ZMC2019 commited on
Commit
aeabc6f
·
verified ·
1 Parent(s): d180999

Training in progress, step 1100, checkpoint

Browse files
Files changed (43) hide show
  1. .gitattributes +1 -0
  2. checkpoint-1100/added_tokens.json +24 -0
  3. checkpoint-1100/config.json +28 -0
  4. checkpoint-1100/generation_config.json +9 -0
  5. checkpoint-1100/global_step1099/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
  6. checkpoint-1100/global_step1099/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt +3 -0
  7. checkpoint-1100/global_step1099/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt +3 -0
  8. checkpoint-1100/global_step1099/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt +3 -0
  9. checkpoint-1100/global_step1099/bf16_zero_pp_rank_4_mp_rank_00_optim_states.pt +3 -0
  10. checkpoint-1100/global_step1099/bf16_zero_pp_rank_5_mp_rank_00_optim_states.pt +3 -0
  11. checkpoint-1100/global_step1099/bf16_zero_pp_rank_6_mp_rank_00_optim_states.pt +3 -0
  12. checkpoint-1100/global_step1099/bf16_zero_pp_rank_7_mp_rank_00_optim_states.pt +3 -0
  13. checkpoint-1100/global_step1099/zero_pp_rank_0_mp_rank_00_model_states.pt +3 -0
  14. checkpoint-1100/global_step1099/zero_pp_rank_1_mp_rank_00_model_states.pt +3 -0
  15. checkpoint-1100/global_step1099/zero_pp_rank_2_mp_rank_00_model_states.pt +3 -0
  16. checkpoint-1100/global_step1099/zero_pp_rank_3_mp_rank_00_model_states.pt +3 -0
  17. checkpoint-1100/global_step1099/zero_pp_rank_4_mp_rank_00_model_states.pt +3 -0
  18. checkpoint-1100/global_step1099/zero_pp_rank_5_mp_rank_00_model_states.pt +3 -0
  19. checkpoint-1100/global_step1099/zero_pp_rank_6_mp_rank_00_model_states.pt +3 -0
  20. checkpoint-1100/global_step1099/zero_pp_rank_7_mp_rank_00_model_states.pt +3 -0
  21. checkpoint-1100/latest +1 -0
  22. checkpoint-1100/merges.txt +0 -0
  23. checkpoint-1100/model-00001-of-00004.safetensors +3 -0
  24. checkpoint-1100/model-00002-of-00004.safetensors +3 -0
  25. checkpoint-1100/model-00003-of-00004.safetensors +3 -0
  26. checkpoint-1100/model-00004-of-00004.safetensors +3 -0
  27. checkpoint-1100/model.safetensors.index.json +346 -0
  28. checkpoint-1100/rng_state_0.pth +3 -0
  29. checkpoint-1100/rng_state_1.pth +3 -0
  30. checkpoint-1100/rng_state_2.pth +3 -0
  31. checkpoint-1100/rng_state_3.pth +3 -0
  32. checkpoint-1100/rng_state_4.pth +3 -0
  33. checkpoint-1100/rng_state_5.pth +3 -0
  34. checkpoint-1100/rng_state_6.pth +3 -0
  35. checkpoint-1100/rng_state_7.pth +3 -0
  36. checkpoint-1100/scheduler.pt +3 -0
  37. checkpoint-1100/special_tokens_map.json +25 -0
  38. checkpoint-1100/tokenizer.json +3 -0
  39. checkpoint-1100/tokenizer_config.json +208 -0
  40. checkpoint-1100/trainer_state.json +1794 -0
  41. checkpoint-1100/training_args.bin +3 -0
  42. checkpoint-1100/vocab.json +0 -0
  43. checkpoint-1100/zero_to_fp32.py +674 -0
.gitattributes CHANGED
@@ -35,3 +35,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
  tokenizer.json filter=lfs diff=lfs merge=lfs -text
37
  checkpoint-550/tokenizer.json filter=lfs diff=lfs merge=lfs -text
 
 
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
  tokenizer.json filter=lfs diff=lfs merge=lfs -text
37
  checkpoint-550/tokenizer.json filter=lfs diff=lfs merge=lfs -text
38
+ checkpoint-1100/tokenizer.json filter=lfs diff=lfs merge=lfs -text
checkpoint-1100/added_tokens.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</tool_call>": 151658,
3
+ "<tool_call>": 151657,
4
+ "<|box_end|>": 151649,
5
+ "<|box_start|>": 151648,
6
+ "<|endoftext|>": 151643,
7
+ "<|file_sep|>": 151664,
8
+ "<|fim_middle|>": 151660,
9
+ "<|fim_pad|>": 151662,
10
+ "<|fim_prefix|>": 151659,
11
+ "<|fim_suffix|>": 151661,
12
+ "<|im_end|>": 151645,
13
+ "<|im_start|>": 151644,
14
+ "<|image_pad|>": 151655,
15
+ "<|object_ref_end|>": 151647,
16
+ "<|object_ref_start|>": 151646,
17
+ "<|quad_end|>": 151651,
18
+ "<|quad_start|>": 151650,
19
+ "<|repo_name|>": 151663,
20
+ "<|video_pad|>": 151656,
21
+ "<|vision_end|>": 151653,
22
+ "<|vision_pad|>": 151654,
23
+ "<|vision_start|>": 151652
24
+ }
checkpoint-1100/config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "Qwen2ForCausalLM"
4
+ ],
5
+ "attention_dropout": 0.0,
6
+ "bos_token_id": 151643,
7
+ "eos_token_id": 151645,
8
+ "hidden_act": "silu",
9
+ "hidden_size": 3584,
10
+ "initializer_range": 0.02,
11
+ "intermediate_size": 18944,
12
+ "max_position_embeddings": 32768,
13
+ "max_window_layers": 28,
14
+ "model_type": "qwen2",
15
+ "num_attention_heads": 28,
16
+ "num_hidden_layers": 28,
17
+ "num_key_value_heads": 4,
18
+ "rms_norm_eps": 1e-06,
19
+ "rope_scaling": null,
20
+ "rope_theta": 300000.0,
21
+ "sliding_window": null,
22
+ "tie_word_embeddings": false,
23
+ "torch_dtype": "bfloat16",
24
+ "transformers_version": "4.50.0",
25
+ "use_cache": false,
26
+ "use_sliding_window": false,
27
+ "vocab_size": 152064
28
+ }
checkpoint-1100/generation_config.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 151643,
3
+ "eos_token_id": [
4
+ 151645,
5
+ 151643
6
+ ],
7
+ "pad_token_id": 151643,
8
+ "transformers_version": "4.50.0"
9
+ }
checkpoint-1100/global_step1099/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6740b33d9972e271db9911eac65876a43732c6bc099b464a321678b5dbc112f4
3
+ size 11423429708
checkpoint-1100/global_step1099/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e074a9277348441d640bcc1d62472d1d5b38551138ada272369fb5b1bc715abc
3
+ size 11423429708
checkpoint-1100/global_step1099/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:165ae64dce3d04f5a82c31d5d7a56a85c026258bb957f2f4f5c171f1aee6c397
3
+ size 11423429708
checkpoint-1100/global_step1099/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1113b75cd2c0178e77dccbe248fb55b56426db69bf44ef894e518e3fa186e5ca
3
+ size 11423429708
checkpoint-1100/global_step1099/bf16_zero_pp_rank_4_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:782481a4e0933b1ee2da7b7ea16488821963add1ddac04747b83c3a73bbae750
3
+ size 11423429708
checkpoint-1100/global_step1099/bf16_zero_pp_rank_5_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:da750056dbe42e977756736edcccce27ef41a624231b655b77b7053c785b52c6
3
+ size 11423429708
checkpoint-1100/global_step1099/bf16_zero_pp_rank_6_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:349e9bbebc2edf182c2ce6ca74beb4f1518fe10cdcebdb0d73c6b40c1d58432a
3
+ size 11423429708
checkpoint-1100/global_step1099/bf16_zero_pp_rank_7_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0cf534df7c789e671e5b8ffa973d95c10eb7006d353c1f37c7af1176647d7eb5
3
+ size 11423429708
checkpoint-1100/global_step1099/zero_pp_rank_0_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2eda453b4ca24fadae3b34f97a3770eb88ca9babe3d0fc719c6d3322bdaf3d3f
3
+ size 166293
checkpoint-1100/global_step1099/zero_pp_rank_1_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:50fa92a7a93a31af307d1672f32236d7ee7fdf5a221a6cf395aa888582db83a2
3
+ size 166293
checkpoint-1100/global_step1099/zero_pp_rank_2_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:12b3d92910cb25a27250c545097ec1af59bea6e43f9fac51e7c834c054d11198
3
+ size 166293
checkpoint-1100/global_step1099/zero_pp_rank_3_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a2650b2b6261b06cf2bd094937aeb48ae5d9f341d2ada07ecf7a45ed597d83eb
3
+ size 166293
checkpoint-1100/global_step1099/zero_pp_rank_4_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:882296d504c589a08d22de812051d3502c7182f8fdce540b1430079339892b7c
3
+ size 166293
checkpoint-1100/global_step1099/zero_pp_rank_5_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0e919741a2d1beed4136cb82539b6022a774e852d62ee0a86f5670aad77afe66
3
+ size 166293
checkpoint-1100/global_step1099/zero_pp_rank_6_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:957e31b922e57c67b9a3ac1f18f7574cbf6de0d33409f5de2b0ef9b8cf66e47d
3
+ size 166293
checkpoint-1100/global_step1099/zero_pp_rank_7_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c6a274b2df9e3c48408967ad4e11b6df1de3913174c034ad632b4a3d50310b06
3
+ size 166293
checkpoint-1100/latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step1099
checkpoint-1100/merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-1100/model-00001-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ed472d7a80ba716c13e1b7a69b5025e14e29ffd92d3e9c4cf00900c3da38bfaa
3
+ size 4877660776
checkpoint-1100/model-00002-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4b1dbcc4e359dcbbdc8cf2fecd2e1a98fc9afa1929cd843c581899b9158e90cf
3
+ size 4932751008
checkpoint-1100/model-00003-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:09d0f529c0e00b8feb8256de6add3f2bc50000ee5fc0d552b27c6e430f773606
3
+ size 4330865200
checkpoint-1100/model-00004-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:63bedbf1ed7a8c34596dde5c921af707f0ad8ec6d794e8e8db014b692004bb23
3
+ size 1089994880
checkpoint-1100/model.safetensors.index.json ADDED
@@ -0,0 +1,346 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 15231233024
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00004-of-00004.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00004.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
13
+ "model.layers.0.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
14
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
15
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
16
+ "model.layers.0.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
17
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
18
+ "model.layers.0.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
19
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
20
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
21
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
22
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
23
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
24
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
25
+ "model.layers.1.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
26
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
27
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
28
+ "model.layers.1.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
29
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
30
+ "model.layers.1.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
31
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
32
+ "model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
33
+ "model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
34
+ "model.layers.10.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
35
+ "model.layers.10.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
36
+ "model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
37
+ "model.layers.10.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
38
+ "model.layers.10.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
39
+ "model.layers.10.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
40
+ "model.layers.10.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
41
+ "model.layers.10.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
42
+ "model.layers.10.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
43
+ "model.layers.10.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
44
+ "model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
45
+ "model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
46
+ "model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
47
+ "model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
48
+ "model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
49
+ "model.layers.11.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
50
+ "model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
51
+ "model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
52
+ "model.layers.11.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
53
+ "model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
54
+ "model.layers.11.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
55
+ "model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
56
+ "model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
57
+ "model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
58
+ "model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
59
+ "model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
60
+ "model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
61
+ "model.layers.12.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
62
+ "model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
63
+ "model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
64
+ "model.layers.12.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
65
+ "model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
66
