|
|
|
|
|
import os |
|
import math |
|
|
|
|
|
class Config(): |
|
def __init__(self) -> None: |
|
|
|
self.sys_home_dir = os.environ['HOME'] |
|
|
|
|
|
self.task = ['DIS5K', 'COD', 'HRSOD', 'DIS5K+HRSOD+HRS10K', 'P3M-10k'][0] |
|
self.training_set = { |
|
'DIS5K': ['DIS-TR', 'DIS-TR+DIS-TE1+DIS-TE2+DIS-TE3+DIS-TE4'][0], |
|
'COD': 'TR-COD10K+TR-CAMO', |
|
'HRSOD': ['TR-DUTS', 'TR-HRSOD', 'TR-UHRSD', 'TR-DUTS+TR-HRSOD', 'TR-DUTS+TR-UHRSD', 'TR-HRSOD+TR-UHRSD', 'TR-DUTS+TR-HRSOD+TR-UHRSD'][5], |
|
'DIS5K+HRSOD+HRS10K': 'DIS-TE1+DIS-TE2+DIS-TE3+DIS-TE4+DIS-TR+TE-HRS10K+TE-HRSOD+TE-UHRSD+TR-HRS10K+TR-HRSOD+TR-UHRSD', |
|
'P3M-10k': 'TR-P3M-10k', |
|
}[self.task] |
|
self.prompt4loc = ['dense', 'sparse'][0] |
|
|
|
|
|
self.load_all = True |
|
self.compile = True |
|
|
|
|
|
|
|
self.precisionHigh = True |
|
|
|
|
|
self.ms_supervision = True |
|
self.out_ref = self.ms_supervision and True |
|
self.dec_ipt = True |
|
self.dec_ipt_split = True |
|
self.cxt_num = [0, 3][1] |
|
self.mul_scl_ipt = ['', 'add', 'cat'][2] |
|
self.dec_att = ['', 'ASPP', 'ASPPDeformable'][2] |
|
self.squeeze_block = ['', 'BasicDecBlk_x1', 'ResBlk_x4', 'ASPP_x3', 'ASPPDeformable_x3'][1] |
|
self.dec_blk = ['BasicDecBlk', 'ResBlk', 'HierarAttDecBlk'][0] |
|
|
|
|
|
self.batch_size = 4 |
|
self.IoU_finetune_last_epochs = [ |
|
0, |
|
{ |
|
'DIS5K': -50, |
|
'COD': -20, |
|
'HRSOD': -20, |
|
'DIS5K+HRSOD+HRS10K': -20, |
|
'P3M-10k': -20, |
|
}[self.task] |
|
][1] |
|
self.lr = (1e-4 if 'DIS5K' in self.task else 1e-5) * math.sqrt(self.batch_size / 4) |
|
self.size = 1024 |
|
self.num_workers = max(4, self.batch_size) |
|
|
|
|
|
self.bb = [ |
|
'vgg16', 'vgg16bn', 'resnet50', |
|
'swin_v1_t', 'swin_v1_s', |
|
'swin_v1_b', 'swin_v1_l', |
|
'pvt_v2_b0', 'pvt_v2_b1', |
|
'pvt_v2_b2', 'pvt_v2_b5', |
|
][6] |
|
self.lateral_channels_in_collection = { |
|
'vgg16': [512, 256, 128, 64], 'vgg16bn': [512, 256, 128, 64], 'resnet50': [1024, 512, 256, 64], |
|
'pvt_v2_b2': [512, 320, 128, 64], 'pvt_v2_b5': [512, 320, 128, 64], |
|
'swin_v1_b': [1024, 512, 256, 128], 'swin_v1_l': [1536, 768, 384, 192], |
|
'swin_v1_t': [768, 384, 192, 96], 'swin_v1_s': [768, 384, 192, 96], |
|
'pvt_v2_b0': [256, 160, 64, 32], 'pvt_v2_b1': [512, 320, 128, 64], |
|
}[self.bb] |
|
if self.mul_scl_ipt == 'cat': |
|
self.lateral_channels_in_collection = [channel * 2 for channel in self.lateral_channels_in_collection] |
|
self.cxt = self.lateral_channels_in_collection[1:][::-1][-self.cxt_num:] if self.cxt_num else [] |
|
|
|
|
|
self.lat_blk = ['BasicLatBlk'][0] |
|
self.dec_channels_inter = ['fixed', 'adap'][0] |
|
self.refine = ['', 'itself', 'RefUNet', 'Refiner', 'RefinerPVTInChannels4'][0] |
|
self.progressive_ref = self.refine and True |
|
self.ender = self.progressive_ref and False |
|
self.scale = self.progressive_ref and 2 |
|
self.auxiliary_classification = False |
|
self.refine_iteration = 1 |
|
self.freeze_bb = False |
|
self.model = [ |
|
'BiRefNet', |
|
][0] |
|
if self.dec_blk == 'HierarAttDecBlk': |
|
self.batch_size = 2 ** [0, 1, 2, 3, 4][2] |
|
|
|
|
|
self.preproc_methods = ['flip', 'enhance', 'rotate', 'pepper', 'crop'][:4] |
|
self.optimizer = ['Adam', 'AdamW'][1] |
|
self.lr_decay_epochs = [1e5] |
|
self.lr_decay_rate = 0.5 |
|
|
|
self.lambdas_pix_last = { |
|
|
|
|
|
'bce': 30 * 1, |
|
'iou': 0.5 * 1, |
|
'iou_patch': 0.5 * 0, |
|
'mse': 150 * 0, |
|
'triplet': 3 * 0, |
|
'reg': 100 * 0, |
|
'ssim': 10 * 1, |
|
'cnt': 5 * 0, |
|
'structure': 5 * 0, |
|
} |
|
self.lambdas_cls = { |
|
'ce': 5.0 |
|
} |
|
|
|
self.lambda_adv_g = 10. * 0 |
|
self.lambda_adv_d = 3. * (self.lambda_adv_g > 0) |
|
|
|
|
|
self.data_root_dir = os.path.join(self.sys_home_dir, 'datasets/dis') |
|
self.weights_root_dir = os.path.join(self.sys_home_dir, 'weights') |
|
self.weights = { |
|
'pvt_v2_b2': os.path.join(self.weights_root_dir, 'pvt_v2_b2.pth'), |
|
'pvt_v2_b5': os.path.join(self.weights_root_dir, ['pvt_v2_b5.pth', 'pvt_v2_b5_22k.pth'][0]), |
|
'swin_v1_b': os.path.join(self.weights_root_dir, ['swin_base_patch4_window12_384_22kto1k.pth', 'swin_base_patch4_window12_384_22k.pth'][0]), |
|
'swin_v1_l': os.path.join(self.weights_root_dir, ['swin_large_patch4_window12_384_22kto1k.pth', 'swin_large_patch4_window12_384_22k.pth'][0]), |
|
'swin_v1_t': os.path.join(self.weights_root_dir, ['swin_tiny_patch4_window7_224_22kto1k_finetune.pth'][0]), |
|
'swin_v1_s': os.path.join(self.weights_root_dir, ['swin_small_patch4_window7_224_22kto1k_finetune.pth'][0]), |
|
'pvt_v2_b0': os.path.join(self.weights_root_dir, ['pvt_v2_b0.pth'][0]), |
|
'pvt_v2_b1': os.path.join(self.weights_root_dir, ['pvt_v2_b1.pth'][0]), |
|
} |
|
|
|
|
|
self.verbose_eval = True |
|
self.only_S_MAE = False |
|
self.use_fp16 = False |
|
self.SDPA_enabled = False |
|
|
|
|
|
self.device = [0, 'cpu'][0] |
|
|
|
self.batch_size_valid = 1 |
|
self.rand_seed = 7 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def print_task(self) -> None: |
|
|
|
print(self.task) |
|
|
|
|
|
|
|
|
|
|
|
import torch |
|
import torch.nn as nn |
|
from functools import partial |
|
|
|
from timm.models.layers import DropPath, to_2tuple, trunc_normal_ |
|
from timm.models.registry import register_model |
|
|
|
import math |
|
|
|
|
|
|
|
|
|
|
|
class Mlp(nn.Module): |
|
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): |
|
super().__init__() |
|
out_features = out_features or in_features |
|
hidden_features = hidden_features or in_features |
|
self.fc1 = nn.Linear(in_features, hidden_features) |
|
self.dwconv = DWConv(hidden_features) |
|
self.act = act_layer() |
|
self.fc2 = nn.Linear(hidden_features, out_features) |
|
self.drop = nn.Dropout(drop) |
|
|
|
self.apply(self._init_weights) |
|
|
|
def _init_weights(self, m): |
|
if isinstance(m, nn.Linear): |
|
trunc_normal_(m.weight, std=.02) |
|
if isinstance(m, nn.Linear) and m.bias is not None: |
|
nn.init.constant_(m.bias, 0) |
|
elif isinstance(m, nn.LayerNorm): |
|
nn.init.constant_(m.bias, 0) |
|
nn.init.constant_(m.weight, 1.0) |
|
elif isinstance(m, nn.Conv2d): |
|
fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels |
|
fan_out //= m.groups |
|
m.weight.data.normal_(0, math.sqrt(2.0 / fan_out)) |
|
if m.bias is not None: |
|
m.bias.data.zero_() |
|
|
|
def forward(self, x, H, W): |
|
x = self.fc1(x) |
|
x = self.dwconv(x, H, W) |
|
x = self.act(x) |
|
x = self.drop(x) |
|
x = self.fc2(x) |
|
x = self.drop(x) |
|
return x |
|
|
|
|
|
class Attention(nn.Module): |
|
def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0., sr_ratio=1): |
|
super().__init__() |
|
assert dim % num_heads == 0, f"dim {dim} should be divided by num_heads {num_heads}." |
|
|
|
self.dim = dim |
|
self.num_heads = num_heads |
|
head_dim = dim // num_heads |
|
self.scale = qk_scale or head_dim ** -0.5 |
|
|
|
self.q = nn.Linear(dim, dim, bias=qkv_bias) |
|
self.kv = nn.Linear(dim, dim * 2, bias=qkv_bias) |
|
self.attn_drop_prob = attn_drop |
|
self.attn_drop = nn.Dropout(attn_drop) |
|
self.proj = nn.Linear(dim, dim) |
|
self.proj_drop = nn.Dropout(proj_drop) |
|
|
|
self.sr_ratio = sr_ratio |
|
if sr_ratio > 1: |
|
self.sr = nn.Conv2d(dim, dim, kernel_size=sr_ratio, stride=sr_ratio) |
|
self.norm = nn.LayerNorm(dim) |
|
|
|
self.apply(self._init_weights) |
|
|
|
def _init_weights(self, m): |
|
if isinstance(m, nn.Linear): |
|
trunc_normal_(m.weight, std=.02) |
|
if isinstance(m, nn.Linear) and m.bias is not None: |
|
nn.init.constant_(m.bias, 0) |
|
elif isinstance(m, nn.LayerNorm): |
|
nn.init.constant_(m.bias, 0) |
|
nn.init.constant_(m.weight, 1.0) |
|
elif isinstance(m, nn.Conv2d): |
|
fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels |
|
fan_out //= m.groups |
|
m.weight.data.normal_(0, math.sqrt(2.0 / fan_out)) |
|
if m.bias is not None: |
|
m.bias.data.zero_() |
|
|
|
def forward(self, x, H, W): |
|
B, N, C = x.shape |
|
q = self.q(x).reshape(B, N, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3) |
|
|
|
if self.sr_ratio > 1: |
|
x_ = x.permute(0, 2, 1).reshape(B, C, H, W) |
|
x_ = self.sr(x_).reshape(B, C, -1).permute(0, 2, 1) |
|
x_ = self.norm(x_) |
|
kv = self.kv(x_).reshape(B, -1, 2, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) |
|
else: |
|
