
615 |
+
A typical usage might be ::
|
616 |
+
|
617 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
618 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
619 |
+
# submit to model hub or save the model to share with others
|
620 |
+
|
621 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
622 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
623 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
624 |
+
|
625 |
+
"""
|
626 |
+
logger.info(f"Extracting fp32 weights")
|
627 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
628 |
+
|
629 |
+
logger.info(f"Overwriting model with fp32 weights")
|
630 |
+
model = model.cpu()
|
631 |
+
model.load_state_dict(state_dict, strict=False)
|
632 |
+
|
633 |
+
return model
|
634 |
+
|
635 |
+
|
636 |
+
if __name__ == "__main__":
|
637 |
+
parser = argparse.ArgumentParser()
|
638 |
+
parser.add_argument("checkpoint_dir",
|
639 |
+
type=str,
|
640 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
641 |
+
parser.add_argument("output_dir",
|
642 |
+
type=str,
|
643 |
+
help="directory to the pytorch fp32 state_dict output files"
|
644 |
+
"(e.g. path/checkpoint-12-output/)")
|
645 |
+
parser.add_argument(
|
646 |
+
"--max_shard_size",
|
647 |
+
type=str,
|
648 |
+
default="5GB",
|
649 |
+
help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
|
650 |
+
"lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
|
651 |
+
"We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
|
652 |
+
"without CPU OOM issues.")
|
653 |
+
parser.add_argument(
|
654 |
+
"--safe_serialization",
|
655 |
+
default=False,
|
656 |
+
action='store_true',
|
657 |
+
help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
|
658 |
+
parser.add_argument("-t",
|
659 |
+
"--tag",
|
660 |
+
type=str,
|
661 |
+
default=None,
|
662 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
663 |
+
parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
|
664 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
665 |
+
args = parser.parse_args()
|
666 |
+
|
667 |
+
debug = args.debug
|
668 |
+
|
669 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
|
670 |
+
args.output_dir,
|
671 |
+
max_shard_size=args.max_shard_size,
|
672 |
+
safe_serialization=args.safe_serialization,
|
673 |
+
tag=args.tag,
|
674 |
+
exclude_frozen_parameters=args.exclude_frozen_parameters)
|