+ "model.layers.12.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
67
+ "model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
68
+ "model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
69
+ "model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
70
+ "model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
71
+ "model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
72
+ "model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
73
+ "model.layers.13.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
74
+ "model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
75
+ "model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
76
+ "model.layers.13.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
77
+ "model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
78
+ "model.layers.13.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
79
+ "model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
80
+ "model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
81
+ "model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
82
+ "model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
83
+ "model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
84
+ "model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
85
+ "model.layers.14.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
86
+ "model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
87
+ "model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
88
+ "model.layers.14.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
89
+ "model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
90
+ "model.layers.14.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
91
+ "model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
92
+ "model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
93
+ "model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
94
+ "model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
95
+ "model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
96
+ "model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
97
+ "model.layers.15.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
98
+ "model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
99
+ "model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
100
+ "model.layers.15.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
101
+ "model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
102
+ "model.layers.15.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
103
+ "model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
104
+ "model.layers.16.input_layernorm.weight": "model-00002-of-00004.safetensors",
105
+ "model.layers.16.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
106
+ "model.layers.16.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
107
+ "model.layers.16.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
108
+ "model.layers.16.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
109
+ "model.layers.16.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
110
+ "model.layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
111
+ "model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
112
+ "model.layers.16.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
113
+ "model.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
114
+ "model.layers.16.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
115
+ "model.layers.16.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
116
+ "model.layers.17.input_layernorm.weight": "model-00002-of-00004.safetensors",
117
+ "model.layers.17.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
118
+ "model.layers.17.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
119
+ "model.layers.17.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
120
+ "model.layers.17.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
121
+ "model.layers.17.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
122
+ "model.layers.17.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
123
+ "model.layers.17.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
124
+ "model.layers.17.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
125
+ "model.layers.17.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
126
+ "model.layers.17.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
127
+ "model.layers.17.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
128
+ "model.layers.18.input_layernorm.weight": "model-00003-of-00004.safetensors",
129
+ "model.layers.18.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
130
+ "model.layers.18.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
131
+ "model.layers.18.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
132
+ "model.layers.18.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
133
+ "model.layers.18.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
134
+ "model.layers.18.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
135
+ "model.layers.18.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
136
+ "model.layers.18.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
137
+ "model.layers.18.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
138
+ "model.layers.18.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
139
+ "model.layers.18.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
140
+ "model.layers.19.input_layernorm.weight": "model-00003-of-00004.safetensors",
141
+ "model.layers.19.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
142
+ "model.layers.19.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
143
+ "model.layers.19.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
144
+ "model.layers.19.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
145
+ "model.layers.19.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
146
+ "model.layers.19.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
147
+ "model.layers.19.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
148
+ "model.layers.19.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
149
+ "model.layers.19.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
150
+ "model.layers.19.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
151
+ "model.layers.19.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
152
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
153
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
154
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
155
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
156
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
157
+ "model.layers.2.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
158
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
159
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
160
+ "model.layers.2.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
161
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
162
+ "model.layers.2.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
163
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
164
+ "model.layers.20.input_layernorm.weight": "model-00003-of-00004.safetensors",
165
+ "model.layers.20.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
166
+ "model.layers.20.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
167
+ "model.layers.20.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
168
+ "model.layers.20.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
169
+ "model.layers.20.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
170
+ "model.layers.20.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
171
+ "model.layers.20.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
172
+ "model.layers.20.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
173
+ "model.layers.20.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
174
+ "model.layers.20.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
175
+ "model.layers.20.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
176
+ "model.layers.21.input_layernorm.weight": "model-00003-of-00004.safetensors",
177
+ "model.layers.21.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
178
+ "model.layers.21.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
179
+ "model.layers.21.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
180
+ "model.layers.21.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
181
+ "model.layers.21.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
182
+ "model.layers.21.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
183
+ "model.layers.21.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
184
+ "model.layers.21.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
185
+ "model.layers.21.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
186
+ "model.layers.21.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
187
+ "model.layers.21.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
188
+ "model.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors",
189
+ "model.layers.22.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
190
+ "model.layers.22.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
191
+ "model.layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
192
+ "model.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
193
+ "model.layers.22.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
194
+ "model.layers.22.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
195
+ "model.layers.22.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
196
+ "model.layers.22.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
197
+ "model.layers.22.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
198
+ "model.layers.22.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
199
+ "model.layers.22.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
200
+ "model.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors",
201
+ "model.layers.23.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
202
+ "model.layers.23.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
203
+ "model.layers.23.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
204
+ "model.layers.23.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
205
+ "model.layers.23.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
206
+ "model.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
207
+ "model.layers.23.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
208
+ "model.layers.23.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
209
+ "model.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
210
+ "model.layers.23.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
211
+ "model.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
212
+ "model.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors",
213
+ "model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
214
+ "model.layers.24.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
215
+ "model.layers.24.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
216
+ "model.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
217
+ "model.layers.24.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
218
+ "model.layers.24.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
219
+ "model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
220
+ "model.layers.24.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
221
+ "model.layers.24.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
222
+ "model.layers.24.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
223
+ "model.layers.24.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
224
+ "model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors",
225
+ "model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
226
+ "model.layers.25.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
227
+ "model.layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
228
+ "model.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
229
+ "model.layers.25.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
230
+ "model.layers.25.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
231
+ "model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
232
+ "model.layers.25.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
233
+ "model.layers.25.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
234
+ "model.layers.25.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
235
+ "model.layers.25.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
236
+ "model.layers.26.input_layernorm.weight": "model-00003-of-00004.safetensors",
237
+ "model.layers.26.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
238
+ "model.layers.26.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