kv = self.kv(x).reshape(B, -1, 2, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) |
|
k, v = kv[0], kv[1] |
|
|
|
if config.SDPA_enabled: |
|
x = torch.nn.functional.scaled_dot_product_attention( |
|
q, k, v, |
|
attn_mask=None, dropout_p=self.attn_drop_prob, is_causal=False |
|
).transpose(1, 2).reshape(B, N, C) |
|
else: |
|
attn = (q @ k.transpose(-2, -1)) * self.scale |
|
attn = attn.softmax(dim=-1) |
|
attn = self.attn_drop(attn) |
|
|
|
x = (attn @ v).transpose(1, 2).reshape(B, N, C) |
|
x = self.proj(x) |
|
x = self.proj_drop(x) |
|
|
|
return x |
|
|
|
|
|
class Block(nn.Module): |
|
|
|
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0., |
|
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, sr_ratio=1): |
|
super().__init__() |
|
self.norm1 = norm_layer(dim) |
|
self.attn = Attention( |
|
dim, |
|
num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, |
|
attn_drop=attn_drop, proj_drop=drop, sr_ratio=sr_ratio) |
|
|
|
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() |
|
self.norm2 = norm_layer(dim) |
|
mlp_hidden_dim = int(dim * mlp_ratio) |
|
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) |
|
|
|
self.apply(self._init_weights) |
|
|
|
def _init_weights(self, m): |
|
if isinstance(m, nn.Linear): |
|
trunc_normal_(m.weight, std=.02) |
|
if isinstance(m, nn.Linear) and m.bias is not None: |
|
nn.init.constant_(m.bias, 0) |
|
elif isinstance(m, nn.LayerNorm): |
|
nn.init.constant_(m.bias, 0) |
|
nn.init.constant_(m.weight, 1.0) |
|
elif isinstance(m, nn.Conv2d): |
|
fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels |
|
fan_out //= m.groups |
|
m.weight.data.normal_(0, math.sqrt(2.0 / fan_out)) |
|
if m.bias is not None: |
|
m.bias.data.zero_() |
|
|
|
def forward(self, x, H, W): |
|
x = x + self.drop_path(self.attn(self.norm1(x), H, W)) |
|
x = x + self.drop_path(self.mlp(self.norm2(x), H, W)) |
|
|
|
return x |
|
|
|
|
|
class OverlapPatchEmbed(nn.Module): |
|
""" Image to Patch Embedding |
|
""" |
|
|
|
def __init__(self, img_size=224, patch_size=7, stride=4, in_channels=3, embed_dim=768): |
|
super().__init__() |
|
img_size = to_2tuple(img_size) |
|
patch_size = to_2tuple(patch_size) |
|
|
|
self.img_size = img_size |
|
self.patch_size = patch_size |
|
self.H, self.W = img_size[0] // patch_size[0], img_size[1] // patch_size[1] |
|
self.num_patches = self.H * self.W |
|
self.proj = nn.Conv2d(in_channels, embed_dim, kernel_size=patch_size, stride=stride, |
|
padding=(patch_size[0] // 2, patch_size[1] // 2)) |
|
self.norm = nn.LayerNorm(embed_dim) |
|
|
|
self.apply(self._init_weights) |
|
|
|
def _init_weights(self, m): |
|
if isinstance(m, nn.Linear): |
|
trunc_normal_(m.weight, std=.02) |
|
if isinstance(m, nn.Linear) and m.bias is not None: |
|
nn.init.constant_(m.bias, 0) |
|
elif isinstance(m, nn.LayerNorm): |
|
nn.init.constant_(m.bias, 0) |
|
nn.init.constant_(m.weight, 1.0) |
|
elif isinstance(m, nn.Conv2d): |
|
fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels |
|
fan_out //= m.groups |
|
m.weight.data.normal_(0, math.sqrt(2.0 / fan_out)) |
|
if m.bias is not None: |
|
m.bias.data.zero_() |
|
|
|
def forward(self, x): |
|
x = self.proj(x) |
|
_, _, H, W = x.shape |
|
x = x.flatten(2).transpose(1, 2) |
|
x = self.norm(x) |
|
|
|
return x, H, W |
|
|
|
|
|
class PyramidVisionTransformerImpr(nn.Module): |
|
def __init__(self, img_size=224, patch_size=16, in_channels=3, num_classes=1000, embed_dims=[64, 128, 256, 512], |
|
num_heads=[1, 2, 4, 8], mlp_ratios=[4, 4, 4, 4], qkv_bias=False, qk_scale=None, drop_rate=0., |
|
attn_drop_rate=0., drop_path_rate=0., norm_layer=nn.LayerNorm, |
|
depths=[3, 4, 6, 3], sr_ratios=[8, 4, 2, 1]): |
|
super().__init__() |
|
self.num_classes = num_classes |
|
self.depths = depths |
|
|
|
|
|
self.patch_embed1 = OverlapPatchEmbed(img_size=img_size, patch_size=7, stride=4, in_channels=in_channels, |
|
embed_dim=embed_dims[0]) |
|
self.patch_embed2 = OverlapPatchEmbed(img_size=img_size // 4, patch_size=3, stride=2, in_channels=embed_dims[0], |
|
embed_dim=embed_dims[1]) |
|
self.patch_embed3 = OverlapPatchEmbed(img_size=img_size // 8, patch_size=3, stride=2, in_channels=embed_dims[1], |
|
embed_dim=embed_dims[2]) |
|
self.patch_embed4 = OverlapPatchEmbed(img_size=img_size // 16, patch_size=3, stride=2, in_channels=embed_dims[2], |
|
embed_dim=embed_dims[3]) |
|
|
|
|
|
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] |
|
cur = 0 |
|
self.block1 = nn.ModuleList([Block( |
|
dim=embed_dims[0], num_heads=num_heads[0], mlp_ratio=mlp_ratios[0], qkv_bias=qkv_bias, qk_scale=qk_scale, |
|
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + i], norm_layer=norm_layer, |
|
sr_ratio=sr_ratios[0]) |
|
for i in range(depths[0])]) |
|
self.norm1 = norm_layer(embed_dims[0]) |
|
|
|
cur += depths[0] |
|
self.block2 = nn.ModuleList([Block( |
|
dim=embed_dims[1], num_heads=num_heads[1], mlp_ratio=mlp_ratios[1], qkv_bias=qkv_bias, qk_scale=qk_scale, |
|
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + i], norm_layer=norm_layer, |
|
sr_ratio=sr_ratios[1]) |
|
for i in range(depths[1])]) |
|
self.norm2 = norm_layer(embed_dims[1]) |
|
|
|
cur += depths[1] |
|
self.block3 = nn.ModuleList([Block( |
|
dim=embed_dims[2], num_heads=num_heads[2], mlp_ratio=mlp_ratios[2], qkv_bias=qkv_bias, qk_scale=qk_scale, |
|
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + i], norm_layer=norm_layer, |
|
sr_ratio=sr_ratios[2]) |
|
for i in range(depths[2])]) |
|
self.norm3 = norm_layer(embed_dims[2]) |
|
|
|
cur += depths[2] |
|
self.block4 = nn.ModuleList([Block( |
|
dim=embed_dims[3], num_heads=num_heads[3], mlp_ratio=mlp_ratios[3], qkv_bias=qkv_bias, qk_scale=qk_scale, |
|
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + i], norm_layer=norm_layer, |
|
sr_ratio=sr_ratios[3]) |
|
for i in range(depths[3])]) |
|
self.norm4 = norm_layer(embed_dims[3]) |
|
|
|
|
|
|
|
|
|
self.apply(self._init_weights) |
|
|
|
def _init_weights(self, m): |
|
if isinstance(m, nn.Linear): |
|
trunc_normal_(m.weight, std=.02) |
|
if isinstance(m, nn.Linear) and m.bias is not None: |
|
nn.init.constant_(m.bias, 0) |
|
elif isinstance(m, nn.LayerNorm): |
|
nn.init.constant_(m.bias, 0) |
|
nn.init.constant_(m.weight, 1.0) |
|
elif isinstance(m, nn.Conv2d): |
|
fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels |
|
fan_out //= m.groups |
|
m.weight.data.normal_(0, math.sqrt(2.0 / fan_out)) |
|
if m.bias is not None: |
|
m.bias.data.zero_() |
|
|
|
def init_weights(self, pretrained=None): |
|
if isinstance(pretrained, str): |
|
logger = 1 |
|
|
|
|
|
def reset_drop_path(self, drop_path_rate): |
|
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(self.depths))] |
|
cur = 0 |
|
for i in range(self.depths[0]): |
|
self.block1[i].drop_path.drop_prob = dpr[cur + i] |
|
|
|
cur += self.depths[0] |
|
for i in range(self.depths[1]): |
|
self.block2[i].drop_path.drop_prob = dpr[cur + i] |
|
|
|
cur += self.depths[1] |
|
for i in range(self.depths[2]): |
|
self.block3[i].drop_path.drop_prob = dpr[cur + i] |
|
|
|
cur += self.depths[2] |
|
for i in range(self.depths[3]): |
|
self.block4[i].drop_path.drop_prob = dpr[cur + i] |
|
|
|
def freeze_patch_emb(self): |
|
self.patch_embed1.requires_grad = False |
|
|
|
@torch.jit.ignore |
|
def no_weight_decay(self): |
|
return {'pos_embed1', 'pos_embed2', 'pos_embed3', 'pos_embed4', 'cls_token'} |
|
|
|
def get_classifier(self): |
|
return self.head |
|
|
|
def reset_classifier(self, num_classes, global_pool=''): |
|
self.num_classes = num_classes |
|
self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity() |
|
|
|
def forward_features(self, x): |
|
B = x.shape[0] |
|
outs = [] |
|
|
|
|
|
x, H, W = self.patch_embed1(x) |
|
for i, blk in enumerate(self.block1): |
|
x = blk(x, H, W) |
|
x = self.norm1(x) |
|
x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous() |
|
outs.append(x) |
|
|
|
|
|
x, H, W = self.patch_embed2(x) |
|
for i, blk in enumerate(self.block2): |
|
x = blk(x, H, W) |
|
x = self.norm2(x) |
|
x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous() |
|
outs.append(x) |
|
|
|
|
|
x, H, W = self.patch_embed3(x) |
|
for i, blk in enumerate(self.block3): |
|
x = blk(x, H, W) |
|
x = self.norm3(x) |
|
x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous() |
