--- license: mit datasets: - jxie/stl10 --- # Image Classifier This repository contains a pre-trained PyTorch model, designed for classifying images into 10 categories: airplane, bird, car, cat, deer, dog, horse, monkey, ship, and truck. The model uses a Convolutional Neural Network (CNN) architecture and can classify images based on the categories below. ## Model Overview The model is a simple CNN classifier with two convolutional blocks followed by a fully connected layer. It was trained on an image dataset and can classify images into the following categories: - **0**: Airplane - **1**: Bird - **2**: Car - **3**: Cat - **4**: Deer - **5**: Dog - **6**: Horse - **7**: Monkey - **8**: Ship - **9**: Truck ## Model Architecture The model consists of the following layers: 1. **Conv Block 1**: Two convolutional layers with ReLU activations followed by max pooling. 2. **Conv Block 2**: Two more convolutional layers with ReLU activations and max pooling. 3. **Fully Connected Classifier**: A linear layer that maps the features to 10 output categories. Here’s the architecture of the model: ```python class CNNV0(nn.Module): def __init__(self, input_shape: int, hidden_units: int, output_shape: int): super().__init__() self.conv_block_1 = nn.Sequential( nn.Conv2d(in_channels=input_shape, out_channels=hidden_units, kernel_size=3, stride=1, padding=1), nn.ReLU(), nn.Conv2d(in_channels=hidden_units, out_channels=hidden_units, kernel_size=3, stride=1, padding=1), nn.ReLU(), nn.MaxPool2d(kernel_size=2) ) self.conv_block_2 = nn.Sequential( nn.Conv2d(in_channels=hidden_units, out_channels=hidden_units, kernel_size=3, stride=1, padding=1), nn.ReLU(), nn.Conv2d(in_channels=hidden_units, out_channels=hidden_units, kernel_size=3, stride=1, padding=1), nn.ReLU(), nn.MaxPool2d(kernel_size=2) ) self.classifier = nn.Sequential( nn.Flatten(), nn.Linear(in_features=hidden_units*576, out_features=output_shape) ) def forward(self, x): x = self.conv_block_1(x) x = self.conv_block_2(x) x = self.classifier(x) return x ``` ## Requirements - **Python** 3.7 or higher - **PyTorch** 1.8 or higher - **torchvision** (for loading and preprocessing images) ## Usage 1. Clone this repository and install dependencies: ```bash git clone cd pip install torch torchvision ``` 2. Load and use the model in your Python script: ```python import torch from torchvision import transforms from PIL import Image # Load the model model = torch.load('model_0.pth') model.eval() # Set to evaluation mode # Load and preprocess the image transform = transforms.Compose([ transforms.Resize((224, 224)), transforms.ToTensor(), ]) img = Image.open('path_to_image.jpg') img = transform(img).view(1, 3, 224, 224) # Reshape to (1, 3, 224, 224) for batch processing # Predict with torch.no_grad(): output = model(img) _, predicted = torch.max(output, 1) print("Predicted Aircraft Type:", predicted.item()) ```