239
+ "model.layers.26.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
240
+ "model.layers.26.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
241
+ "model.layers.26.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
242
+ "model.layers.26.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
243
+ "model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
244
+ "model.layers.26.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
245
+ "model.layers.26.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
246
+ "model.layers.26.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
247
+ "model.layers.26.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
248
+ "model.layers.27.input_layernorm.weight": "model-00003-of-00004.safetensors",
249
+ "model.layers.27.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
250
+ "model.layers.27.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
251
+ "model.layers.27.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
252
+ "model.layers.27.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
253
+ "model.layers.27.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
254
+ "model.layers.27.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
255
+ "model.layers.27.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
256
+ "model.layers.27.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
257
+ "model.layers.27.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
258
+ "model.layers.27.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
259
+ "model.layers.27.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
260
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
261
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
262
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
263
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
264
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
265
+ "model.layers.3.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
266
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
267
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
268
+ "model.layers.3.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
269
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
270
+ "model.layers.3.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
271
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
272
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
273
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
274
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
275
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
276
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
277
+ "model.layers.4.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
278
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
279
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
280
+ "model.layers.4.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
281
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
282
+ "model.layers.4.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
283
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
284
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors",
285
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
286
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
287
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
288
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
289
+ "model.layers.5.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
290
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
291
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
292
+ "model.layers.5.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
293
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
294
+ "model.layers.5.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
295
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
296
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00004.safetensors",
297
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
298
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
299
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
300
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
301
+ "model.layers.6.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
302
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
303
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
304
+ "model.layers.6.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
305
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
306
+ "model.layers.6.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
307
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
308
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00004.safetensors",
309
+ "model.layers.7.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
310
+ "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
311
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
312
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
313
+ "model.layers.7.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
314
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
315
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
316
+ "model.layers.7.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
317
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
318
+ "model.layers.7.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
319
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
320
+ "model.layers.8.input_layernorm.weight": "model-00002-of-00004.safetensors",
321
+ "model.layers.8.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
322
+ "model.layers.8.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
323
+ "model.layers.8.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
324
+ "model.layers.8.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
325
+ "model.layers.8.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
326
+ "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
327
+ "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
328
+ "model.layers.8.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
329
+ "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
330
+ "model.layers.8.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
331
+ "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
332
+ "model.layers.9.input_layernorm.weight": "model-00002-of-00004.safetensors",
333
+ "model.layers.9.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
334
+ "model.layers.9.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
335
+ "model.layers.9.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
336
+ "model.layers.9.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
337
+ "model.layers.9.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
338
+ "model.layers.9.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
339
+ "model.layers.9.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
340
+ "model.layers.9.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
341
+ "model.layers.9.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
342
+ "model.layers.9.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
343
+ "model.layers.9.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
344
+ "model.norm.weight": "model-00003-of-00004.safetensors"
345
+ }
346
+ }
checkpoint-1100/rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ad8a35afd8967cbb748405387e44426e43ad127028e826eddc9b67d2ca873c85
3
+ size 15984
checkpoint-1100/rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f338ce80d7c441076bfc8c53b84067a0181f5a14e80c13d5acb8150b659f4d73
3
+ size 15984
checkpoint-1100/rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c9fbc9fa428939be10b46779f0eb5cd833e0da426b1cbdee77b3a55b6952235b
3
+ size 15984
checkpoint-1100/rng_state_3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ac55dba0b79d5fa4699d239da2f966d52040d576d31234ac8d4632e6956481bc
3
+ size 15984
checkpoint-1100/rng_state_4.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:af2d0c015100768ffa23faf3b6c2d54ea89eb045603e30e55cd211e06ff34972
3
+ size 15984
checkpoint-1100/rng_state_5.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c60a1b40608e34bc801c8231f97b81c53b5290dfaed1b9cd0ccbeca29574a991
3
+ size 15984
checkpoint-1100/rng_state_6.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3ad6a142a403eb9aafc4a3a9a856bca648fe31fd22d796867baca31fb13656aa
3
+ size 15984
checkpoint-1100/rng_state_7.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:38bc23a138cc800b22881742c0f3f9a71731a9a7111c6058a0077e6274d21773
3
+ size 15984
checkpoint-1100/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b22b78b992313259665933ffb95329dafb0479c70eaba6cb51b4c7ef9e90af3b
3
+ size 1064
checkpoint-1100/special_tokens_map.json ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|im_end|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": "<|im_end|>"
25
+ }
checkpoint-1100/tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9c5ae00e602b8860cbd784ba82a8aa14e8feecec692e7076590d014d7b7fdafa
3
+ size 11421896
checkpoint-1100/tokenizer_config.json ADDED
@@ -0,0 +1,208 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ }
181
+ },
182
+ "additional_special_tokens": [
183
+ "<|im_start|>",
184
+ "<|im_end|>",
185
+ "<|object_ref_start|>",
186
+ "<|object_ref_end|>",
187
+ "<|box_start|>",
188
+ "<|box_end|>",
189
+ "<|quad_start|>",
190
+ "<|quad_end|>",
191
+ "<|vision_start|>",
192
+ "<|vision_end|>",
193
+ "<|vision_pad|>",
194
+ "<|image_pad|>",
195
+ "<|video_pad|>"
196
+ ],
197
+ "bos_token": null,
198
+ "chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'Please reason step by step, and put your final answer within \\\\boxed{}.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nPlease reason step by step, and put your final answer within \\\\boxed{}.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
199
+ "clean_up_tokenization_spaces": false,
200
+ "eos_token": "<|im_end|>",
201
+ "errors": "replace",
202
+ "extra_special_tokens": {},
203
+ "model_max_length": 131072,
204
+ "pad_token": "<|im_end|>",
205
+ "split_special_tokens": false,
206
+ "tokenizer_class": "Qwen2Tokenizer",
207
+ "unk_token": null
208
+ }
checkpoint-1100/trainer_state.json ADDED
@@ -0,0 +1,1794 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_global_step": null,
3
+ "best_metric": null,
4
+ "best_model_checkpoint": null,
5
+ "epoch": 1.024219841639497,
6
+ "eval_steps": 500,
7
+ "global_step": 1100,
8
+ "is_hyper_param_search": false,
9
+ "is_local_process_zero": true,
10
+ "is_world_process_zero": true,
11
+ "log_history": [
12
+ {
13
+ "epoch": 0.004657661853749418,
14
+ "grad_norm": 82.05587354646646,
15
+ "learning_rate": 7.763975155279503e-07,
16
+ "loss": 9.9438,
17
+ "num_tokens": 5242880.0,
18
+ "step": 5
19
+ },
20
+ {
21
+ "epoch": 0.009315323707498836,
22
+ "grad_norm": 98.0190156931495,
23
+ "learning_rate": 1.5527950310559006e-06,
24
+ "loss": 9.6475,
25
+ "num_tokens": 10485760.0,
26
+ "step": 10
27
+ },
28
+ {
29
+ "epoch": 0.013972985561248253,
30
+ "grad_norm": 113.69325621752397,
31
+ "learning_rate": 2.329192546583851e-06,
32
+ "loss": 7.5009,
33
+ "num_tokens": 15691438.0,
34
+ "step": 15
35
+ },
36
+ {
37
+ "epoch": 0.018630647414997672,
38
+ "grad_norm": 20.08992771959664,
39
+ "learning_rate": 3.1055900621118013e-06,
40
+ "loss": 2.3962,
41
+ "num_tokens": 20915252.0,
42
+ "step": 20
43
+ },
44
+ {
45
+ "epoch": 0.02328830926874709,
46
+ "grad_norm": 3.796391559366892,
47
+ "learning_rate": 3.881987577639752e-06,
48
+ "loss": 1.3249,
49
+ "num_tokens": 26134828.0,
50
+ "step": 25
51
+ },
52
+ {
53
+ "epoch": 0.027945971122496506,
54
+ "grad_norm": 1.897340748140379,
55
+ "learning_rate": 4.658385093167702e-06,
56
+ "loss": 1.063,
57
+ "num_tokens": 31377708.0,
58
+ "step": 30
59
+ },
60
+ {
61
+ "epoch": 0.032603632976245925,
62
+ "grad_norm": 0.9353460581126074,
63
+ "learning_rate": 5.4347826086956525e-06,
64
+ "loss": 0.891,
65
+ "num_tokens": 36557688.0,
66
+ "step": 35
67
+ },
68
+ {
69
+ "epoch": 0.037261294829995344,
70
+ "grad_norm": 0.6860451736359767,
71
+ "learning_rate": 6.2111801242236025e-06,
72
+ "loss": 0.8014,
73
+ "num_tokens": 41800322.0,
74
+ "step": 40
75
+ },
76
+ {
77
+ "epoch": 0.04191895668374476,
78
+ "grad_norm": 0.4462391543288957,
79
+ "learning_rate": 6.9875776397515525e-06,
80
+ "loss": 0.702,
81
+ "num_tokens": 47043202.0,
82
+ "step": 45
83
+ },
84
+ {
85
+ "epoch": 0.04657661853749418,
86
+ "grad_norm": 0.5658389980406826,
87
+ "learning_rate": 7.763975155279503e-06,
88
+ "loss": 0.679,
89
+ "num_tokens": 52286082.0,
90
+ "step": 50
91
+ },
92
+ {
93
+ "epoch": 0.05123428039124359,
94
+ "grad_norm": 0.39716601221628856,
95