|
outs.append(x) |
|
|
|
|
|
x, H, W = self.patch_embed4(x) |
|
for i, blk in enumerate(self.block4): |
|
x = blk(x, H, W) |
|
x = self.norm4(x) |
|
x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous() |
|
outs.append(x) |
|
|
|
return outs |
|
|
|
|
|
|
|
def forward(self, x): |
|
x = self.forward_features(x) |
|
|
|
|
|
return x |
|
|
|
|
|
class DWConv(nn.Module): |
|
def __init__(self, dim=768): |
|
super(DWConv, self).__init__() |
|
self.dwconv = nn.Conv2d(dim, dim, 3, 1, 1, bias=True, groups=dim) |
|
|
|
def forward(self, x, H, W): |
|
B, N, C = x.shape |
|
x = x.transpose(1, 2).view(B, C, H, W).contiguous() |
|
x = self.dwconv(x) |
|
x = x.flatten(2).transpose(1, 2) |
|
|
|
return x |
|
|
|
|
|
def _conv_filter(state_dict, patch_size=16): |
|
""" convert patch embedding weight from manual patchify + linear proj to conv""" |
|
out_dict = {} |
|
for k, v in state_dict.items(): |
|
if 'patch_embed.proj.weight' in k: |
|
v = v.reshape((v.shape[0], 3, patch_size, patch_size)) |
|
out_dict[k] = v |
|
|
|
return out_dict |
|
|
|
|
|
|
|
class pvt_v2_b0(PyramidVisionTransformerImpr): |
|
def __init__(self, **kwargs): |
|
super(pvt_v2_b0, self).__init__( |
|
patch_size=4, embed_dims=[32, 64, 160, 256], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4], |
|
qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[2, 2, 2, 2], sr_ratios=[8, 4, 2, 1], |
|
drop_rate=0.0, drop_path_rate=0.1) |
|
|
|
|
|
|
|
|
|
class pvt_v2_b1(PyramidVisionTransformerImpr): |
|
def __init__(self, **kwargs): |
|
super(pvt_v2_b1, self).__init__( |
|
patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4], |
|
qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[2, 2, 2, 2], sr_ratios=[8, 4, 2, 1], |
|
drop_rate=0.0, drop_path_rate=0.1) |
|
|
|
|
|
class pvt_v2_b2(PyramidVisionTransformerImpr): |
|
def __init__(self, in_channels=3, **kwargs): |
|
super(pvt_v2_b2, self).__init__( |
|
patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4], |
|
qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 4, 6, 3], sr_ratios=[8, 4, 2, 1], |
|
drop_rate=0.0, drop_path_rate=0.1, in_channels=in_channels) |
|
|
|
|
|
class pvt_v2_b3(PyramidVisionTransformerImpr): |
|
def __init__(self, **kwargs): |
|
super(pvt_v2_b3, self).__init__( |
|
patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4], |
|
qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 4, 18, 3], sr_ratios=[8, 4, 2, 1], |
|
drop_rate=0.0, drop_path_rate=0.1) |
|
|
|
|
|
class pvt_v2_b4(PyramidVisionTransformerImpr): |
|
def __init__(self, **kwargs): |
|
super(pvt_v2_b4, self).__init__( |
|
patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4], |
|
qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 8, 27, 3], sr_ratios=[8, 4, 2, 1], |
|
drop_rate=0.0, drop_path_rate=0.1) |
|
|
|
|
|
|
|
class pvt_v2_b5(PyramidVisionTransformerImpr): |
|
def __init__(self, **kwargs): |
|
super(pvt_v2_b5, self).__init__( |
|
patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[4, 4, 4, 4], |
|
qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 6, 40, 3], sr_ratios=[8, 4, 2, 1], |
|
drop_rate=0.0, drop_path_rate=0.1) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
import torch.utils.checkpoint as checkpoint |
|
import numpy as np |
|
from timm.models.layers import DropPath, to_2tuple, trunc_normal_ |
|
|
|
|
|
|
|
|
|
|
|
|
|
class Mlp(nn.Module): |
|
""" Multilayer perceptron.""" |
|
|
|
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): |
|
super().__init__() |
|
out_features = out_features or in_features |
|
hidden_features = hidden_features or in_features |
|
self.fc1 = nn.Linear(in_features, hidden_features) |
|
self.act = act_layer() |
|
self.fc2 = nn.Linear(hidden_features, out_features) |
|
self.drop = nn.Dropout(drop) |
|
|
|
def forward(self, x): |
|
x = self.fc1(x) |
|
x = self.act(x) |
|
x = self.drop(x) |
|
x = self.fc2(x) |
|
x = self.drop(x) |
|
return x |
|
|
|
|
|
def window_partition(x, window_size): |
|
""" |
|
Args: |
|
x: (B, H, W, C) |
|
window_size (int): window size |
|
|
|
Returns: |
|
windows: (num_windows*B, window_size, window_size, C) |
|
""" |
|
B, H, W, C = x.shape |
|
x = x.view(B, H // window_size, window_size, W // window_size, window_size, C) |
|
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C) |
|
return windows |
|
|
|
|
|
def window_reverse(windows, window_size, H, W): |
|
""" |
|
Args: |
|
windows: (num_windows*B, window_size, window_size, C) |
|
window_size (int): Window size |
|
H (int): Height of image |
|
W (int): Width of image |
|
|
|
Returns: |
|
x: (B, H, W, C) |
|
""" |
|
B = int(windows.shape[0] / (H * W / window_size / window_size)) |
|
x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1) |
|
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1) |
|
return x |
|
|
|
|
|
class WindowAttention(nn.Module): |
|
""" Window based multi-head self attention (W-MSA) module with relative position bias. |
|
It supports both of shifted and non-shifted window. |
|
|
|
Args: |
|
dim (int): Number of input channels. |
|
window_size (tuple[int]): The height and width of the window. |
|
num_heads (int): Number of attention heads. |
|
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True |
|
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set |
|
attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0 |
|
proj_drop (float, optional): Dropout ratio of output. Default: 0.0 |
|
""" |
|
|
|
def __init__(self, dim, window_size, num_heads, qkv_bias=True, qk_scale=None, attn_drop=0., proj_drop=0.): |
|
|
|
super().__init__() |
|
self.dim = dim |
|
self.window_size = window_size |
|
self.num_heads = num_heads |
|
head_dim = dim // num_heads |
|
self.scale = qk_scale or head_dim ** -0.5 |
|
|
|
|
|
self.relative_position_bias_table = nn.Parameter( |
|
torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads)) |
|
|
|
|
|
coords_h = torch.arange(self.window_size[0]) |
|
coords_w = torch.arange(self.window_size[1]) |
|
coords = torch.stack(torch.meshgrid([coords_h, coords_w], indexing='ij')) |
|
coords_flatten = torch.flatten(coords, 1) |
|
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] |
|
relative_coords = relative_coords.permute(1, 2, 0).contiguous() |
|
relative_coords[:, :, 0] += self.window_size[0] - 1 |
|
relative_coords[:, :, 1] += self.window_size[1] - 1 |
|
relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1 |
|
relative_position_index = relative_coords.sum(-1) |
|
self.register_buffer("relative_position_index", relative_position_index) |
|
|
|
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) |
|
self.attn_drop_prob = attn_drop |
|
self.attn_drop = nn.Dropout(attn_drop) |
|
self.proj = nn.Linear(dim, dim) |
|
self.proj_drop = nn.Dropout(proj_drop) |
|
|
|
trunc_normal_(self.relative_position_bias_table, std=.02) |
|
self.softmax = nn.Softmax(dim=-1) |
|
|
|
def forward(self, x, mask=None): |
|
""" Forward function. |
|
|
|
Args: |
|
x: input features with shape of (num_windows*B, N, C) |
|
mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None |
|
""" |
|
B_, N, C = x.shape |
|
qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) |
|
q, k, v = qkv[0], qkv[1], qkv[2] |
|
|
|
q = q * self.scale |
|
|
|
if config.SDPA_enabled: |
|
x = torch.nn.functional.scaled_dot_product_attention( |
|
q, k, v, |
|
attn_mask=None, dropout_p=self.attn_drop_prob, is_causal=False |
|
).transpose(1, 2).reshape(B_, N, C) |
|
else: |
|
attn = (q @ k.transpose(-2, -1)) |
|
|
|
relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view( |
|
self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1) |
|
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() |
|
attn = attn + relative_position_bias.unsqueeze(0) |
|
|
|
if mask is not None: |
|
nW = mask.shape[0] |
|
attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0) |
|
attn = attn.view(-1, self.num_heads, N, N) |
|
attn = self.softmax(attn) |
|
else: |
|
attn = self.softmax(attn) |
|
|
|
attn = self.attn_drop(attn) |
|
|
|
x = (attn @ v).transpose(1, 2).reshape(B_, N, C) |
|
x = self.proj(x) |
|
x = self.proj_drop(x) |
|
return x |
|
|
|
|
|
class SwinTransformerBlock(nn.Module): |
|
""" Swin Transformer Block. |
|
|
|
Args: |
