Update README.md
Browse files
README.md
CHANGED
|
@@ -59,7 +59,7 @@ class CNNV0(nn.Module):
|
|
| 59 |
x = self.conv_block_2(x)
|
| 60 |
x = self.classifier(x)
|
| 61 |
return x
|
| 62 |
-
|
| 63 |
## Requirements
|
| 64 |
|
| 65 |
- **Python** 3.7 or higher
|
|
@@ -73,28 +73,29 @@ class CNNV0(nn.Module):
|
|
| 73 |
git clone <repository-url>
|
| 74 |
cd <repository-folder>
|
| 75 |
pip install torch torchvision
|
| 76 |
-
|
|
|
|
| 77 |
2. Load and use the model in your Python script:
|
| 78 |
```python
|
| 79 |
import torch
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
# Predict
|
| 96 |
-
with torch.no_grad():
|
| 97 |
-
output = model(img)
|
| 98 |
-
_, predicted = torch.max(output, 1)
|
| 99 |
-
print("Predicted Aircraft Type:", predicted.item())
|
| 100 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 59 |
x = self.conv_block_2(x)
|
| 60 |
x = self.classifier(x)
|
| 61 |
return x
|
| 62 |
+
```
|
| 63 |
## Requirements
|
| 64 |
|
| 65 |
- **Python** 3.7 or higher
|
|
|
|
| 73 |
git clone <repository-url>
|
| 74 |
cd <repository-folder>
|
| 75 |
pip install torch torchvision
|
| 76 |
+
```
|
| 77 |
+
|
| 78 |
2. Load and use the model in your Python script:
|
| 79 |
```python
|
| 80 |
import torch
|
| 81 |
+
from torchvision import transforms
|
| 82 |
+
from PIL import Image
|
| 83 |
+
|
| 84 |
+
# Load the model
|
| 85 |
+
model = torch.load('model_0.pth')
|
| 86 |
+
model.eval() # Set to evaluation mode
|
| 87 |
+
|
| 88 |
+
# Load and preprocess the image
|
| 89 |
+
transform = transforms.Compose([
|
| 90 |
+
transforms.Resize((224, 224)),
|
| 91 |
+
transforms.ToTensor(),
|
| 92 |
+
])
|
| 93 |
+
img = Image.open('path_to_image.jpg')
|
| 94 |
+
img = transform(img).view(1, 3, 224, 224) # Reshape to (1, 3, 224, 224) for batch processing
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 95 |
|
| 96 |
+
# Predict
|
| 97 |
+
with torch.no_grad():
|
| 98 |
+
output = model(img)
|
| 99 |
+
_, predicted = torch.max(output, 1)
|
| 100 |
+
print("Predicted Aircraft Type:", predicted.item())
|
| 101 |
+
```
|