+ "learning_rate": 8.540372670807453e-06,
96
+ "loss": 0.6432,
97
+ "num_tokens": 57528962.0,
98
+ "step": 55
99
+ },
100
+ {
101
+ "epoch": 0.05589194224499301,
102
+ "grad_norm": 0.3576561966497444,
103
+ "learning_rate": 9.316770186335403e-06,
104
+ "loss": 0.6268,
105
+ "num_tokens": 62771842.0,
106
+ "step": 60
107
+ },
108
+ {
109
+ "epoch": 0.06054960409874243,
110
+ "grad_norm": 0.3690305804361313,
111
+ "learning_rate": 1.0093167701863353e-05,
112
+ "loss": 0.6062,
113
+ "num_tokens": 67980354.0,
114
+ "step": 65
115
+ },
116
+ {
117
+ "epoch": 0.06520726595249185,
118
+ "grad_norm": 0.30904022597752495,
119
+ "learning_rate": 1.0869565217391305e-05,
120
+ "loss": 0.5755,
121
+ "num_tokens": 73223234.0,
122
+ "step": 70
123
+ },
124
+ {
125
+ "epoch": 0.06986492780624126,
126
+ "grad_norm": 0.33381487552443856,
127
+ "learning_rate": 1.1645962732919255e-05,
128
+ "loss": 0.5722,
129
+ "num_tokens": 78437814.0,
130
+ "step": 75
131
+ },
132
+ {
133
+ "epoch": 0.07452258965999069,
134
+ "grad_norm": 0.29018900181654517,
135
+ "learning_rate": 1.2422360248447205e-05,
136
+ "loss": 0.5787,
137
+ "num_tokens": 83680694.0,
138
+ "step": 80
139
+ },
140
+ {
141
+ "epoch": 0.0791802515137401,
142
+ "grad_norm": 0.31193541739320246,
143
+ "learning_rate": 1.3198757763975155e-05,
144
+ "loss": 0.5484,
145
+ "num_tokens": 88923574.0,
146
+ "step": 85
147
+ },
148
+ {
149
+ "epoch": 0.08383791336748952,
150
+ "grad_norm": 0.36013559560524766,
151
+ "learning_rate": 1.3975155279503105e-05,
152
+ "loss": 0.551,
153
+ "num_tokens": 94166454.0,
154
+ "step": 90
155
+ },
156
+ {
157
+ "epoch": 0.08849557522123894,
158
+ "grad_norm": 0.29887540089263853,
159
+ "learning_rate": 1.4751552795031057e-05,
160
+ "loss": 0.5556,
161
+ "num_tokens": 99409334.0,
162
+ "step": 95
163
+ },
164
+ {
165
+ "epoch": 0.09315323707498836,
166
+ "grad_norm": 0.31777202176514885,
167
+ "learning_rate": 1.5527950310559007e-05,
168
+ "loss": 0.5419,
169
+ "num_tokens": 104652214.0,
170
+ "step": 100
171
+ },
172
+ {
173
+ "epoch": 0.09781089892873777,
174
+ "grad_norm": 0.3039817792088042,
175
+ "learning_rate": 1.630434782608696e-05,
176
+ "loss": 0.5397,
177
+ "num_tokens": 109895094.0,
178
+ "step": 105
179
+ },
180
+ {
181
+ "epoch": 0.10246856078248719,
182
+ "grad_norm": 0.3024257620617263,
183
+ "learning_rate": 1.7080745341614907e-05,
184
+ "loss": 0.5252,
185
+ "num_tokens": 115137974.0,
186
+ "step": 110
187
+ },
188
+ {
189
+ "epoch": 0.10712622263623661,
190
+ "grad_norm": 0.31140997132030224,
191
+ "learning_rate": 1.785714285714286e-05,
192
+ "loss": 0.5238,
193
+ "num_tokens": 120380854.0,
194
+ "step": 115
195
+ },
196
+ {
197
+ "epoch": 0.11178388448998602,
198
+ "grad_norm": 0.35218239712763794,
199
+ "learning_rate": 1.8633540372670807e-05,
200
+ "loss": 0.5345,
201
+ "num_tokens": 125623734.0,
202
+ "step": 120
203
+ },
204
+ {
205
+ "epoch": 0.11644154634373545,
206
+ "grad_norm": 0.34642949453466215,
207
+ "learning_rate": 1.940993788819876e-05,
208
+ "loss": 0.5095,
209
+ "num_tokens": 130866614.0,
210
+ "step": 125
211
+ },
212
+ {
213
+ "epoch": 0.12109920819748486,
214
+ "grad_norm": 0.3148152432452141,
215
+ "learning_rate": 2.0186335403726707e-05,
216
+ "loss": 0.5097,
217
+ "num_tokens": 136068456.0,
218
+ "step": 130
219
+ },
220
+ {
221
+ "epoch": 0.1257568700512343,
222
+ "grad_norm": 0.3218897464063567,
223
+ "learning_rate": 2.096273291925466e-05,
224
+ "loss": 0.5178,
225
+ "num_tokens": 141311336.0,
226
+ "step": 135
227
+ },
228
+ {
229
+ "epoch": 0.1304145319049837,
230
+ "grad_norm": 0.30116924097164377,
231
+ "learning_rate": 2.173913043478261e-05,
232
+ "loss": 0.5075,
233
+ "num_tokens": 146554216.0,
234
+ "step": 140
235
+ },
236
+ {
237
+ "epoch": 0.1350721937587331,
238
+ "grad_norm": 0.3941017670817498,
239
+ "learning_rate": 2.2515527950310562e-05,
240
+ "loss": 0.5181,
241
+ "num_tokens": 151797096.0,
242
+ "step": 145
243
+ },
244
+ {
245
+ "epoch": 0.13972985561248252,
246
+ "grad_norm": 0.38992413690107575,
247
+ "learning_rate": 2.329192546583851e-05,
248
+ "loss": 0.5091,
249
+ "num_tokens": 157039976.0,
250
+ "step": 150
251
+ },
252
+ {
253
+ "epoch": 0.14438751746623196,
254
+ "grad_norm": 0.3299485605544544,
255
+ "learning_rate": 2.4068322981366462e-05,
256
+ "loss": 0.4893,
257
+ "num_tokens": 162282856.0,
258
+ "step": 155
259
+ },
260
+ {
261
+ "epoch": 0.14904517931998137,
262
+ "grad_norm": 0.398285302815728,
263
+ "learning_rate": 2.484472049689441e-05,
264
+ "loss": 0.498,
265
+ "num_tokens": 167466294.0,
266
+ "step": 160
267
+ },
268
+ {
269
+ "epoch": 0.1537028411737308,
270
+ "grad_norm": 0.464751877974553,
271
+ "learning_rate": 2.5621118012422362e-05,
272
+ "loss": 0.4952,
273
+ "num_tokens": 172703130.0,
274
+ "step": 165
275
+ },
276
+ {
277
+ "epoch": 0.1583605030274802,
278
+ "grad_norm": 0.5494333844825245,
279
+ "learning_rate": 2.639751552795031e-05,
280
+ "loss": 0.4927,
281
+ "num_tokens": 177946010.0,
282
+ "step": 170
283
+ },
284
+ {
285
+ "epoch": 0.1630181648812296,
286
+ "grad_norm": 0.4673335432920727,
287
+ "learning_rate": 2.7173913043478262e-05,
288
+ "loss": 0.5052,
289
+ "num_tokens": 183145930.0,
290
+ "step": 175
291
+ },
292
+ {
293
+ "epoch": 0.16767582673497905,
294
+ "grad_norm": 0.40861619513411185,
295
+ "learning_rate": 2.795031055900621e-05,
296
+ "loss": 0.4964,
297
+ "num_tokens": 188388810.0,
298
+ "step": 180
299
+ },
300
+ {
301
+ "epoch": 0.17233348858872846,
302
+ "grad_norm": 0.4257074069728051,
303
+ "learning_rate": 2.8726708074534165e-05,
304
+ "loss": 0.4966,
305
+ "num_tokens": 193628148.0,
306
+ "step": 185
307
+ },
308
+ {
309
+ "epoch": 0.17699115044247787,
310
+ "grad_norm": 0.38423446067890304,
311
+ "learning_rate": 2.9503105590062114e-05,
312
+ "loss": 0.4874,
313
+ "num_tokens": 198871028.0,
314
+ "step": 190
315
+ },
316
+ {
317
+ "epoch": 0.18164881229622729,
318
+ "grad_norm": 0.5665394970476383,
319
+ "learning_rate": 3.0279503105590062e-05,
320
+ "loss": 0.4931,
321
+ "num_tokens": 204113908.0,
322
+ "step": 195
323
+ },
324
+ {
325
+ "epoch": 0.18630647414997673,
326
+ "grad_norm": 0.4873250722559478,
327
+ "learning_rate": 3.1055900621118014e-05,
328
+ "loss": 0.4632,
329
+ "num_tokens": 209266418.0,
330
+ "step": 200
331
+ },
332
+ {
333
+ "epoch": 0.19096413600372614,
334
+ "grad_norm": 0.5150102284421441,
335
+ "learning_rate": 3.183229813664597e-05,
336
+ "loss": 0.4857,
337
+ "num_tokens": 214355738.0,
338
+ "step": 205
339
+ },
340
+ {
341
+ "epoch": 0.19562179785747555,
342
+ "grad_norm": 0.4984697478657664,
343
+ "learning_rate": 3.260869565217392e-05,
344
+ "loss": 0.4728,
345
+ "num_tokens": 219598618.0,
346
+ "step": 210
347
+ },
348
+ {
349
+ "epoch": 0.20027945971122496,
350
+ "grad_norm": 0.6451003628441052,
351
+ "learning_rate": 3.3385093167701865e-05,
352
+ "loss": 0.4856,
353
+ "num_tokens": 224779924.0,
354
+ "step": 215
355
+ },
356
+ {
357
+ "epoch": 0.20493712156497437,
358
+ "grad_norm": 0.6652150575437156,
359
+ "learning_rate": 3.4161490683229814e-05,
360
+ "loss": 0.4823,
361
+ "num_tokens": 230001220.0,
362
+ "step": 220
363
+ },
364
+ {
365
+ "epoch": 0.2095947834187238,
366
+ "grad_norm": 0.49487018926010595,
367
+ "learning_rate": 3.493788819875777e-05,
368
+ "loss": 0.4828,
369
+ "num_tokens": 235244100.0,
370
+ "step": 225
371
+ },
372
+ {
373
+ "epoch": 0.21425244527247322,
374
+ "grad_norm": 0.5752941558981775,
375
+ "learning_rate": 3.571428571428572e-05,
376
+ "loss": 0.4814,
377
+ "num_tokens": 240459436.0,
378
+ "step": 230
379
+ },
380
+ {
381
+ "epoch": 0.21891010712622264,
382
+ "grad_norm": 0.4619284425777841,
383
+ "learning_rate": 3.6490683229813665e-05,
384
+ "loss": 0.4743,
385
+ "num_tokens": 245702316.0,
386
+ "step": 235
387
+ },
388
+ {
389
+ "epoch": 0.22356776897997205,
390
+ "grad_norm": 0.7391653942740258,
391
+ "learning_rate": 3.7267080745341614e-05,
392
+ "loss": 0.474,
393
+ "num_tokens": 250945196.0,
394
+ "step": 240
395
+ },
396
+ {
397
+ "epoch": 0.22822543083372146,
398
+ "grad_norm": 0.6338388924664621,
399
+ "learning_rate": 3.804347826086957e-05,
400
+ "loss": 0.4614,
401
+ "num_tokens": 256130440.0,
402
+ "step": 245
403
+ },
404
+ {
405
+ "epoch": 0.2328830926874709,
406
+ "grad_norm": 0.4960164973911761,
407
+ "learning_rate": 3.881987577639752e-05,
408
+ "loss": 0.4577,
409
+ "num_tokens": 261373320.0,
410
+ "step": 250
411
+ },
412
+ {
413
+ "epoch": 0.2375407545412203,
414
+ "grad_norm": 0.3662549013001617,
415
+ "learning_rate": 3.9596273291925465e-05,
416
+ "loss": 0.4701,
417
+ "num_tokens": 266595056.0,
418
+ "step": 255
419
+ },
420
+ {
421
+ "epoch": 0.24219841639496972,
422
+ "grad_norm": 0.40055322139053984,
423
+ "learning_rate": 4.0372670807453414e-05,
424
+ "loss": 0.4749,
425
+ "num_tokens": 271837936.0,
426
+ "step": 260
427
+ },
428
+ {
429
+ "epoch": 0.24685607824871914,
430
+ "grad_norm": 0.5265912543642953,
431
+ "learning_rate": 4.114906832298137e-05,
432
+ "loss": 0.4682,
433
+ "num_tokens": 277080816.0,
434
+ "step": 265
435
+ },
436
+ {
437
+ "epoch": 0.2515137401024686,
438
+ "grad_norm": 0.516959496135824,
439
+ "learning_rate": 4.192546583850932e-05,
440
+ "loss": 0.4563,
441
+ "num_tokens": 282323696.0,
442
+ "step": 270
443
+ },
444
+ {
445
+ "epoch": 0.25617140195621796,
446
+ "grad_norm": 0.42466326053184844,
447
+ "learning_rate": 4.270186335403727e-05,
448
+ "loss": 0.4725,
449
+ "num_tokens": 287548638.0,
450
+ "step": 275
451
+ },
452
+ {
453
+ "epoch": 0.2608290638099674,
454
+ "grad_norm": 0.6461617346625652,
455
+ "learning_rate": 4.347826086956522e-05,
456
+ "loss": 0.4614,
457
+ "num_tokens": 292791518.0,
458
+ "step": 280
459
+ },
460
+ {
461
+ "epoch": 0.26548672566371684,
462
+ "grad_norm": 0.5162643395814067,
463
+ "learning_rate": 4.425465838509317e-05,
464
+ "loss": 0.4583,
465
+ "num_tokens": 298034398.0,
466
+ "step": 285
467
+ },
468
+ {
469
+ "epoch": 0.2701443875174662,
470
+ "grad_norm": 0.4606739995726742,
471
+ "learning_rate": 4.5031055900621124e-05,
472
+ "loss": 0.4564,
473
+ "num_tokens": 303277278.0,
474
+ "step": 290
475
+ },
476
+ {
477
+ "epoch": 0.27480204937121566,
478
+ "grad_norm": 0.5165208655712867,
479
+ "learning_rate": 4.580745341614907e-05,
480
+ "loss": 0.4502,
481
+ "num_tokens": 308520158.0,
482
+ "step": 295
483
+ },
484
+ {
485
+ "epoch": 0.27945971122496505,
486
+ "grad_norm": 0.3993911836573598,
487
+ "learning_rate": 4.658385093167702e-05,
488
+ "loss": 0.4634,
489
+ "num_tokens": 313763038.0,
490
+ "step": 300
491
+ },
492
+ {
493
+ "epoch": 0.2841173730787145,
494
+ "grad_norm": 0.6185284048775294,
495
+ "learning_rate": 4.736024844720497e-05,
496
+ "loss": 0.4678,
497
+ "num_tokens": 318941236.0,
498
+ "step": 305
499
+ },
500
+ {
501
+ "epoch": 0.2887750349324639,
502
+ "grad_norm": 0.6607767188478789,
503
+ "learning_rate": 4.8136645962732924e-05,
504
+ "loss": 0.4634,
505
+ "num_tokens": 324184116.0,
506
+ "step": 310
507
+ },
508
+ {
509
+ "epoch": 0.2934326967862133,
510
+ "grad_norm": 0.6792865629186282,
511
+ "learning_rate": 4.891304347826087e-05,
512
+ "loss": 0.4531,
513
+ "num_tokens": 329426996.0,
514
+ "step": 315
515
+ },
516
+ {
517
+ "epoch": 0.29809035863996275,
518
+ "grad_norm": 0.5370350636249767,
519
+ "learning_rate": 4.968944099378882e-05,
520
+ "loss": 0.4604,
521
+ "num_tokens": 334669876.0,
522
+ "step": 320
523
+ },
524
+ {
525
+ "epoch": 0.30274802049371213,
526
+ "grad_norm": 0.5243165861771709,
527
+ "learning_rate": 4.994822229892993e-05,
528
+ "loss": 0.4626,
529
+ "num_tokens": 339912756.0,
530
+ "step": 325
531
+ },
532
+ {
533
+ "epoch": 0.3074056823474616,
534
+ "grad_norm": 0.6658402668928456,
535
+ "learning_rate": 4.986192613047981e-05,
536
+ "loss": 0.4615,
537
+ "num_tokens": 345155636.0,
538
+ "step": 330
539
+ },
540
+ {
541
+ "epoch": 0.312063344201211,
542
+ "grad_norm": 0.4658973380194966,
543
+ "learning_rate": 4.977562996202969e-05,
544
+ "loss": 0.4444,
545
+ "num_tokens": 350398516.0,
546
+ "step": 335
547
+ },
548
+ {
549
+ "epoch": 0.3167210060549604,
550
+ "grad_norm": 0.513098874415573,
551
+ "learning_rate": 4.968933379357957e-05,
552
+ "loss": 0.4583,
553
+ "num_tokens": 355641396.0,
554
+ "step": 340
555
+ },
556
+ {
557
+ "epoch": 0.32137866790870984,
558
+ "grad_norm": 0.43639797114828116,
559
+ "learning_rate": 4.9603037625129445e-05,
560
+ "loss": 0.4462,
561
+ "num_tokens": 360884276.0,
562
+ "step": 345
563
+ },
564
+ {
565
+ "epoch": 0.3260363297624592,
566
+ "grad_norm": 0.41532792848046246,
567
+ "learning_rate": 4.951674145667933e-05,
568
+ "loss": 0.4483,
569
+ "num_tokens": 366127156.0,
570
+ "step": 350
571
+ },
572
+ {
573
+ "epoch": 0.33069399161620866,
574
+ "grad_norm": 0.4148646031554546,
575
+ "learning_rate": 4.94304452882292e-05,