|
dim (int): Number of input channels. |
|
num_heads (int): Number of attention heads. |
|
window_size (int): Window size. |
|
shift_size (int): Shift size for SW-MSA. |
|
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. |
|
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True |
|
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set. |
|
drop (float, optional): Dropout rate. Default: 0.0 |
|
attn_drop (float, optional): Attention dropout rate. Default: 0.0 |
|
drop_path (float, optional): Stochastic depth rate. Default: 0.0 |
|
act_layer (nn.Module, optional): Activation layer. Default: nn.GELU |
|
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm |
|
""" |
|
|
|
def __init__(self, dim, num_heads, window_size=7, shift_size=0, |
|
mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0., drop_path=0., |
|
act_layer=nn.GELU, norm_layer=nn.LayerNorm): |
|
super().__init__() |
|
self.dim = dim |
|
self.num_heads = num_heads |
|
self.window_size = window_size |
|
self.shift_size = shift_size |
|
self.mlp_ratio = mlp_ratio |
|
assert 0 <= self.shift_size < self.window_size, "shift_size must in 0-window_size" |
|
|
|
self.norm1 = norm_layer(dim) |
|
self.attn = WindowAttention( |
|
dim, window_size=to_2tuple(self.window_size), num_heads=num_heads, |
|
qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop) |
|
|
|
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() |
|
self.norm2 = norm_layer(dim) |
|
mlp_hidden_dim = int(dim * mlp_ratio) |
|
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) |
|
|
|
self.H = None |
|
self.W = None |
|
|
|
def forward(self, x, mask_matrix): |
|
""" Forward function. |
|
|
|
Args: |
|
x: Input feature, tensor size (B, H*W, C). |
|
H, W: Spatial resolution of the input feature. |
|
mask_matrix: Attention mask for cyclic shift. |
|
""" |
|
B, L, C = x.shape |
|
H, W = self.H, self.W |
|
assert L == H * W, "input feature has wrong size" |
|
|
|
shortcut = x |
|
x = self.norm1(x) |
|
x = x.view(B, H, W, C) |
|
|
|
|
|
pad_l = pad_t = 0 |
|
pad_r = (self.window_size - W % self.window_size) % self.window_size |
|
pad_b = (self.window_size - H % self.window_size) % self.window_size |
|
x = F.pad(x, (0, 0, pad_l, pad_r, pad_t, pad_b)) |
|
_, Hp, Wp, _ = x.shape |
|
|
|
|
|
if self.shift_size > 0: |
|
shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2)) |
|
attn_mask = mask_matrix |
|
else: |
|
shifted_x = x |
|
attn_mask = None |
|
|
|
|
|
x_windows = window_partition(shifted_x, self.window_size) |
|
x_windows = x_windows.view(-1, self.window_size * self.window_size, C) |
|
|
|
|
|
attn_windows = self.attn(x_windows, mask=attn_mask) |
|
|
|
|
|
attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C) |
|
shifted_x = window_reverse(attn_windows, self.window_size, Hp, Wp) |
|
|
|
|
|
if self.shift_size > 0: |
|
x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2)) |
|
else: |
|
x = shifted_x |
|
|
|
if pad_r > 0 or pad_b > 0: |
|
x = x[:, :H, :W, :].contiguous() |
|
|
|
x = x.view(B, H * W, C) |
|
|
|
|
|
x = shortcut + self.drop_path(x) |
|
x = x + self.drop_path(self.mlp(self.norm2(x))) |
|
|
|
return x |
|
|
|
|
|
class PatchMerging(nn.Module): |
|
""" Patch Merging Layer |
|
|
|
Args: |
|
dim (int): Number of input channels. |
|
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm |
|
""" |
|
def __init__(self, dim, norm_layer=nn.LayerNorm): |
|
super().__init__() |
|
self.dim = dim |
|
self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False) |
|
self.norm = norm_layer(4 * dim) |
|
|
|
def forward(self, x, H, W): |
|
""" Forward function. |
|
|
|
Args: |
|
x: Input feature, tensor size (B, H*W, C). |
|
H, W: Spatial resolution of the input feature. |
|
""" |
|
B, L, C = x.shape |
|
assert L == H * W, "input feature has wrong size" |
|
|
|
x = x.view(B, H, W, C) |
|
|
|
|
|
pad_input = (H % 2 == 1) or (W % 2 == 1) |
|
if pad_input: |
|
x = F.pad(x, (0, 0, 0, W % 2, 0, H % 2)) |
|
|
|
x0 = x[:, 0::2, 0::2, :] |
|
x1 = x[:, 1::2, 0::2, :] |
|
x2 = x[:, 0::2, 1::2, :] |
|
x3 = x[:, 1::2, 1::2, :] |
|
x = torch.cat([x0, x1, x2, x3], -1) |
|
x = x.view(B, -1, 4 * C) |
|
|
|
x = self.norm(x) |
|
x = self.reduction(x) |
|
|
|
return x |
|
|
|
|
|
class BasicLayer(nn.Module): |
|
""" A basic Swin Transformer layer for one stage. |
|
|
|
Args: |
|
dim (int): Number of feature channels |
|
depth (int): Depths of this stage. |
|
num_heads (int): Number of attention head. |
|
window_size (int): Local window size. Default: 7. |
|
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4. |
|
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True |
|
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set. |
|
drop (float, optional): Dropout rate. Default: 0.0 |
|
attn_drop (float, optional): Attention dropout rate. Default: 0.0 |
|
drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0 |
|
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm |
|
downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None |
|
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False. |
|
""" |
|
|
|
def __init__(self, |
|
dim, |
|
depth, |
|
num_heads, |
|
window_size=7, |
|
mlp_ratio=4., |
|
qkv_bias=True, |
|
qk_scale=None, |
|
drop=0., |
|
attn_drop=0., |
|
drop_path=0., |
|
norm_layer=nn.LayerNorm, |
|
downsample=None, |
|
use_checkpoint=False): |
|
super().__init__() |
|
self.window_size = window_size |
|
self.shift_size = window_size // 2 |
|
self.depth = depth |
|
self.use_checkpoint = use_checkpoint |
|
|
|
|
|
self.blocks = nn.ModuleList([ |
|
SwinTransformerBlock( |
|
dim=dim, |
|
num_heads=num_heads, |
|
window_size=window_size, |
|
shift_size=0 if (i % 2 == 0) else window_size // 2, |
|
mlp_ratio=mlp_ratio, |
|
qkv_bias=qkv_bias, |
|
qk_scale=qk_scale, |
|
drop=drop, |
|
attn_drop=attn_drop, |
|
drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path, |
|
norm_layer=norm_layer) |
|
for i in range(depth)]) |
|
|
|
|
|
if downsample is not None: |
|
self.downsample = downsample(dim=dim, norm_layer=norm_layer) |
|
else: |
|
self.downsample = None |
|
|
|
def forward(self, x, H, W): |
|
""" Forward function. |
|
|
|
Args: |
|
x: Input feature, tensor size (B, H*W, C). |
|
H, W: Spatial resolution of the input feature. |
|
""" |
|
|
|
|
|
Hp = int(np.ceil(H / self.window_size)) * self.window_size |
|
Wp = int(np.ceil(W / self.window_size)) * self.window_size |
|
img_mask = torch.zeros((1, Hp, Wp, 1), device=x.device) |
|
h_slices = (slice(0, -self.window_size), |
|
slice(-self.window_size, -self.shift_size), |
|
slice(-self.shift_size, None)) |
|
w_slices = (slice(0, -self.window_size), |
|
slice(-self.window_size, -self.shift_size), |
|
slice(-self.shift_size, None)) |
|
cnt = 0 |
|
for h in h_slices: |
|
for w in w_slices: |
|
img_mask[:, h, w, :] = cnt |
|
cnt += 1 |
|
|
|
mask_windows = window_partition(img_mask, self.window_size) |
|
mask_windows = mask_windows.view(-1, self.window_size * self.window_size) |
|
attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2) |
|
attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0)) |
|
|
|
for blk in self.blocks: |
|
blk.H, blk.W = H, W |
|
if self.use_checkpoint: |
|
x = checkpoint.checkpoint(blk, x, attn_mask) |
|
else: |
|
x = blk(x, attn_mask) |
|
if self.downsample is not None: |
|
x_down = self.downsample(x, H, W) |
|
Wh, Ww = (H + 1) // 2, (W + 1) // 2 |
|
return x, H, W, x_down, Wh, Ww |
|
else: |
|
return x, H, W, x, H, W |
|
|
|
|
|
class PatchEmbed(nn.Module): |
|
""" Image to Patch Embedding |
|
|
|
Args: |
|
patch_size (int): Patch token size. Default: 4. |
|
in_channels (int): Number of input image channels. Default: 3. |
|
embed_dim (int): Number of linear projection output channels. Default: 96. |
|
norm_layer (nn.Module, optional): Normalization layer. Default: None |
|
""" |
|
|
|
def __init__(self, patch_size=4, in_channels=3, embed_dim=96, norm_layer=None): |
|
super().__init__() |
|
patch_size = to_2tuple(patch_size) |
|
self.patch_size = patch_size |
|
|
|
self.in_channels = in_channels |
|
self.embed_dim = embed_dim |
|
|
|
self.proj = nn.Conv2d(in_channels, embed_dim, kernel_size=patch_size, stride=patch_size) |
|
if norm_layer is not None: |
|
self.norm = norm_layer(embed_dim) |
|
else: |
