--- license: apache-2.0 base_model: google/vit-base-patch16-384 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: rmsProp_vitB-32-384-2e4-ne-1-bs-16 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9827586206896551 --- # rmsProp_vitB-32-384-2e4-ne-1-bs-16 This model is a fine-tuned version of [google/vit-base-patch16-384](https://huggingface.co/google/vit-base-patch16-384) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0752 - Accuracy: 0.9828 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.774 | 0.07 | 100 | 3.4867 | 0.0819 | | 1.1104 | 0.14 | 200 | 1.5104 | 0.5359 | | 0.2994 | 0.21 | 300 | 0.3914 | 0.8836 | | 0.2754 | 0.28 | 400 | 0.2456 | 0.9210 | | 0.212 | 0.35 | 500 | 0.1669 | 0.9511 | | 0.1063 | 0.42 | 600 | 0.1406 | 0.9511 | | 0.0999 | 0.49 | 700 | 0.2218 | 0.9425 | | 0.0609 | 0.56 | 800 | 0.1407 | 0.9598 | | 0.0784 | 0.63 | 900 | 0.0985 | 0.9641 | | 0.0251 | 0.7 | 1000 | 0.0963 | 0.9698 | | 0.0094 | 0.77 | 1100 | 0.0893 | 0.9727 | | 0.0153 | 0.84 | 1200 | 0.1044 | 0.9670 | | 0.032 | 0.91 | 1300 | 0.1035 | 0.9713 | | 0.0042 | 0.97 | 1400 | 0.0752 | 0.9828 | ### Framework versions - Transformers 4.39.3 - Pytorch 2.1.2 - Datasets 2.18.0 - Tokenizers 0.15.2