576
+ "loss": 0.4452,
577
+ "num_tokens": 371370036.0,
578
+ "step": 355
579
+ },
580
+ {
581
+ "epoch": 0.3353516534699581,
582
+ "grad_norm": 0.5641848552142894,
583
+ "learning_rate": 4.934414911977908e-05,
584
+ "loss": 0.4553,
585
+ "num_tokens": 376600048.0,
586
+ "step": 360
587
+ },
588
+ {
589
+ "epoch": 0.3400093153237075,
590
+ "grad_norm": 0.37381304489035017,
591
+ "learning_rate": 4.9257852951328965e-05,
592
+ "loss": 0.4527,
593
+ "num_tokens": 381842928.0,
594
+ "step": 365
595
+ },
596
+ {
597
+ "epoch": 0.3446669771774569,
598
+ "grad_norm": 0.4749170963347877,
599
+ "learning_rate": 4.917155678287884e-05,
600
+ "loss": 0.4663,
601
+ "num_tokens": 387073976.0,
602
+ "step": 370
603
+ },
604
+ {
605
+ "epoch": 0.3493246390312063,
606
+ "grad_norm": 0.5043241941069802,
607
+ "learning_rate": 4.908526061442872e-05,
608
+ "loss": 0.4579,
609
+ "num_tokens": 392316856.0,
610
+ "step": 375
611
+ },
612
+ {
613
+ "epoch": 0.35398230088495575,
614
+ "grad_norm": 0.39517110563197555,
615
+ "learning_rate": 4.89989644459786e-05,
616
+ "loss": 0.4446,
617
+ "num_tokens": 397559736.0,
618
+ "step": 380
619
+ },
620
+ {
621
+ "epoch": 0.3586399627387052,
622
+ "grad_norm": 0.37708532711839055,
623
+ "learning_rate": 4.891266827752848e-05,
624
+ "loss": 0.4391,
625
+ "num_tokens": 402802616.0,
626
+ "step": 385
627
+ },
628
+ {
629
+ "epoch": 0.36329762459245457,
630
+ "grad_norm": 0.4975840523986466,
631
+ "learning_rate": 4.882637210907836e-05,
632
+ "loss": 0.4425,
633
+ "num_tokens": 408014414.0,
634
+ "step": 390
635
+ },
636
+ {
637
+ "epoch": 0.367955286446204,
638
+ "grad_norm": 0.5319257453602194,
639
+ "learning_rate": 4.874007594062824e-05,
640
+ "loss": 0.4379,
641
+ "num_tokens": 413257294.0,
642
+ "step": 395
643
+ },
644
+ {
645
+ "epoch": 0.37261294829995345,
646
+ "grad_norm": 0.4531992500866268,
647
+ "learning_rate": 4.865377977217811e-05,
648
+ "loss": 0.4369,
649
+ "num_tokens": 418500174.0,
650
+ "step": 400
651
+ },
652
+ {
653
+ "epoch": 0.37727061015370283,
654
+ "grad_norm": 0.4918946640070345,
655
+ "learning_rate": 4.8567483603728e-05,
656
+ "loss": 0.437,
657
+ "num_tokens": 423692782.0,
658
+ "step": 405
659
+ },
660
+ {
661
+ "epoch": 0.3819282720074523,
662
+ "grad_norm": 0.4204196435564102,
663
+ "learning_rate": 4.8481187435277875e-05,
664
+ "loss": 0.4439,
665
+ "num_tokens": 428845062.0,
666
+ "step": 410
667
+ },
668
+ {
669
+ "epoch": 0.38658593386120166,
670
+ "grad_norm": 0.48787071943190957,
671
+ "learning_rate": 4.839489126682776e-05,
672
+ "loss": 0.4426,
673
+ "num_tokens": 434087942.0,
674
+ "step": 415
675
+ },
676
+ {
677
+ "epoch": 0.3912435957149511,
678
+ "grad_norm": 0.4530000025912301,
679
+ "learning_rate": 4.830859509837763e-05,
680
+ "loss": 0.4337,
681
+ "num_tokens": 439278078.0,
682
+ "step": 420
683
+ },
684
+ {
685
+ "epoch": 0.39590125756870054,
686
+ "grad_norm": 0.4001439902959063,
687
+ "learning_rate": 4.822229892992751e-05,
688
+ "loss": 0.4501,
689
+ "num_tokens": 444520958.0,
690
+ "step": 425
691
+ },
692
+ {
693
+ "epoch": 0.4005589194224499,
694
+ "grad_norm": 0.5763435863000469,
695
+ "learning_rate": 4.8136002761477395e-05,
696
+ "loss": 0.4424,
697
+ "num_tokens": 449763838.0,
698
+ "step": 430
699
+ },
700
+ {
701
+ "epoch": 0.40521658127619936,
702
+ "grad_norm": 0.41267081555819357,
703
+ "learning_rate": 4.804970659302727e-05,
704
+ "loss": 0.4465,
705
+ "num_tokens": 454963270.0,
706
+ "step": 435
707
+ },
708
+ {
709
+ "epoch": 0.40987424312994875,
710
+ "grad_norm": 0.5198402187503036,
711
+ "learning_rate": 4.796341042457715e-05,
712
+ "loss": 0.4562,
713
+ "num_tokens": 460206150.0,
714
+ "step": 440
715
+ },
716
+ {
717
+ "epoch": 0.4145319049836982,
718
+ "grad_norm": 0.4804770546328782,
719
+ "learning_rate": 4.787711425612703e-05,
720
+ "loss": 0.4316,
721
+ "num_tokens": 465378662.0,
722
+ "step": 445
723
+ },
724
+ {
725
+ "epoch": 0.4191895668374476,
726
+ "grad_norm": 0.3573229568827099,
727
+ "learning_rate": 4.779081808767691e-05,
728
+ "loss": 0.4348,
729
+ "num_tokens": 470602566.0,
730
+ "step": 450
731
+ },
732
+ {
733
+ "epoch": 0.423847228691197,
734
+ "grad_norm": 0.48298666415576386,
735
+ "learning_rate": 4.770452191922679e-05,
736
+ "loss": 0.4567,
737
+ "num_tokens": 475800020.0,
738
+ "step": 455
739
+ },
740
+ {
741
+ "epoch": 0.42850489054494645,
742
+ "grad_norm": 0.4293786343270861,
743
+ "learning_rate": 4.761822575077667e-05,
744
+ "loss": 0.4356,
745
+ "num_tokens": 481042900.0,
746
+ "step": 460
747
+ },
748
+ {
749
+ "epoch": 0.43316255239869583,
750
+ "grad_norm": 0.40640797330880013,
751
+ "learning_rate": 4.753192958232654e-05,
752
+ "loss": 0.4451,
753
+ "num_tokens": 486220500.0,
754
+ "step": 465
755
+ },
756
+ {
757
+ "epoch": 0.43782021425244527,
758
+ "grad_norm": 0.3620709663973599,
759
+ "learning_rate": 4.744563341387643e-05,
760
+ "loss": 0.4366,
761
+ "num_tokens": 491463380.0,
762
+ "step": 470
763
+ },
764
+ {
765
+ "epoch": 0.4424778761061947,
766
+ "grad_norm": 0.3689460832182135,
767
+ "learning_rate": 4.7359337245426306e-05,
768
+ "loss": 0.4454,
769
+ "num_tokens": 496706260.0,
770
+ "step": 475
771
+ },
772
+ {
773
+ "epoch": 0.4471355379599441,
774
+ "grad_norm": 0.3235598346166627,
775
+ "learning_rate": 4.7273041076976184e-05,
776
+ "loss": 0.4297,
777
+ "num_tokens": 501949140.0,
778
+ "step": 480
779
+ },
780
+ {
781
+ "epoch": 0.45179319981369354,
782
+ "grad_norm": 0.3539771478611738,
783
+ "learning_rate": 4.718674490852606e-05,
784
+ "loss": 0.433,
785
+ "num_tokens": 507192020.0,
786
+ "step": 485
787
+ },
788
+ {
789
+ "epoch": 0.4564508616674429,
790
+ "grad_norm": 0.3776299787194787,
791
+ "learning_rate": 4.710044874007594e-05,
792
+ "loss": 0.4365,
793
+ "num_tokens": 512433054.0,
794
+ "step": 490
795
+ },
796
+ {
797
+ "epoch": 0.46110852352119236,
798
+ "grad_norm": 0.36237963146891655,
799
+ "learning_rate": 4.7014152571625826e-05,
800
+ "loss": 0.4273,
801
+ "num_tokens": 517658160.0,
802
+ "step": 495
803
+ },
804
+ {
805
+ "epoch": 0.4657661853749418,
806
+ "grad_norm": 0.4084396998076576,
807
+ "learning_rate": 4.6927856403175704e-05,
808
+ "loss": 0.4358,
809
+ "num_tokens": 522901040.0,
810
+ "step": 500
811
+ },
812
+ {
813
+ "epoch": 0.4704238472286912,
814
+ "grad_norm": 0.32563088148769737,
815
+ "learning_rate": 4.684156023472558e-05,
816
+ "loss": 0.4293,
817
+ "num_tokens": 528127586.0,
818
+ "step": 505
819
+ },
820
+ {
821
+ "epoch": 0.4750815090824406,
822
+ "grad_norm": 0.46748215510130064,
823
+ "learning_rate": 4.675526406627546e-05,
824
+ "loss": 0.4253,
825
+ "num_tokens": 533355284.0,
826
+ "step": 510
827
+ },
828
+ {
829
+ "epoch": 0.47973917093619,
830
+ "grad_norm": 0.5058103175826015,
831
+ "learning_rate": 4.666896789782534e-05,
832
+ "loss": 0.4382,
833
+ "num_tokens": 538598164.0,
834
+ "step": 515
835
+ },
836
+ {
837
+ "epoch": 0.48439683278993945,
838
+ "grad_norm": 0.48239977250625826,
839
+ "learning_rate": 4.658267172937522e-05,
840
+ "loss": 0.4342,
841
+ "num_tokens": 543841044.0,
842
+ "step": 520
843
+ },
844
+ {
845
+ "epoch": 0.4890544946436889,
846
+ "grad_norm": 0.6331188841101223,
847
+ "learning_rate": 4.64963755609251e-05,
848
+ "loss": 0.4418,
849
+ "num_tokens": 549083924.0,
850
+ "step": 525
851
+ },
852
+ {
853
+ "epoch": 0.49371215649743827,
854
+ "grad_norm": 0.48500000646310354,
855
+ "learning_rate": 4.641007939247497e-05,
856
+ "loss": 0.4277,
857
+ "num_tokens": 554323932.0,
858
+ "step": 530
859
+ },
860
+ {
861
+ "epoch": 0.4983698183511877,
862
+ "grad_norm": 0.6606771561537853,
863
+ "learning_rate": 4.632378322402486e-05,
864
+ "loss": 0.4367,
865
+ "num_tokens": 559555680.0,
866
+ "step": 535
867
+ },
868
+ {
869
+ "epoch": 0.5030274802049371,
870
+ "grad_norm": 0.47177575989233334,
871
+ "learning_rate": 4.6237487055574736e-05,
872
+ "loss": 0.4395,
873
+ "num_tokens": 564798560.0,
874
+ "step": 540
875
+ },
876
+ {
877
+ "epoch": 0.5076851420586865,
878
+ "grad_norm": 0.35505752604264607,
879
+ "learning_rate": 4.6151190887124615e-05,
880
+ "loss": 0.4273,
881
+ "num_tokens": 569918486.0,
882
+ "step": 545
883
+ },
884
+ {
885
+ "epoch": 0.5123428039124359,
886
+ "grad_norm": 0.5805428989783042,
887
+ "learning_rate": 4.606489471867449e-05,
888
+ "loss": 0.4427,
889
+ "num_tokens": 575160720.0,
890
+ "step": 550
891
+ },
892
+ {
893
+ "epoch": 0.5170004657661854,
894
+ "grad_norm": 0.4481109935171867,
895
+ "learning_rate": 4.597859855022437e-05,
896
+ "loss": 0.429,
897
+ "num_tokens": 580403600.0,
898
+ "step": 555
899
+ },
900
+ {
901
+ "epoch": 0.5216581276199348,
902
+ "grad_norm": 0.4306150535473462,
903
+ "learning_rate": 4.589230238177425e-05,
904
+ "loss": 0.4334,
905
+ "num_tokens": 585635440.0,
906
+ "step": 560
907
+ },
908
+ {
909
+ "epoch": 0.5263157894736842,
910
+ "grad_norm": 0.4218043527459623,
911
+ "learning_rate": 4.5806006213324134e-05,
912
+ "loss": 0.4319,
913
+ "num_tokens": 590878320.0,
914
+ "step": 565
915
+ },
916
+ {
917
+ "epoch": 0.5309734513274337,
918
+ "grad_norm": 0.3773682370056681,
919
+ "learning_rate": 4.5719710044874006e-05,
920
+ "loss": 0.4309,
921
+ "num_tokens": 596063606.0,
922
+ "step": 570
923
+ },
924
+ {
925
+ "epoch": 0.5356311131811831,
926
+ "grad_norm": 0.3725777888860041,
927
+ "learning_rate": 4.563341387642389e-05,
928
+ "loss": 0.4298,
929
+ "num_tokens": 601306486.0,
930
+ "step": 575
931
+ },
932
+ {
933
+ "epoch": 0.5402887750349324,
934
+ "grad_norm": 0.32850168482374853,
935
+ "learning_rate": 4.554711770797377e-05,
936
+ "loss": 0.4317,
937
+ "num_tokens": 606451006.0,
938
+ "step": 580
939
+ },
940
+ {
941
+ "epoch": 0.5449464368886818,
942
+ "grad_norm": 0.3344939451761741,
943
+ "learning_rate": 4.546082153952365e-05,
944
+ "loss": 0.426,
945
+ "num_tokens": 611693886.0,
946
+ "step": 585
947
+ },
948
+ {
949
+ "epoch": 0.5496040987424313,
950
+ "grad_norm": 0.4068375974188898,
951
+ "learning_rate": 4.5374525371073526e-05,
952
+ "loss": 0.4421,
953
+ "num_tokens": 616936766.0,
954
+ "step": 590
955
+ },
956
+ {
957
+ "epoch": 0.5542617605961807,
958
+ "grad_norm": 0.4761673073396981,
959
+ "learning_rate": 4.5288229202623404e-05,
960
+ "loss": 0.4329,
961
+ "num_tokens": 622179646.0,
962
+ "step": 595
963
+ },
964
+ {
965
+ "epoch": 0.5589194224499301,
966
+ "grad_norm": 0.44663542891933206,
967
+ "learning_rate": 4.520193303417328e-05,
968
+ "loss": 0.4365,
969
+ "num_tokens": 627422526.0,
970
+ "step": 600
971
+ },
972
+ {
973
+ "epoch": 0.5635770843036796,
974
+ "grad_norm": 0.44847735353439966,
975
+ "learning_rate": 4.511563686572317e-05,
976
+ "loss": 0.412,
977
+ "num_tokens": 632619928.0,
978
+ "step": 605
979
+ },
980
+ {
981
+ "epoch": 0.568234746157429,
982
+ "grad_norm": 0.45628359974960664,
983
+ "learning_rate": 4.5029340697273045e-05,
984
+ "loss": 0.4308,
985
+ "num_tokens": 637862808.0,
986
+ "step": 610
987
+ },
988
+ {
989
+ "epoch": 0.5728924080111784,
990
+ "grad_norm": 0.4800117779432551,
991
+ "learning_rate": 4.4943044528822923e-05,
992
+ "loss": 0.4228,
993
+ "num_tokens": 643105688.0,
994
+ "step": 615
995
+ },
996
+ {
997
+ "epoch": 0.5775500698649279,
998
+ "grad_norm": 0.5546132432412902,
999
+ "learning_rate": 4.48567483603728e-05,
1000
+ "loss": 0.4269,
1001
+ "num_tokens": 648348568.0,
1002
+ "step": 620
1003
+ },
1004
+ {
1005
+ "epoch": 0.5822077317186772,
1006
+ "grad_norm": 0.4664261556549962,
1007
+ "learning_rate": 4.477045219192268e-05,
1008
+ "loss": 0.4368,
1009
+ "num_tokens": 653591448.0,
1010
+ "step": 625
1011
+ },
1012
+ {
1013
+ "epoch": 0.5868653935724266,
1014
+ "grad_norm": 0.42681630594448233,
1015
+ "learning_rate": 4.4684156023472565e-05,
1016
+ "loss": 0.4222,
1017
+ "num_tokens": 658834328.0,
1018
+ "step": 630
1019
+ },
1020
+ {
1021
+ "epoch": 0.5915230554261761,
1022
+ "grad_norm": 0.4187275561832938,
1023
+ "learning_rate": 4.4597859855022436e-05,
1024
+ "loss": 0.4222,
1025
+ "num_tokens": 664028780.0,
1026
+ "step": 635
1027
+ },
1028
+ {
1029
+ "epoch": 0.5961807172799255,
1030
+ "grad_norm": 0.35933633316781455,
1031
+ "learning_rate": 4.4511563686572315e-05,
1032
+ "loss": 0.4281,
1033
+ "num_tokens": 669256250.0,
1034
+ "step": 640
1035
+ },
1036
+ {
1037
+ "epoch": 0.6008383791336749,
1038
+ "grad_norm": 0.3750506834697772,
1039
+ "learning_rate": 4.44252675181222e-05,
1040
+ "loss": 0.426,
1041
+ "num_tokens": 674460550.0,
1042
+ "step": 645
1043
+ },
1044
+ {
1045
+ "epoch": 0.6054960409874243,
1046
+ "grad_norm": 0.45094143093344574,
1047
+ "learning_rate": 4.433897134967208e-05,
1048
+ "loss": 0.4238,
1049
+ "num_tokens": 679701528.0,
1050
+ "step": 650
1051
+ },
1052
+ {
1053
+ "epoch": 0.6101537028411738,
1054
+ "grad_norm": 0.3686716302533929,
1055