|
self.norm = None |
|
|
|
def forward(self, x): |
|
"""Forward function.""" |
|
|
|
_, _, H, W = x.size() |
|
if W % self.patch_size[1] != 0: |
|
x = F.pad(x, (0, self.patch_size[1] - W % self.patch_size[1])) |
|
if H % self.patch_size[0] != 0: |
|
x = F.pad(x, (0, 0, 0, self.patch_size[0] - H % self.patch_size[0])) |
|
|
|
x = self.proj(x) |
|
if self.norm is not None: |
|
Wh, Ww = x.size(2), x.size(3) |
|
x = x.flatten(2).transpose(1, 2) |
|
x = self.norm(x) |
|
x = x.transpose(1, 2).view(-1, self.embed_dim, Wh, Ww) |
|
|
|
return x |
|
|
|
|
|
class SwinTransformer(nn.Module): |
|
""" Swin Transformer backbone. |
|
A PyTorch impl of : `Swin Transformer: Hierarchical Vision Transformer using Shifted Windows` - |
|
https://arxiv.org/pdf/2103.14030 |
|
|
|
Args: |
|
pretrain_img_size (int): Input image size for training the pretrained model, |
|
used in absolute postion embedding. Default 224. |
|
patch_size (int | tuple(int)): Patch size. Default: 4. |
|
in_channels (int): Number of input image channels. Default: 3. |
|
embed_dim (int): Number of linear projection output channels. Default: 96. |
|
depths (tuple[int]): Depths of each Swin Transformer stage. |
|
num_heads (tuple[int]): Number of attention head of each stage. |
|
window_size (int): Window size. Default: 7. |
|
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4. |
|
qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True |
|
qk_scale (float): Override default qk scale of head_dim ** -0.5 if set. |
|
drop_rate (float): Dropout rate. |
|
attn_drop_rate (float): Attention dropout rate. Default: 0. |
|
drop_path_rate (float): Stochastic depth rate. Default: 0.2. |
|
norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm. |
|
ape (bool): If True, add absolute position embedding to the patch embedding. Default: False. |
|
patch_norm (bool): If True, add normalization after patch embedding. Default: True. |
|
out_indices (Sequence[int]): Output from which stages. |
|
frozen_stages (int): Stages to be frozen (stop grad and set eval mode). |
|
-1 means not freezing any parameters. |
|
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False. |
|
""" |
|
|
|
def __init__(self, |
|
pretrain_img_size=224, |
|
patch_size=4, |
|
in_channels=3, |
|
embed_dim=96, |
|
depths=[2, 2, 6, 2], |
|
num_heads=[3, 6, 12, 24], |
|
window_size=7, |
|
mlp_ratio=4., |
|
qkv_bias=True, |
|
qk_scale=None, |
|
drop_rate=0., |
|
attn_drop_rate=0., |
|
drop_path_rate=0.2, |
|
norm_layer=nn.LayerNorm, |
|
ape=False, |
|
patch_norm=True, |
|
out_indices=(0, 1, 2, 3), |
|
frozen_stages=-1, |
|
use_checkpoint=False): |
|
super().__init__() |
|
|
|
self.pretrain_img_size = pretrain_img_size |
|
self.num_layers = len(depths) |
|
self.embed_dim = embed_dim |
|
self.ape = ape |
|
self.patch_norm = patch_norm |
|
self.out_indices = out_indices |
|
self.frozen_stages = frozen_stages |
|
|
|
|
|
self.patch_embed = PatchEmbed( |
|
patch_size=patch_size, in_channels=in_channels, embed_dim=embed_dim, |
|
norm_layer=norm_layer if self.patch_norm else None) |
|
|
|
|
|
if self.ape: |
|
pretrain_img_size = to_2tuple(pretrain_img_size) |
|
patch_size = to_2tuple(patch_size) |
|
patches_resolution = [pretrain_img_size[0] // patch_size[0], pretrain_img_size[1] // patch_size[1]] |
|
|
|
self.absolute_pos_embed = nn.Parameter(torch.zeros(1, embed_dim, patches_resolution[0], patches_resolution[1])) |
|
trunc_normal_(self.absolute_pos_embed, std=.02) |
|
|
|
self.pos_drop = nn.Dropout(p=drop_rate) |
|
|
|
|
|
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] |
|
|
|
|
|
self.layers = nn.ModuleList() |
|
for i_layer in range(self.num_layers): |
|
layer = BasicLayer( |
|
dim=int(embed_dim * 2 ** i_layer), |
|
depth=depths[i_layer], |
|
num_heads=num_heads[i_layer], |
|
window_size=window_size, |
|
mlp_ratio=mlp_ratio, |
|
qkv_bias=qkv_bias, |
|
qk_scale=qk_scale, |
|
drop=drop_rate, |
|
attn_drop=attn_drop_rate, |
|
drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])], |
|
norm_layer=norm_layer, |
|
downsample=PatchMerging if (i_layer < self.num_layers - 1) else None, |
|
use_checkpoint=use_checkpoint) |
|
self.layers.append(layer) |
|
|
|
num_features = [int(embed_dim * 2 ** i) for i in range(self.num_layers)] |
|
self.num_features = num_features |
|
|
|
|
|
for i_layer in out_indices: |
|
layer = norm_layer(num_features[i_layer]) |
|
layer_name = f'norm{i_layer}' |
|
self.add_module(layer_name, layer) |
|
|
|
self._freeze_stages() |
|
|
|
def _freeze_stages(self): |
|
if self.frozen_stages >= 0: |
|
self.patch_embed.eval() |
|
for param in self.patch_embed.parameters(): |
|
param.requires_grad = False |
|
|
|
if self.frozen_stages >= 1 and self.ape: |
|
self.absolute_pos_embed.requires_grad = False |
|
|
|
if self.frozen_stages >= 2: |
|
self.pos_drop.eval() |
|
for i in range(0, self.frozen_stages - 1): |
|
m = self.layers[i] |
|
m.eval() |
|
for param in m.parameters(): |
|
param.requires_grad = False |
|
|
|
|
|
def forward(self, x): |
|
"""Forward function.""" |
|
x = self.patch_embed(x) |
|
|
|
Wh, Ww = x.size(2), x.size(3) |
|
if self.ape: |
|
|
|
absolute_pos_embed = F.interpolate(self.absolute_pos_embed, size=(Wh, Ww), mode='bicubic') |
|
x = (x + absolute_pos_embed) |
|
|
|
outs = [] |
|
x = x.flatten(2).transpose(1, 2) |
|
x = self.pos_drop(x) |
|
for i in range(self.num_layers): |
|
layer = self.layers[i] |
|
x_out, H, W, x, Wh, Ww = layer(x, Wh, Ww) |
|
|
|
if i in self.out_indices: |
|
norm_layer = getattr(self, f'norm{i}') |
|
x_out = norm_layer(x_out) |
|
|
|
out = x_out.view(-1, H, W, self.num_features[i]).permute(0, 3, 1, 2).contiguous() |
|
outs.append(out) |
|
|
|
return tuple(outs) |
|
|
|
def train(self, mode=True): |
|
"""Convert the model into training mode while keep layers freezed.""" |
|
super(SwinTransformer, self).train(mode) |
|
self._freeze_stages() |
|
|
|
def swin_v1_t(): |
|
model = SwinTransformer(embed_dim=96, depths=[2, 2, 6, 2], num_heads=[3, 6, 12, 24], window_size=7) |
|
return model |
|
|
|
def swin_v1_s(): |
|
model = SwinTransformer(embed_dim=96, depths=[2, 2, 18, 2], num_heads=[3, 6, 12, 24], window_size=7) |
|
return model |
|
|
|
def swin_v1_b(): |
|
model = SwinTransformer(embed_dim=128, depths=[2, 2, 18, 2], num_heads=[4, 8, 16, 32], window_size=12) |
|
return model |
|
|
|
def swin_v1_l(): |
|
model = SwinTransformer(embed_dim=192, depths=[2, 2, 18, 2], num_heads=[6, 12, 24, 48], window_size=12) |
|
return model |
|
|
|
|
|
|
|
|
|
|
|
import torch |
|
import torch.nn as nn |
|
from torchvision.ops import deform_conv2d |
|
|
|
|
|
class DeformableConv2d(nn.Module): |
|
def __init__(self, |
|
in_channels, |
|
out_channels, |
|
kernel_size=3, |
|
stride=1, |
|
padding=1, |
|
bias=False): |
|
|
|
super(DeformableConv2d, self).__init__() |
|
|
|
assert type(kernel_size) == tuple or type(kernel_size) == int |
|
|
|
kernel_size = kernel_size if type(kernel_size) == tuple else (kernel_size, kernel_size) |
|
self.stride = stride if type(stride) == tuple else (stride, stride) |
|
self.padding = padding |
|
|
|
self.offset_conv = nn.Conv2d(in_channels, |
|
2 * kernel_size[0] * kernel_size[1], |
|
kernel_size=kernel_size, |
|
stride=stride, |
|
padding=self.padding, |
|
bias=True) |
|
|
|
nn.init.constant_(self.offset_conv.weight, 0.) |
|
nn.init.constant_(self.offset_conv.bias, 0.) |
|
|
|
self.modulator_conv = nn.Conv2d(in_channels, |
|
1 * kernel_size[0] * kernel_size[1], |
|
kernel_size=kernel_size, |
|
stride=stride, |
|
padding=self.padding, |
|
bias=True) |
|
|
|
nn.init.constant_(self.modulator_conv.weight, 0.) |
|
nn.init.constant_(self.modulator_conv.bias, 0.) |
|
|
|
self.regular_conv = nn.Conv2d(in_channels, |
|
out_channels=out_channels, |
|
kernel_size=kernel_size, |
|
stride=stride, |
|
padding=self.padding, |
|
bias=bias) |
|
|
|
def forward(self, x): |
|
|
|
|
|
|
|
offset = self.offset_conv(x) |
|
modulator = 2. * torch.sigmoid(self.modulator_conv(x)) |
|
|
|
x = deform_conv2d( |
|
input=x, |
|
offset=offset, |
|
weight=self.regular_conv.weight, |
|
bias=self.regular_conv.bias, |
|
padding=self.padding, |
|
mask=modulator, |
|
stride=self.stride, |
|
) |
|
return x |
|
|
|
|
|
|
|
|
|
|
|
|
|
import torch.nn as nn |
|
|
|
|
|
