File size: 2,309 Bytes
4dc4cc9 6ae9460 4dc4cc9 6ae9460 4dc4cc9 6ae9460 4dc4cc9 6ae9460 4dc4cc9 6ae9460 4dc4cc9 6ae9460 4dc4cc9 6ae9460 4dc4cc9 6ae9460 4dc4cc9 6ae9460 4dc4cc9 6ae9460 4dc4cc9 6ae9460 4dc4cc9 6ae9460 4dc4cc9 6ae9460 4dc4cc9 6ae9460 4dc4cc9 6ae9460 4dc4cc9 6ae9460 4dc4cc9 6ae9460 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 |
---
library_name: transformers
license: mit
base_model: facebook/w2v-bert-2.0
tags:
- generated_from_trainer
datasets:
- generator
metrics:
- wer
model-index:
- name: wav2vec2-bert-swahili-noise
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: generator
type: generator
config: default
split: train
args: default
metrics:
- name: Wer
type: wer
value: 0.2959163543105149
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-bert-swahili-noise
This model is a fine-tuned version of [facebook/w2v-bert-2.0](https://huggingface.co/facebook/w2v-bert-2.0) on the generator dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5771
- Wer: 0.2959
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 38
- eval_batch_size: 16
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- training_steps: 900
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:------:|:----:|:---------------:|:------:|
| 3.142 | 0.0817 | 100 | 3.0798 | 0.9999 |
| 1.9368 | 0.1634 | 200 | 1.4137 | 0.9886 |
| 0.9455 | 0.2451 | 300 | 0.7745 | 0.4115 |
| 0.8236 | 0.3268 | 400 | 0.6644 | 0.3485 |
| 0.7723 | 0.4085 | 500 | 0.6475 | 0.3313 |
| 0.7603 | 0.4902 | 600 | 0.6082 | 0.3097 |
| 0.6848 | 0.5719 | 700 | 0.5972 | 0.3072 |
| 0.683 | 0.6536 | 800 | 0.5762 | 0.2986 |
| 0.6967 | 0.7353 | 900 | 0.5771 | 0.2959 |
### Framework versions
- Transformers 4.50.3
- Pytorch 2.8.0+cu128
- Datasets 3.6.0
- Tokenizers 0.21.2
|