+ "learning_rate": 4.4252675181221956e-05,
1056
+ "loss": 0.4311,
1057
+ "num_tokens": 684944408.0,
1058
+ "step": 655
1059
+ },
1060
+ {
1061
+ "epoch": 0.6148113646949231,
1062
+ "grad_norm": 0.4708342271610549,
1063
+ "learning_rate": 4.4166379012771834e-05,
1064
+ "loss": 0.4325,
1065
+ "num_tokens": 690187288.0,
1066
+ "step": 660
1067
+ },
1068
+ {
1069
+ "epoch": 0.6194690265486725,
1070
+ "grad_norm": 0.3687257046878129,
1071
+ "learning_rate": 4.408008284432171e-05,
1072
+ "loss": 0.4257,
1073
+ "num_tokens": 695372640.0,
1074
+ "step": 665
1075
+ },
1076
+ {
1077
+ "epoch": 0.624126688402422,
1078
+ "grad_norm": 0.34502453479936046,
1079
+ "learning_rate": 4.39937866758716e-05,
1080
+ "loss": 0.4287,
1081
+ "num_tokens": 700615520.0,
1082
+ "step": 670
1083
+ },
1084
+ {
1085
+ "epoch": 0.6287843502561714,
1086
+ "grad_norm": 0.57257718960929,
1087
+ "learning_rate": 4.3907490507421476e-05,
1088
+ "loss": 0.4216,
1089
+ "num_tokens": 705831004.0,
1090
+ "step": 675
1091
+ },
1092
+ {
1093
+ "epoch": 0.6334420121099208,
1094
+ "grad_norm": 0.40743947034127986,
1095
+ "learning_rate": 4.382119433897135e-05,
1096
+ "loss": 0.4254,
1097
+ "num_tokens": 711015208.0,
1098
+ "step": 680
1099
+ },
1100
+ {
1101
+ "epoch": 0.6380996739636703,
1102
+ "grad_norm": 0.4712504333805676,
1103
+ "learning_rate": 4.373489817052123e-05,
1104
+ "loss": 0.4357,
1105
+ "num_tokens": 716205240.0,
1106
+ "step": 685
1107
+ },
1108
+ {
1109
+ "epoch": 0.6427573358174197,
1110
+ "grad_norm": 0.31386050500322255,
1111
+ "learning_rate": 4.364860200207111e-05,
1112
+ "loss": 0.4245,
1113
+ "num_tokens": 721448120.0,
1114
+ "step": 690
1115
+ },
1116
+ {
1117
+ "epoch": 0.6474149976711691,
1118
+ "grad_norm": 0.34856077066736296,
1119
+ "learning_rate": 4.356230583362099e-05,
1120
+ "loss": 0.4243,
1121
+ "num_tokens": 726691000.0,
1122
+ "step": 695
1123
+ },
1124
+ {
1125
+ "epoch": 0.6520726595249184,
1126
+ "grad_norm": 0.35138951547463787,
1127
+ "learning_rate": 4.347600966517087e-05,
1128
+ "loss": 0.4208,
1129
+ "num_tokens": 731930908.0,
1130
+ "step": 700
1131
+ },
1132
+ {
1133
+ "epoch": 0.6567303213786679,
1134
+ "grad_norm": 0.3563298490627363,
1135
+ "learning_rate": 4.3389713496720745e-05,
1136
+ "loss": 0.4184,
1137
+ "num_tokens": 737133156.0,
1138
+ "step": 705
1139
+ },
1140
+ {
1141
+ "epoch": 0.6613879832324173,
1142
+ "grad_norm": 0.29828582782393925,
1143
+ "learning_rate": 4.330341732827063e-05,
1144
+ "loss": 0.4319,
1145
+ "num_tokens": 742336330.0,
1146
+ "step": 710
1147
+ },
1148
+ {
1149
+ "epoch": 0.6660456450861667,
1150
+ "grad_norm": 0.4554868776579047,
1151
+ "learning_rate": 4.321712115982051e-05,
1152
+ "loss": 0.4245,
1153
+ "num_tokens": 747579210.0,
1154
+ "step": 715
1155
+ },
1156
+ {
1157
+ "epoch": 0.6707033069399162,
1158
+ "grad_norm": 0.44237565032771087,
1159
+ "learning_rate": 4.3130824991370387e-05,
1160
+ "loss": 0.4163,
1161
+ "num_tokens": 752752000.0,
1162
+ "step": 720
1163
+ },
1164
+ {
1165
+ "epoch": 0.6753609687936656,
1166
+ "grad_norm": 0.4203289082659788,
1167
+ "learning_rate": 4.3044528822920265e-05,
1168
+ "loss": 0.4204,
1169
+ "num_tokens": 757994880.0,
1170
+ "step": 725
1171
+ },
1172
+ {
1173
+ "epoch": 0.680018630647415,
1174
+ "grad_norm": 0.42671358285819366,
1175
+ "learning_rate": 4.295823265447014e-05,
1176
+ "loss": 0.4277,
1177
+ "num_tokens": 763237760.0,
1178
+ "step": 730
1179
+ },
1180
+ {
1181
+ "epoch": 0.6846762925011645,
1182
+ "grad_norm": 0.37538834692647144,
1183
+ "learning_rate": 4.287193648602002e-05,
1184
+ "loss": 0.4157,
1185
+ "num_tokens": 768480640.0,
1186
+ "step": 735
1187
+ },
1188
+ {
1189
+ "epoch": 0.6893339543549138,
1190
+ "grad_norm": 0.4556647024263887,
1191
+ "learning_rate": 4.27856403175699e-05,
1192
+ "loss": 0.4197,
1193
+ "num_tokens": 773723520.0,
1194
+ "step": 740
1195
+ },
1196
+ {
1197
+ "epoch": 0.6939916162086632,
1198
+ "grad_norm": 0.4811016264457114,
1199
+ "learning_rate": 4.269934414911978e-05,
1200
+ "loss": 0.4181,
1201
+ "num_tokens": 778966400.0,
1202
+ "step": 745
1203
+ },
1204
+ {
1205
+ "epoch": 0.6986492780624126,
1206
+ "grad_norm": 0.46408266345529087,
1207
+ "learning_rate": 4.261304798066966e-05,
1208
+ "loss": 0.4262,
1209
+ "num_tokens": 784209280.0,
1210
+ "step": 750
1211
+ },
1212
+ {
1213
+ "epoch": 0.7033069399161621,
1214
+ "grad_norm": 0.4571430025824553,
1215
+ "learning_rate": 4.252675181221954e-05,
1216
+ "loss": 0.4133,
1217
+ "num_tokens": 789452160.0,
1218
+ "step": 755
1219
+ },
1220
+ {
1221
+ "epoch": 0.7079646017699115,
1222
+ "grad_norm": 0.44928992980297267,
1223
+ "learning_rate": 4.244045564376942e-05,
1224
+ "loss": 0.4183,
1225
+ "num_tokens": 794695040.0,
1226
+ "step": 760
1227
+ },
1228
+ {
1229
+ "epoch": 0.7126222636236609,
1230
+ "grad_norm": 0.42294682770420816,
1231
+ "learning_rate": 4.23541594753193e-05,
1232
+ "loss": 0.4256,
1233
+ "num_tokens": 799937676.0,
1234
+ "step": 765
1235
+ },
1236
+ {
1237
+ "epoch": 0.7172799254774104,
1238
+ "grad_norm": 0.46170931025430106,
1239
+ "learning_rate": 4.2267863306869176e-05,
1240
+ "loss": 0.425,
1241
+ "num_tokens": 805180556.0,
1242
+ "step": 770
1243
+ },
1244
+ {
1245
+ "epoch": 0.7219375873311598,
1246
+ "grad_norm": 0.5782381769703572,
1247
+ "learning_rate": 4.2181567138419054e-05,
1248
+ "loss": 0.4136,
1249
+ "num_tokens": 810397834.0,
1250
+ "step": 775
1251
+ },
1252
+ {
1253
+ "epoch": 0.7265952491849091,
1254
+ "grad_norm": 0.41650244211144916,
1255
+ "learning_rate": 4.209527096996894e-05,
1256
+ "loss": 0.4304,
1257
+ "num_tokens": 815565546.0,
1258
+ "step": 780
1259
+ },
1260
+ {
1261
+ "epoch": 0.7312529110386586,
1262
+ "grad_norm": 0.43752752013886975,
1263
+ "learning_rate": 4.200897480151881e-05,
1264
+ "loss": 0.4228,
1265
+ "num_tokens": 820802646.0,
1266
+ "step": 785
1267
+ },
1268
+ {
1269
+ "epoch": 0.735910572892408,
1270
+ "grad_norm": 0.3573411269154002,
1271
+ "learning_rate": 4.1922678633068695e-05,
1272
+ "loss": 0.414,
1273
+ "num_tokens": 826045526.0,
1274
+ "step": 790
1275
+ },
1276
+ {
1277
+ "epoch": 0.7405682347461574,
1278
+ "grad_norm": 0.37034836674225624,
1279
+ "learning_rate": 4.1836382464618573e-05,
1280
+ "loss": 0.4235,
1281
+ "num_tokens": 831245076.0,
1282
+ "step": 795
1283
+ },
1284
+ {
1285
+ "epoch": 0.7452258965999069,
1286
+ "grad_norm": 0.3473109235091556,
1287
+ "learning_rate": 4.175008629616845e-05,
1288
+ "loss": 0.4174,
1289
+ "num_tokens": 836487956.0,
1290
+ "step": 800
1291
+ },
1292
+ {
1293
+ "epoch": 0.7498835584536563,
1294
+ "grad_norm": 0.3454248879956119,
1295
+ "learning_rate": 4.166379012771833e-05,
1296
+ "loss": 0.4343,
1297
+ "num_tokens": 841670226.0,
1298
+ "step": 805
1299
+ },
1300
+ {
1301
+ "epoch": 0.7545412203074057,
1302
+ "grad_norm": 0.45090929011440717,
1303
+ "learning_rate": 4.157749395926821e-05,
1304
+ "loss": 0.4188,
1305
+ "num_tokens": 846891280.0,
1306
+ "step": 810
1307
+ },
1308
+ {
1309
+ "epoch": 0.759198882161155,
1310
+ "grad_norm": 0.43284998579291406,
1311
+ "learning_rate": 4.1491197790818086e-05,
1312
+ "loss": 0.4216,
1313
+ "num_tokens": 852076096.0,
1314
+ "step": 815
1315
+ },
1316
+ {
1317
+ "epoch": 0.7638565440149045,
1318
+ "grad_norm": 0.3181896282241753,
1319
+ "learning_rate": 4.140490162236797e-05,
1320
+ "loss": 0.4204,
1321
+ "num_tokens": 857318976.0,
1322
+ "step": 820
1323
+ },
1324
+ {
1325
+ "epoch": 0.7685142058686539,
1326
+ "grad_norm": 0.46883689539559736,
1327
+ "learning_rate": 4.131860545391785e-05,
1328
+ "loss": 0.4102,
1329
+ "num_tokens": 862561856.0,
1330
+ "step": 825
1331
+ },
1332
+ {
1333
+ "epoch": 0.7731718677224033,
1334
+ "grad_norm": 0.43638309621826277,
1335
+ "learning_rate": 4.123230928546773e-05,
1336
+ "loss": 0.4193,
1337
+ "num_tokens": 867804736.0,
1338
+ "step": 830
1339
+ },
1340
+ {
1341
+ "epoch": 0.7778295295761528,
1342
+ "grad_norm": 0.5494788138169401,
1343
+ "learning_rate": 4.1146013117017606e-05,
1344
+ "loss": 0.4255,
1345
+ "num_tokens": 873045328.0,
1346
+ "step": 835
1347
+ },
1348
+ {
1349
+ "epoch": 0.7824871914299022,
1350
+ "grad_norm": 0.35117057126261253,
1351
+ "learning_rate": 4.1059716948567484e-05,
1352
+ "loss": 0.41,
1353
+ "num_tokens": 878249566.0,
1354
+ "step": 840
1355
+ },
1356
+ {
1357
+ "epoch": 0.7871448532836516,
1358
+ "grad_norm": 0.547134386710333,
1359
+ "learning_rate": 4.097342078011737e-05,
1360
+ "loss": 0.4179,
1361
+ "num_tokens": 883492446.0,
1362
+ "step": 845
1363
+ },
1364
+ {
1365
+ "epoch": 0.7918025151374011,
1366
+ "grad_norm": 0.3667952082270578,
1367
+ "learning_rate": 4.088712461166724e-05,
1368
+ "loss": 0.4179,
1369
+ "num_tokens": 888735326.0,
1370
+ "step": 850
1371
+ },
1372
+ {
1373
+ "epoch": 0.7964601769911505,
1374
+ "grad_norm": 0.35029407025170417,
1375
+ "learning_rate": 4.080082844321712e-05,
1376
+ "loss": 0.4093,
1377
+ "num_tokens": 893978206.0,
1378
+ "step": 855
1379
+ },
1380
+ {
1381
+ "epoch": 0.8011178388448998,
1382
+ "grad_norm": 0.39249238026288563,
1383
+ "learning_rate": 4.0714532274767004e-05,
1384
+ "loss": 0.4114,
1385
+ "num_tokens": 899180370.0,
1386
+ "step": 860
1387
+ },
1388
+ {
1389
+ "epoch": 0.8057755006986492,
1390
+ "grad_norm": 0.3511762742188835,
1391
+ "learning_rate": 4.062823610631688e-05,
1392
+ "loss": 0.4151,
1393
+ "num_tokens": 904405480.0,
1394
+ "step": 865
1395
+ },
1396
+ {
1397
+ "epoch": 0.8104331625523987,
1398
+ "grad_norm": 0.42731908571108257,
1399
+ "learning_rate": 4.054193993786676e-05,
1400
+ "loss": 0.4087,
1401
+ "num_tokens": 909648360.0,
1402
+ "step": 870
1403
+ },
1404
+ {
1405
+ "epoch": 0.8150908244061481,
1406
+ "grad_norm": 0.5462125566533138,
1407
+ "learning_rate": 4.045564376941664e-05,
1408
+ "loss": 0.4192,
1409
+ "num_tokens": 914891240.0,
1410
+ "step": 875
1411
+ },
1412
+ {
1413
+ "epoch": 0.8197484862598975,
1414
+ "grad_norm": 0.4238114065916947,
1415
+ "learning_rate": 4.036934760096652e-05,
1416
+ "loss": 0.4035,
1417
+ "num_tokens": 920134120.0,
1418
+ "step": 880
1419
+ },
1420
+ {
1421
+ "epoch": 0.824406148113647,
1422
+ "grad_norm": 0.4511242532489273,
1423
+ "learning_rate": 4.02830514325164e-05,
1424
+ "loss": 0.4193,
1425
+ "num_tokens": 925348344.0,
1426
+ "step": 885
1427
+ },
1428
+ {
1429
+ "epoch": 0.8290638099673964,
1430
+ "grad_norm": 0.3718602180962659,
1431
+ "learning_rate": 4.019675526406628e-05,
1432
+ "loss": 0.4183,
1433
+ "num_tokens": 930591224.0,
1434
+ "step": 890
1435
+ },
1436
+ {
1437
+ "epoch": 0.8337214718211458,
1438
+ "grad_norm": 0.42228810579780685,
1439
+ "learning_rate": 4.011045909561615e-05,
1440
+ "loss": 0.417,
1441
+ "num_tokens": 935834104.0,
1442
+ "step": 895
1443
+ },
1444
+ {
1445
+ "epoch": 0.8383791336748952,
1446
+ "grad_norm": 0.3343462952586969,
1447
+ "learning_rate": 4.0024162927166037e-05,
1448
+ "loss": 0.413,
1449
+ "num_tokens": 941076984.0,
1450
+ "step": 900
1451
+ },
1452
+ {
1453
+ "epoch": 0.8430367955286446,
1454
+ "grad_norm": 0.3695657194075559,
1455
+ "learning_rate": 3.9937866758715915e-05,
1456
+ "loss": 0.4166,
1457
+ "num_tokens": 946319864.0,
1458
+ "step": 905
1459
+ },
1460
+ {
1461
+ "epoch": 0.847694457382394,
1462
+ "grad_norm": 0.3692226356910684,
1463
+ "learning_rate": 3.98515705902658e-05,
1464
+ "loss": 0.4228,
1465
+ "num_tokens": 951515422.0,
1466
+ "step": 910
1467
+ },
1468
+ {
1469
+ "epoch": 0.8523521192361434,
1470
+ "grad_norm": 0.46933444657499496,
1471
+ "learning_rate": 3.976527442181567e-05,
1472
+ "loss": 0.4137,
1473
+ "num_tokens": 956704248.0,
1474
+ "step": 915
1475
+ },
1476
+ {
1477
+ "epoch": 0.8570097810898929,
1478
+ "grad_norm": 0.420307871401766,
1479
+ "learning_rate": 3.967897825336555e-05,
1480
+ "loss": 0.4209,
1481
+ "num_tokens": 961947128.0,
1482
+ "step": 920
1483
+ },
1484
+ {
1485
+ "epoch": 0.8616674429436423,
1486
+ "grad_norm": 0.3405221647756501,
1487
+ "learning_rate": 3.9592682084915434e-05,
1488
+ "loss": 0.4147,
1489
+ "num_tokens": 967190008.0,
1490
+ "step": 925
1491
+ },
1492
+ {
1493
+ "epoch": 0.8663251047973917,
1494
+ "grad_norm": 0.44331006916678434,
1495
+ "learning_rate": 3.950638591646531e-05,
1496
+ "loss": 0.4178,
1497
+ "num_tokens": 972432888.0,
1498
+ "step": 930
1499
+ },
1500
+ {
1501
+ "epoch": 0.8709827666511412,
1502
+ "grad_norm": 0.3422809377363051,
1503
+ "learning_rate": 3.942008974801519e-05,
1504
+ "loss": 0.4039,
1505
+ "num_tokens": 977675768.0,
1506
+ "step": 935
1507
+ },
1508
+ {
1509
+ "epoch": 0.8756404285048905,
1510
+ "grad_norm": 0.4174187028348948,
1511
+ "learning_rate": 3.933379357956507e-05,
1512
+ "loss": 0.4058,
1513
+ "num_tokens": 982908826.0,
1514
+ "step": 940
1515
+ },
1516
+ {
1517
+ "epoch": 0.8802980903586399,
1518
+ "grad_norm": 0.36023411801863825,
1519