def build_act_layer(act_layer): |
|
if act_layer == 'ReLU': |
|
return nn.ReLU(inplace=True) |
|
elif act_layer == 'SiLU': |
|
return nn.SiLU(inplace=True) |
|
elif act_layer == 'GELU': |
|
return nn.GELU() |
|
|
|
raise NotImplementedError(f'build_act_layer does not support {act_layer}') |
|
|
|
|
|
def build_norm_layer(dim, |
|
norm_layer, |
|
in_format='channels_last', |
|
out_format='channels_last', |
|
eps=1e-6): |
|
layers = [] |
|
if norm_layer == 'BN': |
|
if in_format == 'channels_last': |
|
layers.append(to_channels_first()) |
|
layers.append(nn.BatchNorm2d(dim)) |
|
if out_format == 'channels_last': |
|
layers.append(to_channels_last()) |
|
elif norm_layer == 'LN': |
|
if in_format == 'channels_first': |
|
layers.append(to_channels_last()) |
|
layers.append(nn.LayerNorm(dim, eps=eps)) |
|
if out_format == 'channels_first': |
|
layers.append(to_channels_first()) |
|
else: |
|
raise NotImplementedError( |
|
f'build_norm_layer does not support {norm_layer}') |
|
return nn.Sequential(*layers) |
|
|
|
|
|
class to_channels_first(nn.Module): |
|
|
|
def __init__(self): |
|
super().__init__() |
|
|
|
def forward(self, x): |
|
return x.permute(0, 3, 1, 2) |
|
|
|
|
|
class to_channels_last(nn.Module): |
|
|
|
def __init__(self): |
|
super().__init__() |
|
|
|
def forward(self, x): |
|
return x.permute(0, 2, 3, 1) |
|
|
|
|
|
|
|
|
|
|
|
_class_labels_TR_sorted = ( |
|
'Airplane, Ant, Antenna, Archery, Axe, BabyCarriage, Bag, BalanceBeam, Balcony, Balloon, Basket, BasketballHoop, Beatle, Bed, Bee, Bench, Bicycle, ' |
|
'BicycleFrame, BicycleStand, Boat, Bonsai, BoomLift, Bridge, BunkBed, Butterfly, Button, Cable, CableLift, Cage, Camcorder, Cannon, Canoe, Car, ' |
|
'CarParkDropArm, Carriage, Cart, Caterpillar, CeilingLamp, Centipede, Chair, Clip, Clock, Clothes, CoatHanger, Comb, ConcretePumpTruck, Crack, Crane, ' |
|
'Cup, DentalChair, Desk, DeskChair, Diagram, DishRack, DoorHandle, Dragonfish, Dragonfly, Drum, Earphone, Easel, ElectricIron, Excavator, Eyeglasses, ' |
|
'Fan, Fence, Fencing, FerrisWheel, FireExtinguisher, Fishing, Flag, FloorLamp, Forklift, GasStation, Gate, Gear, Goal, Golf, GymEquipment, Hammock, ' |
|
'Handcart, Handcraft, Handrail, HangGlider, Harp, Harvester, Headset, Helicopter, Helmet, Hook, HorizontalBar, Hydrovalve, IroningTable, Jewelry, Key, ' |
|
'KidsPlayground, Kitchenware, Kite, Knife, Ladder, LaundryRack, Lightning, Lobster, Locust, Machine, MachineGun, MagazineRack, Mantis, Medal, MemorialArchway, ' |
|
'Microphone, Missile, MobileHolder, Monitor, Mosquito, Motorcycle, MovingTrolley, Mower, MusicPlayer, MusicStand, ObservationTower, Octopus, OilWell, ' |
|
'OlympicLogo, OperatingTable, OutdoorFitnessEquipment, Parachute, Pavilion, Piano, Pipe, PlowHarrow, PoleVault, Punchbag, Rack, Racket, Rifle, Ring, Robot, ' |
|
'RockClimbing, Rope, Sailboat, Satellite, Scaffold, Scale, Scissor, Scooter, Sculpture, Seadragon, Seahorse, Seal, SewingMachine, Ship, Shoe, ShoppingCart, ' |
|
'ShoppingTrolley, Shower, Shrimp, Signboard, Skateboarding, Skeleton, Skiing, Spade, SpeedBoat, Spider, Spoon, Stair, Stand, Stationary, SteeringWheel, ' |
|
'Stethoscope, Stool, Stove, StreetLamp, SweetStand, Swing, Sword, TV, Table, TableChair, TableLamp, TableTennis, Tank, Tapeline, Teapot, Telescope, Tent, ' |
|
'TobaccoPipe, Toy, Tractor, TrafficLight, TrafficSign, Trampoline, TransmissionTower, Tree, Tricycle, TrimmerCover, Tripod, Trombone, Truck, Trumpet, Tuba, ' |
|
'UAV, Umbrella, UnevenBars, UtilityPole, VacuumCleaner, Violin, Wakesurfing, Watch, WaterTower, WateringPot, Well, WellLid, Wheel, Wheelchair, WindTurbine, Windmill, WineGlass, WireWhisk, Yacht' |
|
) |
|
class_labels_TR_sorted = _class_labels_TR_sorted.split(', ') |
|
|
|
|
|
|
|
|
|
import torch |
|
import torch.nn as nn |
|
from collections import OrderedDict |
|
from torchvision.models import vgg16, vgg16_bn, VGG16_Weights, VGG16_BN_Weights, resnet50, ResNet50_Weights |
|
|
|
|
|
|
|
|
|
|
|
config = Config() |
|
|
|
def build_backbone(bb_name, pretrained=True, params_settings=''): |
|
if bb_name == 'vgg16': |
|
bb_net = list(vgg16(pretrained=VGG16_Weights.DEFAULT if pretrained else None).children())[0] |
|
bb = nn.Sequential(OrderedDict({'conv1': bb_net[:4], 'conv2': bb_net[4:9], 'conv3': bb_net[9:16], 'conv4': bb_net[16:23]})) |
|
elif bb_name == 'vgg16bn': |
|
bb_net = list(vgg16_bn(pretrained=VGG16_BN_Weights.DEFAULT if pretrained else None).children())[0] |
|
bb = nn.Sequential(OrderedDict({'conv1': bb_net[:6], 'conv2': bb_net[6:13], 'conv3': bb_net[13:23], 'conv4': bb_net[23:33]})) |
|
elif bb_name == 'resnet50': |
|
bb_net = list(resnet50(pretrained=ResNet50_Weights.DEFAULT if pretrained else None).children()) |
|
bb = nn.Sequential(OrderedDict({'conv1': nn.Sequential(*bb_net[0:3]), 'conv2': bb_net[4], 'conv3': bb_net[5], 'conv4': bb_net[6]})) |
|
else: |
|
bb = eval('{}({})'.format(bb_name, params_settings)) |
|
if pretrained: |
|
bb = load_weights(bb, bb_name) |
|
return bb |
|
|
|
def load_weights(model, model_name): |
|
save_model = torch.load(config.weights[model_name], map_location='cpu') |
|
model_dict = model.state_dict() |
|
state_dict = {k: v if v.size() == model_dict[k].size() else model_dict[k] for k, v in save_model.items() if k in model_dict.keys()} |
|
|
|
if not state_dict: |
|
save_model_keys = list(save_model.keys()) |
|
sub_item = save_model_keys[0] if len(save_model_keys) == 1 else None |
|
state_dict = {k: v if v.size() == model_dict[k].size() else model_dict[k] for k, v in save_model[sub_item].items() if k in model_dict.keys()} |
|
if not state_dict or not sub_item: |
|
print('Weights are not successully loaded. Check the state dict of weights file.') |
|
return None |
|
else: |
|
print('Found correct weights in the "{}" item of loaded state_dict.'.format(sub_item)) |
|
model_dict.update(state_dict) |
|
model.load_state_dict(model_dict) |
|
return model |
|
|
|
|
|
|
|
|
|
|
|
import torch |
|
import torch.nn as nn |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class BasicDecBlk(nn.Module): |
|
def __init__(self, in_channels=64, out_channels=64, inter_channels=64): |
|
super(BasicDecBlk, self).__init__() |
|
inter_channels = in_channels // 4 if config.dec_channels_inter == 'adap' else 64 |
|
self.conv_in = nn.Conv2d(in_channels, inter_channels, 3, 1, padding=1) |
|
self.relu_in = nn.ReLU(inplace=True) |
|
if config.dec_att == 'ASPP': |
|
self.dec_att = ASPP(in_channels=inter_channels) |
|
elif config.dec_att == 'ASPPDeformable': |
|
self.dec_att = ASPPDeformable(in_channels=inter_channels) |
|
self.conv_out = nn.Conv2d(inter_channels, out_channels, 3, 1, padding=1) |
|
self.bn_in = nn.BatchNorm2d(inter_channels) if config.batch_size > 1 else nn.Identity() |
|
self.bn_out = nn.BatchNorm2d(out_channels) if config.batch_size > 1 else nn.Identity() |
|
|
|
def forward(self, x): |
|
x = self.conv_in(x) |
|
x = self.bn_in(x) |
|
x = self.relu_in(x) |
|
if hasattr(self, 'dec_att'): |
|
x = self.dec_att(x) |
|
x = self.conv_out(x) |
|
x = self.bn_out(x) |
|
return x |
|
|
|
|
|
class ResBlk(nn.Module): |
|
def __init__(self, in_channels=64, out_channels=None, inter_channels=64): |
|
super(ResBlk, self).__init__() |
|
if out_channels is None: |
|
out_channels = in_channels |
|
inter_channels = in_channels // 4 if config.dec_channels_inter == 'adap' else 64 |
|
|
|
self.conv_in = nn.Conv2d(in_channels, inter_channels, 3, 1, padding=1) |
|
self.bn_in = nn.BatchNorm2d(inter_channels) if config.batch_size > 1 else nn.Identity() |
|
self.relu_in = nn.ReLU(inplace=True) |
|
|
|
if config.dec_att == 'ASPP': |
|
self.dec_att = ASPP(in_channels=inter_channels) |
|
elif config.dec_att == 'ASPPDeformable': |
|
self.dec_att = ASPPDeformable(in_channels=inter_channels) |
|
|
|
self.conv_out = nn.Conv2d(inter_channels, out_channels, 3, 1, padding=1) |
|
self.bn_out = nn.BatchNorm2d(out_channels) if config.batch_size > 1 else nn.Identity() |
|
|
|
self.conv_resi = nn.Conv2d(in_channels, out_channels, 1, 1, 0) |
|
|
|
def forward(self, x): |
|
_x = self.conv_resi(x) |
|
x = self.conv_in(x) |
|
x = self.bn_in(x) |
|
x = self.relu_in(x) |
|
if hasattr(self, 'dec_att'): |
|
x = self.dec_att(x) |
|
x = self.conv_out(x) |
|
x = self.bn_out(x) |
