File size: 3,486 Bytes
5db1f72
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: bert-base-uncased-finetuned-iemocap8
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# bert-base-uncased-finetuned-iemocap8

This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.8968
- Accuracy: 0.6654
- F1: 0.6723

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 4.319412088241492e-05
- train_batch_size: 64
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 30

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1     |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| No log        | 1.0   | 51   | 1.0531          | 0.5597   | 0.5655 |
| 1.0284        | 2.0   | 102  | 0.9370          | 0.6227   | 0.6304 |
| 1.0284        | 3.0   | 153  | 0.8796          | 0.6722   | 0.6765 |
| 0.4432        | 4.0   | 204  | 0.9785          | 0.6654   | 0.6727 |
| 0.4432        | 5.0   | 255  | 1.0664          | 0.6586   | 0.6634 |
| 0.2492        | 6.0   | 306  | 1.1291          | 0.6499   | 0.6606 |
| 0.2492        | 7.0   | 357  | 1.1847          | 0.6702   | 0.6777 |
| 0.1707        | 8.0   | 408  | 1.4084          | 0.6508   | 0.6534 |
| 0.1707        | 9.0   | 459  | 1.3468          | 0.6702   | 0.6762 |
| 0.1461        | 10.0  | 510  | 1.4245          | 0.6634   | 0.6710 |
| 0.1461        | 11.0  | 561  | 1.4865          | 0.6499   | 0.6600 |
| 0.1262        | 12.0  | 612  | 1.4616          | 0.6576   | 0.6656 |
| 0.1262        | 13.0  | 663  | 1.5335          | 0.6663   | 0.6711 |
| 0.1203        | 14.0  | 714  | 1.4855          | 0.6731   | 0.6806 |
| 0.1203        | 15.0  | 765  | 1.5825          | 0.6712   | 0.6792 |
| 0.1023        | 16.0  | 816  | 1.7145          | 0.6731   | 0.6794 |
| 0.1023        | 17.0  | 867  | 1.6676          | 0.6751   | 0.6823 |
| 0.0976        | 18.0  | 918  | 1.8013          | 0.6693   | 0.6719 |
| 0.0976        | 19.0  | 969  | 1.7192          | 0.6673   | 0.6755 |
| 0.0937        | 20.0  | 1020 | 1.7837          | 0.6654   | 0.6731 |
| 0.0937        | 21.0  | 1071 | 1.7779          | 0.6760   | 0.6831 |
| 0.0901        | 22.0  | 1122 | 1.8352          | 0.6615   | 0.6687 |
| 0.0901        | 23.0  | 1173 | 1.8601          | 0.6596   | 0.6656 |
| 0.0844        | 24.0  | 1224 | 1.9129          | 0.6625   | 0.6719 |
| 0.0844        | 25.0  | 1275 | 1.8507          | 0.6731   | 0.6784 |
| 0.0829        | 26.0  | 1326 | 1.8582          | 0.6673   | 0.6735 |
| 0.0829        | 27.0  | 1377 | 1.8670          | 0.6770   | 0.6825 |
| 0.0839        | 28.0  | 1428 | 1.8763          | 0.6741   | 0.6800 |
| 0.0839        | 29.0  | 1479 | 1.8925          | 0.6702   | 0.6769 |
| 0.0802        | 30.0  | 1530 | 1.8968          | 0.6654   | 0.6723 |


### Framework versions

- Transformers 4.26.1
- Pytorch 1.13.1+cu116
- Datasets 2.10.0
- Tokenizers 0.13.2