--- library_name: transformers language: - hu license: mit base_model: openai/whisper-large-v3-turbo tags: - generated_from_trainer datasets: - mozilla-foundation/common_voice_17_0 metrics: - wer model-index: - name: TcT Whisper Turbo - Zakryah results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common voice 17.0 type: mozilla-foundation/common_voice_17_0 config: hu split: test args: 'config: hu, split: test' metrics: - name: Wer type: wer value: 10.865284788601295 --- # TcT Whisper Turbo - Zakryah This model is a fine-tuned version of [openai/whisper-large-v3-turbo](https://huggingface.co/openai/whisper-large-v3-turbo) on the Common voice 17.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.1012 - Wer: 10.8653 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 0.1832 | 0.3299 | 1000 | 0.1836 | 18.5993 | | 0.1546 | 0.6598 | 2000 | 0.1450 | 15.8307 | | 0.1182 | 0.9898 | 3000 | 0.1138 | 12.4178 | | 0.0435 | 1.3197 | 4000 | 0.1012 | 10.8653 | ### Framework versions - Transformers 4.53.0.dev0 - Pytorch 2.5.1 - Datasets 3.3.2 - Tokenizers 0.21.1