|
return x + _x |
|
|
|
|
|
|
|
|
|
|
|
import numpy as np |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from functools import partial |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class BasicLatBlk(nn.Module): |
|
def __init__(self, in_channels=64, out_channels=64, inter_channels=64): |
|
super(BasicLatBlk, self).__init__() |
|
inter_channels = in_channels // 4 if config.dec_channels_inter == 'adap' else 64 |
|
self.conv = nn.Conv2d(in_channels, out_channels, 1, 1, 0) |
|
|
|
def forward(self, x): |
|
x = self.conv(x) |
|
return x |
|
|
|
|
|
|
|
|
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class _ASPPModule(nn.Module): |
|
def __init__(self, in_channels, planes, kernel_size, padding, dilation): |
|
super(_ASPPModule, self).__init__() |
|
self.atrous_conv = nn.Conv2d(in_channels, planes, kernel_size=kernel_size, |
|
stride=1, padding=padding, dilation=dilation, bias=False) |
|
self.bn = nn.BatchNorm2d(planes) if config.batch_size > 1 else nn.Identity() |
|
self.relu = nn.ReLU(inplace=True) |
|
|
|
def forward(self, x): |
|
x = self.atrous_conv(x) |
|
x = self.bn(x) |
|
|
|
return self.relu(x) |
|
|
|
|
|
class ASPP(nn.Module): |
|
def __init__(self, in_channels=64, out_channels=None, output_stride=16): |
|
super(ASPP, self).__init__() |
|
self.down_scale = 1 |
|
if out_channels is None: |
|
out_channels = in_channels |
|
self.in_channelster = 256 // self.down_scale |
|
if output_stride == 16: |
|
dilations = [1, 6, 12, 18] |
|
elif output_stride == 8: |
|
dilations = [1, 12, 24, 36] |
|
else: |
|
raise NotImplementedError |
|
|
|
self.aspp1 = _ASPPModule(in_channels, self.in_channelster, 1, padding=0, dilation=dilations[0]) |
|
self.aspp2 = _ASPPModule(in_channels, self.in_channelster, 3, padding=dilations[1], dilation=dilations[1]) |
|
self.aspp3 = _ASPPModule(in_channels, self.in_channelster, 3, padding=dilations[2], dilation=dilations[2]) |
|
self.aspp4 = _ASPPModule(in_channels, self.in_channelster, 3, padding=dilations[3], dilation=dilations[3]) |
|
|
|
self.global_avg_pool = nn.Sequential(nn.AdaptiveAvgPool2d((1, 1)), |
|
nn.Conv2d(in_channels, self.in_channelster, 1, stride=1, bias=False), |
|
nn.BatchNorm2d(self.in_channelster) if config.batch_size > 1 else nn.Identity(), |
|
nn.ReLU(inplace=True)) |
|
self.conv1 = nn.Conv2d(self.in_channelster * 5, out_channels, 1, bias=False) |
|
self.bn1 = nn.BatchNorm2d(out_channels) if config.batch_size > 1 else nn.Identity() |
|
self.relu = nn.ReLU(inplace=True) |
|
self.dropout = nn.Dropout(0.5) |
|
|
|
def forward(self, x): |
|
x1 = self.aspp1(x) |
|
x2 = self.aspp2(x) |
|
x3 = self.aspp3(x) |
|
x4 = self.aspp4(x) |
|
x5 = self.global_avg_pool(x) |
|
x5 = F.interpolate(x5, size=x1.size()[2:], mode='bilinear', align_corners=True) |
|
x = torch.cat((x1, x2, x3, x4, x5), dim=1) |
|
|
|
x = self.conv1(x) |
|
x = self.bn1(x) |
|
x = self.relu(x) |
|
|
|
return self.dropout(x) |
|
|
|
|
|
|
|
class _ASPPModuleDeformable(nn.Module): |
|
def __init__(self, in_channels, planes, kernel_size, padding): |
|
super(_ASPPModuleDeformable, self).__init__() |
|
self.atrous_conv = DeformableConv2d(in_channels, planes, kernel_size=kernel_size, |
|
stride=1, padding=padding, bias=False) |
|
self.bn = nn.BatchNorm2d(planes) if config.batch_size > 1 else nn.Identity() |
|
self.relu = nn.ReLU(inplace=True) |
|
|
|
def forward(self, x): |
|
x = self.atrous_conv(x) |
|
x = self.bn(x) |
|
|
|
return self.relu(x) |
|
|
|
|
|
class ASPPDeformable(nn.Module): |
|
def __init__(self, in_channels, out_channels=None, parallel_block_sizes=[1, 3, 7]): |
|
super(ASPPDeformable, self).__init__() |
|
self.down_scale = 1 |
|
if out_channels is None: |
|
out_channels = in_channels |
|
self.in_channelster = 256 // self.down_scale |
|
|
|
self.aspp1 = _ASPPModuleDeformable(in_channels, self.in_channelster, 1, padding=0) |
|
self.aspp_deforms = nn.ModuleList([ |
|
_ASPPModuleDeformable(in_channels, self.in_channelster, conv_size, padding=int(conv_size//2)) for conv_size in parallel_block_sizes |
|
]) |
|
|
|
self.global_avg_pool = nn.Sequential(nn.AdaptiveAvgPool2d((1, 1)), |
|
nn.Conv2d(in_channels, self.in_channelster, 1, stride=1, bias=False), |
|
nn.BatchNorm2d(self.in_channelster) if config.batch_size > 1 else nn.Identity(), |
|
nn.ReLU(inplace=True)) |
|
self.conv1 = nn.Conv2d(self.in_channelster * (2 + len(self.aspp_deforms)), out_channels, 1, bias=False) |
|
self.bn1 = nn.BatchNorm2d(out_channels) if config.batch_size > 1 else nn.Identity() |
|
self.relu = nn.ReLU(inplace=True) |
|
self.dropout = nn.Dropout(0.5) |
|
|
|
def forward(self, x): |
|
x1 = self.aspp1(x) |
|
x_aspp_deforms = [aspp_deform(x) for aspp_deform in self.aspp_deforms] |
|
x5 = self.global_avg_pool(x) |
|
x5 = F.interpolate(x5, size=x1.size()[2:], mode='bilinear', align_corners=True) |
|
x = torch.cat((x1, *x_aspp_deforms, x5), dim=1) |
|
|
|
x = self.conv1(x) |
|
x = self.bn1(x) |
|
x = self.relu(x) |
|
|
|
return self.dropout(x) |
|
|
|
|
|
|
|
|
|
|
|
import torch |
|
import torch.nn as nn |
|
from collections import OrderedDict |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from torchvision.models import vgg16, vgg16_bn |
|
from torchvision.models import resnet50 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class RefinerPVTInChannels4(nn.Module): |
|
def __init__(self, in_channels=3+1): |
|
super(RefinerPVTInChannels4, self).__init__() |
|
self.config = Config() |
|
self.epoch = 1 |
|
self.bb = build_backbone(self.config.bb, params_settings='in_channels=4') |
|
|
|
lateral_channels_in_collection = { |
|
'vgg16': [512, 256, 128, 64], 'vgg16bn': [512, 256, 128, 64], 'resnet50': [1024, 512, 256, 64], |
|
'pvt_v2_b2': [512, 320, 128, 64], 'pvt_v2_b5': [512, 320, 128, 64], |
|
'swin_v1_b': [1024, 512, 256, 128], 'swin_v1_l': [1536, 768, 384, 192], |
|
} |
|
channels = lateral_channels_in_collection[self.config.bb] |
|
self.squeeze_module = BasicDecBlk(channels[0], channels[0]) |
|
|
|
self.decoder = Decoder(channels) |
|
|
|
if 0: |
|
for key, value in self.named_parameters(): |
|
if 'bb.' in key: |
|
value.requires_grad = False |
|
|
|
def forward(self, x): |
|
if isinstance(x, list): |
|
x = torch.cat(x, dim=1) |
|
|
|
if self.config.bb in ['vgg16', 'vgg16bn', 'resnet50']: |
|
x1 = self.bb.conv1(x) |
|
x2 = self.bb.conv2(x1) |
|
x3 = self.bb.conv3(x2) |
|
x4 = self.bb.conv4(x3) |
|
else: |
|
x1, x2, x3, x4 = self.bb(x) |
|
|
|
x4 = self.squeeze_module(x4) |
|
|
|
|
|
|
|
features = [x, x1, x2, x3, x4] |
|
scaled_preds = self.decoder(features) |
|
|
|
return scaled_preds |
|
|
|
|
|
class Refiner(nn.Module): |
|
def __init__(self, in_channels=3+1): |
|
super(Refiner, self).__init__() |
|
self.config = Config() |
|
self.epoch = 1 |
|
self.stem_layer = StemLayer(in_channels=in_channels, inter_channels=48, out_channels=3, norm_layer='BN' if self.config.batch_size > 1 else 'LN') |
|
self.bb = build_backbone(self.config.bb) |
|
|
|
lateral_channels_in_collection = { |
|
'vgg16': [512, 256, 128, 64], 'vgg16bn': [512, 256, 128, 64], 'resnet50': [1024, 512, 256, 64], |
|
'pvt_v2_b2': [512, 320, 128, 64], 'pvt_v2_b5': [512, 320, 128, 64], |
|
'swin_v1_b': [1024, 512, 256, 128], 'swin_v1_l': [1536, 768, 384, 192], |
|
} |
|
channels = lateral_channels_in_collection[self.config.bb] |
|
self.squeeze_module = BasicDecBlk(channels[0], channels[0]) |
|
|
|
self.decoder = Decoder(channels) |
|
|
|
if 0: |
|
for key, value in self.named_parameters(): |
|
if 'bb.' in key: |
|
value.requires_grad = False |
|
|
|
def forward(self, x): |
|
if isinstance(x, list): |
|
x = torch.cat(x, dim=1) |
|
x = self.stem_layer(x) |
|
|
|
if self.config.bb in ['vgg16', 'vgg16bn', 'resnet50']: |
|
x1 = self.bb.conv1(x) |
|
x2 = self.bb.conv2(x1) |
|
x3 = self.bb.conv3(x2) |
|
x4 = self.bb.conv4(x3) |
|
else: |
|
x1, x2, x3, x4 = self.bb(x) |
|
|
|
x4 = self.squeeze_module(x4) |
|
|
|
|
|
|
|
features = [x, x1, x2, x3, x4] |
|
scaled_preds = self.decoder(features) |
|
|
|
return scaled_preds |
|
|
|
|
|
class Decoder(nn.Module): |
|
def __init__(self, channels): |
|
super(Decoder, self).__init__() |
|
self.config = Config() |
|
DecoderBlock = eval('BasicDecBlk') |
|
LateralBlock = eval('BasicLatBlk') |
|
|
|