+ "learning_rate": 3.924749741111495e-05,
1520
+ "loss": 0.4083,
1521
+ "num_tokens": 988129568.0,
1522
+ "step": 945
1523
+ },
1524
+ {
1525
+ "epoch": 0.8849557522123894,
1526
+ "grad_norm": 0.37697561626191384,
1527
+ "learning_rate": 3.916120124266483e-05,
1528
+ "loss": 0.3982,
1529
+ "num_tokens": 993372448.0,
1530
+ "step": 950
1531
+ },
1532
+ {
1533
+ "epoch": 0.8896134140661388,
1534
+ "grad_norm": 0.32970248458357243,
1535
+ "learning_rate": 3.9074905074214704e-05,
1536
+ "loss": 0.4124,
1537
+ "num_tokens": 998615328.0,
1538
+ "step": 955
1539
+ },
1540
+ {
1541
+ "epoch": 0.8942710759198882,
1542
+ "grad_norm": 0.6423339790046058,
1543
+ "learning_rate": 3.898860890576458e-05,
1544
+ "loss": 0.4188,
1545
+ "num_tokens": 1003840426.0,
1546
+ "step": 960
1547
+ },
1548
+ {
1549
+ "epoch": 0.8989287377736377,
1550
+ "grad_norm": 0.33989654580246514,
1551
+ "learning_rate": 3.890231273731447e-05,
1552
+ "loss": 0.4129,
1553
+ "num_tokens": 1009083306.0,
1554
+ "step": 965
1555
+ },
1556
+ {
1557
+ "epoch": 0.9035863996273871,
1558
+ "grad_norm": 0.4253291410824839,
1559
+ "learning_rate": 3.8816016568864345e-05,
1560
+ "loss": 0.4156,
1561
+ "num_tokens": 1014326186.0,
1562
+ "step": 970
1563
+ },
1564
+ {
1565
+ "epoch": 0.9082440614811365,
1566
+ "grad_norm": 0.4362973979341557,
1567
+ "learning_rate": 3.8729720400414224e-05,
1568
+ "loss": 0.4101,
1569
+ "num_tokens": 1019569066.0,
1570
+ "step": 975
1571
+ },
1572
+ {
1573
+ "epoch": 0.9129017233348858,
1574
+ "grad_norm": 0.3848511989847654,
1575
+ "learning_rate": 3.86434242319641e-05,
1576
+ "loss": 0.4133,
1577
+ "num_tokens": 1024811946.0,
1578
+ "step": 980
1579
+ },
1580
+ {
1581
+ "epoch": 0.9175593851886353,
1582
+ "grad_norm": 0.41823519040308965,
1583
+ "learning_rate": 3.855712806351398e-05,
1584
+ "loss": 0.4175,
1585
+ "num_tokens": 1030054826.0,
1586
+ "step": 985
1587
+ },
1588
+ {
1589
+ "epoch": 0.9222170470423847,
1590
+ "grad_norm": 0.4588981814462144,
1591
+ "learning_rate": 3.8470831895063865e-05,
1592
+ "loss": 0.3901,
1593
+ "num_tokens": 1035279144.0,
1594
+ "step": 990
1595
+ },
1596
+ {
1597
+ "epoch": 0.9268747088961341,
1598
+ "grad_norm": 0.42658567347281534,
1599
+ "learning_rate": 3.838453572661374e-05,
1600
+ "loss": 0.4065,
1601
+ "num_tokens": 1040522024.0,
1602
+ "step": 995
1603
+ },
1604
+ {
1605
+ "epoch": 0.9315323707498836,
1606
+ "grad_norm": 0.40893294515048517,
1607
+ "learning_rate": 3.8298239558163615e-05,
1608
+ "loss": 0.4098,
1609
+ "num_tokens": 1045764904.0,
1610
+ "step": 1000
1611
+ },
1612
+ {
1613
+ "epoch": 0.936190032603633,
1614
+ "grad_norm": 0.3307735236305363,
1615
+ "learning_rate": 3.82119433897135e-05,
1616
+ "loss": 0.4182,
1617
+ "num_tokens": 1051007784.0,
1618
+ "step": 1005
1619
+ },
1620
+ {
1621
+ "epoch": 0.9408476944573824,
1622
+ "grad_norm": 0.37133171698698186,
1623
+ "learning_rate": 3.812564722126338e-05,
1624
+ "loss": 0.4096,
1625
+ "num_tokens": 1056250664.0,
1626
+ "step": 1010
1627
+ },
1628
+ {
1629
+ "epoch": 0.9455053563111319,
1630
+ "grad_norm": 0.3254043253190745,
1631
+ "learning_rate": 3.8039351052813256e-05,
1632
+ "loss": 0.4104,
1633
+ "num_tokens": 1061493544.0,
1634
+ "step": 1015
1635
+ },
1636
+ {
1637
+ "epoch": 0.9501630181648812,
1638
+ "grad_norm": 0.33341728510354113,
1639
+ "learning_rate": 3.7953054884363134e-05,
1640
+ "loss": 0.4187,
1641
+ "num_tokens": 1066736424.0,
1642
+ "step": 1020
1643
+ },
1644
+ {
1645
+ "epoch": 0.9548206800186306,
1646
+ "grad_norm": 0.3507124223156066,
1647
+ "learning_rate": 3.786675871591301e-05,
1648
+ "loss": 0.411,
1649
+ "num_tokens": 1071979304.0,
1650
+ "step": 1025
1651
+ },
1652
+ {
1653
+ "epoch": 0.95947834187238,
1654
+ "grad_norm": 0.34950902787772553,
1655
+ "learning_rate": 3.77804625474629e-05,
1656
+ "loss": 0.4028,
1657
+ "num_tokens": 1077222184.0,
1658
+ "step": 1030
1659
+ },
1660
+ {
1661
+ "epoch": 0.9641360037261295,
1662
+ "grad_norm": 0.34720406632790546,
1663
+ "learning_rate": 3.7694166379012776e-05,
1664
+ "loss": 0.4059,
1665
+ "num_tokens": 1082465064.0,
1666
+ "step": 1035
1667
+ },
1668
+ {
1669
+ "epoch": 0.9687936655798789,
1670
+ "grad_norm": 0.341563694020237,
1671
+ "learning_rate": 3.7607870210562654e-05,
1672
+ "loss": 0.405,
1673
+ "num_tokens": 1087707944.0,
1674
+ "step": 1040
1675
+ },
1676
+ {
1677
+ "epoch": 0.9734513274336283,
1678
+ "grad_norm": 0.3609889557327282,
1679
+ "learning_rate": 3.752157404211253e-05,
1680
+ "loss": 0.4059,
1681
+ "num_tokens": 1092923046.0,
1682
+ "step": 1045
1683
+ },
1684
+ {
1685
+ "epoch": 0.9781089892873778,
1686
+ "grad_norm": 0.3125635476039176,
1687
+ "learning_rate": 3.743527787366241e-05,
1688
+ "loss": 0.4057,
1689
+ "num_tokens": 1098165926.0,
1690
+ "step": 1050
1691
+ },
1692
+ {
1693
+ "epoch": 0.9827666511411272,
1694
+ "grad_norm": 0.3381394074099237,
1695
+ "learning_rate": 3.734898170521229e-05,
1696
+ "loss": 0.4098,
1697
+ "num_tokens": 1103324696.0,
1698
+ "step": 1055
1699
+ },
1700
+ {
1701
+ "epoch": 0.9874243129948765,
1702
+ "grad_norm": 0.3968089210296165,
1703
+ "learning_rate": 3.7262685536762174e-05,
1704
+ "loss": 0.409,
1705
+ "num_tokens": 1108567576.0,
1706
+ "step": 1060
1707
+ },
1708
+ {
1709
+ "epoch": 0.992081974848626,
1710
+ "grad_norm": 0.4001357948983539,
1711
+ "learning_rate": 3.7176389368312045e-05,
1712
+ "loss": 0.4079,
1713
+ "num_tokens": 1113810456.0,
1714
+ "step": 1065
1715
+ },
1716
+ {
1717
+ "epoch": 0.9967396367023754,
1718
+ "grad_norm": 0.36783487639258866,
1719
+ "learning_rate": 3.709009319986193e-05,
1720
+ "loss": 0.3987,
1721
+ "num_tokens": 1119053336.0,
1722
+ "step": 1070
1723
+ },
1724
+ {
1725
+ "epoch": 1.00093153237075,
1726
+ "grad_norm": 0.5233605999346443,
1727
+ "learning_rate": 3.700379703141181e-05,
1728
+ "loss": 0.4104,
1729
+ "num_tokens": 1123444248.0,
1730
+ "step": 1075
1731
+ },
1732
+ {
1733
+ "epoch": 1.0055891942244992,
1734
+ "grad_norm": 0.35621728589294477,
1735
+ "learning_rate": 3.6917500862961687e-05,
1736
+ "loss": 0.3564,
1737
+ "num_tokens": 1128625632.0,
1738
+ "step": 1080
1739
+ },
1740
+ {
1741
+ "epoch": 1.0102468560782487,
1742
+ "grad_norm": 0.3379539324474777,
1743
+ "learning_rate": 3.6831204694511565e-05,
1744
+ "loss": 0.3426,
1745
+ "num_tokens": 1133868512.0,
1746
+ "step": 1085
1747
+ },
1748
+ {
1749
+ "epoch": 1.0149045179319982,
1750
+ "grad_norm": 0.3230715626176304,
1751
+ "learning_rate": 3.674490852606144e-05,
1752
+ "loss": 0.3558,
1753
+ "num_tokens": 1139111392.0,
1754
+ "step": 1090
1755
+ },
1756
+ {
1757
+ "epoch": 1.0195621797857475,
1758
+ "grad_norm": 0.4474812744659829,
1759
+ "learning_rate": 3.665861235761132e-05,
1760
+ "loss": 0.3512,
1761
+ "num_tokens": 1144313368.0,
1762
+ "step": 1095
1763
+ },
1764
+ {
1765
+ "epoch": 1.024219841639497,
1766
+ "grad_norm": 0.3511076125082377,
1767
+ "learning_rate": 3.6572316189161206e-05,
1768
+ "loss": 0.3554,
1769
+ "num_tokens": 1149498184.0,
1770
+ "step": 1100
1771
+ }
1772
+ ],
1773
+ "logging_steps": 5,
1774
+ "max_steps": 3219,
1775
+ "num_input_tokens_seen": 0,
1776
+ "num_train_epochs": 3,
1777
+ "save_steps": 550,
1778
+ "stateful_callbacks": {
1779
+ "TrainerControl": {
1780
+ "args": {
1781
+ "should_epoch_stop": false,
1782
+ "should_evaluate": false,
1783
+ "should_log": false,
1784
+ "should_save": true,
1785
+ "should_training_stop": false
1786
+ },
1787
+ "attributes": {}
1788
+ }
1789
+ },
1790
+ "total_flos": 9.419208775350354e+17,
1791
+ "train_batch_size": 1,
1792
+ "trial_name": null,
1793
+ "trial_params": null
1794
+ }
checkpoint-1100/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:899b8628780203e488835cce3e045b8d7ec93acc6ed785462cd6b0f8850577c4
3
+ size 7800
checkpoint-1100/vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-1100/zero_to_fp32.py ADDED
@@ -0,0 +1,674 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example:
14
+ # python zero_to_fp32.py . output_dir/
15
+ # or
16
+ # python zero_to_fp32.py . output_dir/ --safe_serialization
17
+
18
+ import argparse
19
+ import torch
20
+ import glob
21
+ import math
22
+ import os
23
+ import re
24
+ import json
25
+ from tqdm import tqdm
26
+ from collections import OrderedDict
27
+ from dataclasses import dataclass
28
+
29
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
30
+ # DeepSpeed data structures it has to be available in the current python environment.
31
+ from deepspeed.utils import logger
32
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
33
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
34
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
35
+
36
+
37
+ @dataclass
38
+ class zero_model_state:
39
+ buffers: dict()
40
+ param_shapes: dict()
41
+ shared_params: list
42
+ ds_version: int
43
+ frozen_param_shapes: dict()
44
+ frozen_param_fragments: dict()
45
+
46
+
47
+ debug = 0
48
+
49
+ # load to cpu
50
+ device = torch.device('cpu')
51
+
52
+
53
+ def atoi(text):
54
+ return int(text) if text.isdigit() else text
55
+
56
+
57
+ def natural_keys(text):
58
+ '''
59
+ alist.sort(key=natural_keys) sorts in human order
60
+ http://nedbatchelder.com/blog/200712/human_sorting.html
61
+ (See Toothy's implementation in the comments)
62
+ '''
63
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
64
+
65
+
66
+ def get_model_state_file(checkpoint_dir, zero_stage):
67
+ if not os.path.isdir(checkpoint_dir):
68
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
69
+
70
+ # there should be only one file
71
+ if zero_stage <= 2:
72
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
73
+ elif zero_stage == 3:
74
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
75
+
76
+ if not os.path.exists(file):
77
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
78
+
79
+ return file
80
+
81
+
82
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
83
+ # XXX: need to test that this simple glob rule works for multi-node setup too
84
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
85
+
86
+ if len(ckpt_files) == 0:
87
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
88
+
89
+ return ckpt_files
90
+
91
+
92
+ def get_optim_files(checkpoint_dir):
93
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
94
+
95
+
96
+ def get_model_state_files(checkpoint_dir):
97
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
98
+
99
+
100
+ def parse_model_states(files):
101
+ zero_model_states = []
102
+ for file in files:
103
+ state_dict = torch.load(file, map_location=device)
104
+
105
+ if BUFFER_NAMES not in state_dict:
106
+ raise ValueError(f"{file} is not a model state checkpoint")
107
+ buffer_names = state_dict[BUFFER_NAMES]
108
+ if debug:
109
+ print("Found buffers:", buffer_names)
110
+
111
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
112
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
113
+ param_shapes = state_dict[PARAM_SHAPES]
114
+
115
+ # collect parameters that are included in param_shapes
116
+ param_names = []
117
+ for s in param_shapes:
118
+ for name in s.keys():
119
+ param_names.append(name)
120
+
121
+ # update with frozen parameters
122
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
123
+ if frozen_param_shapes is not None:
124
+ if debug:
125
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
126
+ param_names += list(frozen_param_shapes.keys())
127
+
128
+ # handle shared params
129
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
130
+
131
+ ds_version = state_dict.get(DS_VERSION, None)
132
+
133
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
134
+
135
+ z_model_state = zero_model_state(buffers=buffers,
136
+ param_shapes=param_shapes,
137
+ shared_params=shared_params,
138
+ ds_version=ds_version,
139
+ frozen_param_shapes=frozen_param_shapes,
140
+ frozen_param_fragments=frozen_param_fragments)
141
+ zero_model_states.append(z_model_state)
142
+
143
+ return zero_model_states
144
+
145
+
146
+ def parse_optim_states(files, ds_checkpoint_dir):
147
+ total_files = len(files)
148
+ state_dicts = []
149
+ for f in files:
150
+ state_dict = torch.load(f, map_location=device)
151
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
152
+ # and also handle the case where it was already removed by another helper script
153
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
154
+ state_dicts.append(state_dict)
155
+
156
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
157
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
158
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
159
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
160
+
161
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
162
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
163
+ # use the max of the partition_count to get the dp world_size.
164
+
165
+ if type(world_size) is list:
166
+ world_size = max(world_size)
167
+
168
+ if world_size != total_files:
169
+ raise ValueError(
170
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
171
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
172
+ )
173
+
174
+ # the groups are named differently in each stage
175
+ if zero_stage <= 2:
176
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
177
+ elif zero_stage == 3:
178
+ fp32_groups_key = FP32_FLAT_GROUPS
179
+ else:
180
+ raise ValueError(f"unknown zero stage {zero_stage}")
181
+
182
+ if zero_stage <= 2:
183
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
184
+ elif zero_stage == 3:
185
+ # if there is more than one param group, there will be multiple flattened tensors - one
186
+ # flattened tensor per group - for simplicity merge them into a single tensor
187
+ #
188
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
189
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
190
+
191
+ fp32_flat_groups = [
192
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
193
+ ]
194
+
195
+ return zero_stage, world_size, fp32_flat_groups
196
+
197
+
198
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
199
+ """
200
+ Returns fp32 state_dict reconstructed from ds checkpoint
201
+
202
+ Args:
203
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
204
+
205
+ """
206
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
207
+
208
+ optim_files = get_optim_files(ds_checkpoint_dir)
209
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
210
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
211
+
212
+ model_files = get_model_state_files(ds_checkpoint_dir)
213
+
214
+ zero_model_states = parse_model_states(model_files)
215
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
216
+
217
+ if zero_stage <= 2:
218
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
219
+ exclude_frozen_parameters)
220
+ elif zero_stage == 3:
221
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
222
+ exclude_frozen_parameters)
223
+
224
+
225
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
226
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
227
+ return
228
+
229
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
230
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
231
+
232
+ if debug:
233
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
234
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
235
+
236
+ wanted_params = len(frozen_param_shapes)
237
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
238
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
239
+ print(f'Frozen params: Have {avail_numel} numels to process.')
240
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
241
+
242
+ total_params = 0
243
+ total_numel = 0
244
+ for name, shape in frozen_param_shapes.items():
245
+ total_params += 1
246
+ unpartitioned_numel = shape.numel()
247
+ total_numel += unpartitioned_numel
248
+
249
+ state_dict[name] = frozen_param_fragments[name]
250
+
251
+ if debug:
252
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
253
+
254
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
255
+
256
+
257
+ def _has_callable(obj, fn):
258
+ attr = getattr(obj, fn, None)
259
+ return callable(attr)
260
+
261
+
262
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
263
+ param_shapes = zero_model_states[0].param_shapes
264
+
265
+ # Reconstruction protocol:
266
+ #
267
+ # XXX: document this
268
+
269
+ if debug:
270
+ for i in range(world_size):
271
+ for j in range(len(fp32_flat_groups[0])):
272
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
273
+
274
+ # XXX: memory usage doubles here (zero2)
275
+ num_param_groups = len(fp32_flat_groups[0])
276
+ merged_single_partition_of_fp32_groups = []
277
+ for i in range(num_param_groups):
278
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
279
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
280
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
281
+ avail_numel = sum(
282
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
283
+
284
+ if debug:
285
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
286
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
287
+ # not asserting if there is a mismatch due to possible padding
288
+ print(f"Have {avail_numel} numels to process.")
289
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
290
+
291
+ # params
292
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
293
+ # out-of-core computing solution
294
+ total_numel = 0
295
+ total_params = 0
296
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
297
+ offset = 0
298
+ avail_numel = full_single_fp32_vector.numel()
299
+ for name, shape in shapes.items():
300
+
301
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
302
+ total_numel += unpartitioned_numel
303
+ total_params += 1
304
+
305
+ if debug:
306
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
307
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
308
+ offset += unpartitioned_numel
309
+
310
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
311
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
312
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
313
+ # live optimizer object, so we are checking that the numbers are within the right range
314
+ align_to = 2 * world_size
315
+
316
+ def zero2_align(x):
317
+ return align_to * math.ceil(x / align_to)
318
+
319
+ if debug:
320
+ print(f"original offset={offset}, avail_numel={avail_numel}")
321
+
322
+ offset = zero2_align(offset)
323
+ avail_numel = zero2_align(avail_numel)
324
+
325
+ if debug:
326
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
327
+
328
+ # Sanity check
329
+ if offset != avail_numel:
330
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
331
+
332
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
333
+
334
+
335
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
336
+ exclude_frozen_parameters):
337
+ state_dict = OrderedDict()
338
+
339
+ # buffers
340
+ buffers = zero_model_states[0].buffers
341
+ state_dict.update(buffers)
342
+ if debug:
343
+ print(f"added {len(buffers)} buffers")
344
+
345
+ if not exclude_frozen_parameters:
346
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
347
+
348
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
349
+
350
+ # recover shared parameters
351
+ for pair in zero_model_states[0].shared_params:
352
+ if pair[1] in state_dict:
353
+ state_dict[pair[0]] = state_dict[pair[1]]
354
+
355
+ return state_dict
356
+
357
+
358
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
359
+ remainder = unpartitioned_numel % world_size
360
+ padding_numel = (world_size - remainder) if remainder else 0
361
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
362
+ return partitioned_numel, padding_numel
363
+
364
+
365
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
366
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
367
+ return
368
+
369
+ if debug:
370
+ for i in range(world_size):
371
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
372
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
373
+
374
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
375
+ wanted_params = len(frozen_param_shapes)
376
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
377
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
378
+ print(f'Frozen params: Have {avail_numel} numels to process.')
379
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
380
+
381
+ total_params = 0
382
+ total_numel = 0
383
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
384
+ total_params += 1
385
+ unpartitioned_numel = shape.numel()
386
+ total_numel += unpartitioned_numel
387
+
388
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
389
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
390
+
391
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
392
+
393
+ if debug:
394
+ print(
395
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
396
+ )
397
+
398
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
399
+
400
+
401
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
402
+ param_shapes = zero_model_states[0].param_shapes
403
+ avail_numel = fp32_flat_groups[0].numel() * world_size
404
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
405
+ # param, re-consolidating each param, while dealing with padding if any
406
+
407
+ # merge list of dicts, preserving order
408
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
409
+
410
+ if debug:
411
+ for i in range(world_size):
412
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
413
+
414
+ wanted_params = len(param_shapes)
415
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
416
+ # not asserting if there is a mismatch due to possible padding
417
+ avail_numel = fp32_flat_groups[0].numel() * world_size
418
+ print(f"Trainable params: Have {avail_numel} numels to process.")
419
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
420
+
421
+ # params
422
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
423
+ # out-of-core computing solution
424
+ offset = 0
425
+ total_numel = 0
426
+ total_params = 0
427
+ for name, shape in tqdm(param_shapes.items(), desc='Gathering Sharded Weights'):
428
+ unpartitioned_numel = shape.numel()
429
+ total_numel += unpartitioned_numel
430
+ total_params += 1
431
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
432
+
433
+ if debug:
434
+ print(
435
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
436
+ )
437
+
438
+ # XXX: memory usage doubles here
439
+ state_dict[name] = torch.cat(
440
+ tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
441
+ 0).narrow(0, 0, unpartitioned_numel).view(shape)
442
+ offset += partitioned_numel
443
+
444
+ offset *= world_size
445
+
446
+ # Sanity check
447
+ if offset != avail_numel:
448
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
449
+
450
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
451
+
452
+
453
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
454
+ exclude_frozen_parameters):
455
+ state_dict = OrderedDict()
456
+
457
+ # buffers
458
+ buffers = zero_model_states[0].buffers
459
+ state_dict.update(buffers)
460
+ if debug:
461
+ print(f"added {len(buffers)} buffers")
462
+
463
+ if not exclude_frozen_parameters:
464
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
465
+
466
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
467
+
468
+ # recover shared parameters
469
+ for pair in zero_model_states[0].shared_params:
470
+ if pair[1] in state_dict:
471
+ state_dict[pair[0]] = state_dict[pair[1]]
472
+
473
+ return state_dict
474
+
475
+
476
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
477
+ """
478
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
479
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
480
+ via a model hub.
481
+
482
+ Args:
483
+ - ``checkpoint_dir``: path to the desired checkpoint folder
484
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
485
+ - ``exclude_frozen_parameters``: exclude frozen parameters
486
+
487
+ Returns:
488
+ - pytorch ``state_dict``
489
+
490
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
491
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
492
+ the checkpoint.
493
+
494
+ A typical usage might be ::
495
+
496
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
497
+ # do the training and checkpoint saving
498
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
499
+ model = model.cpu() # move to cpu
500
+ model.load_state_dict(state_dict)
501
+ # submit to model hub or save the model to share with others
502
+
503
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
504
+ application. i.e. you will need to re-initialize the deepspeed engine, since
505
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
506
+
507
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
508
+
509
+ """
510
+ if tag is None:
511
+ latest_path = os.path.join(checkpoint_dir, 'latest')
512
+ if os.path.isfile(latest_path):
513
+ with open(latest_path, 'r') as fd:
514
+ tag = fd.read().strip()
515
+ else:
516
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
517
+
518
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
519
+
520
+ if not os.path.isdir(ds_checkpoint_dir):
521
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
522
+
523
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
524
+
525
+
526
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
527
+ output_dir,
528
+ max_shard_size="5GB",
529
+ safe_serialization=False,
530
+ tag=None,
531
+ exclude_frozen_parameters=False):
532
+ """
533
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
534
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
535
+
536
+ Args:
537
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
538
+ - ``output_dir``: directory to the pytorch fp32 state_dict output files
539
+ - ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
540
+ - ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
541
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
542
+ - ``exclude_frozen_parameters``: exclude frozen parameters
543
+ """
544
+ # Dependency pre-check
545
+ if safe_serialization:
546
+ try:
547
+ from safetensors.torch import save_file
548
+ except ImportError:
549
+ print('If you want to use `safe_serialization`, please `pip install safetensors`')
550
+ raise
551
+ if max_shard_size is not None:
552
+ try:
553
+ from huggingface_hub import split_torch_state_dict_into_shards
554
+ except ImportError:
555
+ print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
556
+ raise
557
+
558
+ # Convert zero checkpoint to state_dict
559
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
560
+
561
+ # Shard the model if it is too big.
562
+ weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
563
+ if max_shard_size is not None:
564
+ filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
565
+ state_dict_split = split_torch_state_dict_into_shards(state_dict,
566
+ filename_pattern=filename_pattern,
567
+ max_shard_size=max_shard_size)
568
+ else:
569
+ from collections import namedtuple
570
+ StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
571
+ state_dict_split = StateDictSplit(is_sharded=False,
572
+ filename_to_tensors={weights_name: list(state_dict.keys())})
573
+
574
+ # Save the model
575
+ filename_to_tensors = state_dict_split.filename_to_tensors.items()
576
+ for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
577
+ shard = {tensor: state_dict[tensor].contiguous() for tensor in tensors}
578
+ output_path = os.path.join(output_dir, shard_file)
579
+ if safe_serialization:
580
+ save_file(shard, output_path, metadata={"format": "pt"})
581
+ else:
582
+ torch.save(shard, output_path)
583
+
584
+ # Save index if sharded
585
+ if state_dict_split.is_sharded:
586
+ index = {
587
+ "metadata": state_dict_split.metadata,
588
+ "weight_map": state_dict_split.tensor_to_filename,
589
+ }
590
+ save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
591
+ save_index_file = os.path.join(output_dir, save_index_file)
592
+ with open(save_index_file, "w", encoding="utf-8") as f:
593
+ content = json.dumps(index, indent=2, sort_keys=True) + "\n"
594
+ f.write(content)
595
+
596
+
597
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
598
+ """
599
+ 1. Put the provided model to cpu
600
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
601
+ 3. Load it into the provided model
602
+
603
+ Args:
604
+ - ``model``: the model object to update
605
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
606
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
607
+
608
+ Returns:
609
+ - ``model`: modified model
610
+
611
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
612
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
613
+ conveniently placed for you in the checkpoint folder.
614
+
615
+ A typical usage might be ::
616
+
617
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
618
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
619
+ # submit to model hub or save the model to share with others
620
+
621
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
622
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
623
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
624
+
625
+ """
626
+ logger.info(f"Extracting fp32 weights")
627
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
628
+
629
+ logger.info(f"Overwriting model with fp32 weights")
630
+ model = model.cpu()
631
+ model.load_state_dict(state_dict, strict=False)
632
+
633
+ return model
634
+
635
+
636
+ if __name__ == "__main__":
637
+ parser = argparse.ArgumentParser()
638
+ parser.add_argument("checkpoint_dir",
639
+ type=str,
640
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
641
+ parser.add_argument("output_dir",
642
+ type=str,
643
+ help="directory to the pytorch fp32 state_dict output files"
644
+ "(e.g. path/checkpoint-12-output/)")
645
+ parser.add_argument(
646
+ "--max_shard_size",
647
+ type=str,
648
+ default="5GB",
649
+ help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
650
+ "lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
651
+ "We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
652
+ "without CPU OOM issues.")
653
+ parser.add_argument(
654
+ "--safe_serialization",
655
+ default=False,
656
+ action='store_true',
657
+ help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
658
+ parser.add_argument("-t",
659
+ "--tag",
660
+ type=str,
661
+ default=None,
662
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
663
+ parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
664
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
665
+ args = parser.parse_args()
666
+
667
+ debug = args.debug
668
+
669
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
670
+ args.output_dir,
671
+ max_shard_size=args.max_shard_size,
672
+ safe_serialization=args.safe_serialization,
673
+ tag=args.tag,
674
+ exclude_frozen_parameters=args.exclude_frozen_parameters)