self.decoder_block4 = DecoderBlock(channels[0], channels[1]) |
|
self.decoder_block3 = DecoderBlock(channels[1], channels[2]) |
|
self.decoder_block2 = DecoderBlock(channels[2], channels[3]) |
|
self.decoder_block1 = DecoderBlock(channels[3], channels[3]//2) |
|
|
|
self.lateral_block4 = LateralBlock(channels[1], channels[1]) |
|
self.lateral_block3 = LateralBlock(channels[2], channels[2]) |
|
self.lateral_block2 = LateralBlock(channels[3], channels[3]) |
|
|
|
if self.config.ms_supervision: |
|
self.conv_ms_spvn_4 = nn.Conv2d(channels[1], 1, 1, 1, 0) |
|
self.conv_ms_spvn_3 = nn.Conv2d(channels[2], 1, 1, 1, 0) |
|
self.conv_ms_spvn_2 = nn.Conv2d(channels[3], 1, 1, 1, 0) |
|
self.conv_out1 = nn.Sequential(nn.Conv2d(channels[3]//2, 1, 1, 1, 0)) |
|
|
|
def forward(self, features): |
|
x, x1, x2, x3, x4 = features |
|
outs = [] |
|
p4 = self.decoder_block4(x4) |
|
_p4 = F.interpolate(p4, size=x3.shape[2:], mode='bilinear', align_corners=True) |
|
_p3 = _p4 + self.lateral_block4(x3) |
|
|
|
p3 = self.decoder_block3(_p3) |
|
_p3 = F.interpolate(p3, size=x2.shape[2:], mode='bilinear', align_corners=True) |
|
_p2 = _p3 + self.lateral_block3(x2) |
|
|
|
p2 = self.decoder_block2(_p2) |
|
_p2 = F.interpolate(p2, size=x1.shape[2:], mode='bilinear', align_corners=True) |
|
_p1 = _p2 + self.lateral_block2(x1) |
|
|
|
_p1 = self.decoder_block1(_p1) |
|
_p1 = F.interpolate(_p1, size=x.shape[2:], mode='bilinear', align_corners=True) |
|
p1_out = self.conv_out1(_p1) |
|
|
|
if self.config.ms_supervision: |
|
outs.append(self.conv_ms_spvn_4(p4)) |
|
outs.append(self.conv_ms_spvn_3(p3)) |
|
outs.append(self.conv_ms_spvn_2(p2)) |
|
outs.append(p1_out) |
|
return outs |
|
|
|
|
|
class RefUNet(nn.Module): |
|
|
|
def __init__(self, in_channels=3+1): |
|
super(RefUNet, self).__init__() |
|
self.encoder_1 = nn.Sequential( |
|
nn.Conv2d(in_channels, 64, 3, 1, 1), |
|
nn.Conv2d(64, 64, 3, 1, 1), |
|
nn.BatchNorm2d(64), |
|
nn.ReLU(inplace=True) |
|
) |
|
|
|
self.encoder_2 = nn.Sequential( |
|
nn.MaxPool2d(2, 2, ceil_mode=True), |
|
nn.Conv2d(64, 64, 3, 1, 1), |
|
nn.BatchNorm2d(64), |
|
nn.ReLU(inplace=True) |
|
) |
|
|
|
self.encoder_3 = nn.Sequential( |
|
nn.MaxPool2d(2, 2, ceil_mode=True), |
|
nn.Conv2d(64, 64, 3, 1, 1), |
|
nn.BatchNorm2d(64), |
|
nn.ReLU(inplace=True) |
|
) |
|
|
|
self.encoder_4 = nn.Sequential( |
|
nn.MaxPool2d(2, 2, ceil_mode=True), |
|
nn.Conv2d(64, 64, 3, 1, 1), |
|
nn.BatchNorm2d(64), |
|
nn.ReLU(inplace=True) |
|
) |
|
|
|
self.pool4 = nn.MaxPool2d(2, 2, ceil_mode=True) |
|
|
|
self.decoder_5 = nn.Sequential( |
|
nn.Conv2d(64, 64, 3, 1, 1), |
|
nn.BatchNorm2d(64), |
|
nn.ReLU(inplace=True) |
|
) |
|
|
|
self.decoder_4 = nn.Sequential( |
|
nn.Conv2d(128, 64, 3, 1, 1), |
|
nn.BatchNorm2d(64), |
|
nn.ReLU(inplace=True) |
|
) |
|
|
|
self.decoder_3 = nn.Sequential( |
|
nn.Conv2d(128, 64, 3, 1, 1), |
|
nn.BatchNorm2d(64), |
|
nn.ReLU(inplace=True) |
|
) |
|
|
|
self.decoder_2 = nn.Sequential( |
|
nn.Conv2d(128, 64, 3, 1, 1), |
|
nn.BatchNorm2d(64), |
|
nn.ReLU(inplace=True) |
|
) |
|
|
|
self.decoder_1 = nn.Sequential( |
|
nn.Conv2d(128, 64, 3, 1, 1), |
|
nn.BatchNorm2d(64), |
|
nn.ReLU(inplace=True) |
|
) |
|
|
|
self.conv_d0 = nn.Conv2d(64, 1, 3, 1, 1) |
|
|
|
self.upscore2 = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True) |
|
|
|
def forward(self, x): |
|
outs = [] |
|
if isinstance(x, list): |
|
x = torch.cat(x, dim=1) |
|
hx = x |
|
|
|
hx1 = self.encoder_1(hx) |
|
hx2 = self.encoder_2(hx1) |
|
hx3 = self.encoder_3(hx2) |
|
hx4 = self.encoder_4(hx3) |
|
|
|
hx = self.decoder_5(self.pool4(hx4)) |
|
hx = torch.cat((self.upscore2(hx), hx4), 1) |
|
|
|
d4 = self.decoder_4(hx) |
|
hx = torch.cat((self.upscore2(d4), hx3), 1) |
|
|
|
d3 = self.decoder_3(hx) |
|
hx = torch.cat((self.upscore2(d3), hx2), 1) |
|
|
|
d2 = self.decoder_2(hx) |
|
hx = torch.cat((self.upscore2(d2), hx1), 1) |
|
|
|
d1 = self.decoder_1(hx) |
|
|
|
x = self.conv_d0(d1) |
|
outs.append(x) |
|
return outs |
|
|
|
|
|
|
|
|
|
|
|
import torch.nn as nn |
|
|
|
|
|
|
|
class StemLayer(nn.Module): |
|
r""" Stem layer of InternImage |
|
Args: |
|
in_channels (int): number of input channels |
|
out_channels (int): number of output channels |
|
act_layer (str): activation layer |
|
norm_layer (str): normalization layer |
|
""" |
|
|
|
def __init__(self, |
|
in_channels=3+1, |
|
inter_channels=48, |
|
out_channels=96, |
|
act_layer='GELU', |
|
norm_layer='BN'): |
|
super().__init__() |
|
self.conv1 = nn.Conv2d(in_channels, |
|
inter_channels, |
|
kernel_size=3, |
|
stride=1, |
|
padding=1) |
|
self.norm1 = build_norm_layer( |
|
inter_channels, norm_layer, 'channels_first', 'channels_first' |
|
) |
|
self.act = build_act_layer(act_layer) |
|
self.conv2 = nn.Conv2d(inter_channels, |
|
out_channels, |
|
kernel_size=3, |
|
stride=1, |
|
padding=1) |
|
self.norm2 = build_norm_layer( |
|
out_channels, norm_layer, 'channels_first', 'channels_first' |
|
) |
|
|
|
def forward(self, x): |
|
x = self.conv1(x) |
|
x = self.norm1(x) |
|
x = self.act(x) |
|
x = self.conv2(x) |
|
x = self.norm2(x) |
|
return x |
|
|
|
|
|
|
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from kornia.filters import laplacian |
|
from transformers import PreTrainedModel |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from .BiRefNet_config import BiRefNetConfig |
|
|
|
|
|
class BiRefNet( |
|
PreTrainedModel |
|
): |
|
config_class = BiRefNetConfig |
|
def __init__(self, bb_pretrained=True, config=BiRefNetConfig()): |
|
super(BiRefNet, self).__init__(config) |
|
bb_pretrained = config.bb_pretrained |
|
self.config = Config() |
|
self.epoch = 1 |
|
self.bb = build_backbone(self.config.bb, pretrained=bb_pretrained) |
|
|
|
channels = self.config.lateral_channels_in_collection |
|
|
|
if self.config.auxiliary_classification: |
|
self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) |
|
self.cls_head = nn.Sequential( |
|
nn.Linear(channels[0], len(class_labels_TR_sorted)) |
|
) |
|
|
|
if self.config.squeeze_block: |
|
self.squeeze_module = nn.Sequential(*[ |
|
eval(self.config.squeeze_block.split('_x')[0])(channels[0]+sum(self.config.cxt), channels[0]) |
|
for _ in range(eval(self.config.squeeze_block.split('_x')[1])) |
|
]) |
|
|
|
self.decoder = Decoder(channels) |
|
|
|
if self.config.ender: |
|
self.dec_end = nn.Sequential( |
|
nn.Conv2d(1, 16, 3, 1, 1), |
|
nn.Conv2d(16, 1, 3, 1, 1), |
|
nn.ReLU(inplace=True), |
|
) |
|
|
|
|
|
if self.config.refine: |
|
if self.config.refine == 'itself': |
|
self.stem_layer = StemLayer(in_channels=3+1, inter_channels=48, out_channels=3, norm_layer='BN' if self.config.batch_size > 1 else 'LN') |
|
else: |
|
self.refiner = eval('{}({})'.format(self.config.refine, 'in_channels=3+1')) |
|
|
|
if self.config.freeze_bb: |
|
|
|
print(self.named_parameters()) |
|
for key, value in self.named_parameters(): |
|
if 'bb.' in key and 'refiner.' not in key: |
|
value.requires_grad = False |
|
|
|
def forward_enc(self, x): |
|
if self.config.bb in ['vgg16', 'vgg16bn', 'resnet50']: |
|
x1 = self.bb.conv1(x); x2 = self.bb.conv2(x1); x3 = self.bb.conv3(x2); x4 = self.bb.conv4(x3) |
|
else: |
|
x1, x2, x3, x4 = self.bb(x) |
|
if self.config.mul_scl_ipt == 'cat': |
|
B, C, H, W = x.shape |
|
x1_, x2_, x3_, x4_ = self.bb(F.interpolate(x, size=(H//2, W//2), mode='bilinear', align_corners=True)) |
|
x1 = torch.cat([x1, F.interpolate(x1_, size=x1.shape[2:], mode='bilinear', align_corners=True)], dim=1) |
|
x2 = torch.cat([x2, F.interpolate(x2_, size=x2.shape[2:], mode='bilinear', align_corners=True)], dim=1) |
|
x3 = torch.cat([x3, F.interpolate(x3_, size=x3.shape[2:], mode='bilinear', align_corners=True)], dim=1) |
|
x4 = torch.cat([x4, F.interpolate(x4_, size=x4.shape[2:], mode='bilinear', align_corners=True)], dim=1) |
|
elif self.config.mul_scl_ipt == 'add': |
|
B, C, H, W = x.shape |
|
x1_, x2_, x3_, x4_ = self.bb(F.interpolate(x, size=(H//2, W//2), mode='bilinear', align_corners=True)) |
|
x1 = x1 + F.interpolate(x1_, size=x1.shape[2:], mode='bilinear', align_corners=True) |
|
x2 = x2 + F.interpolate(x2_, size=x2.shape[2:], mode='bilinear', align_corners=True) |
|
x3 = x3 + F.interpolate(x3_, size=x3.shape[2:], mode='bilinear', align_corners=True) |
|
x4 = x4 + F.interpolate(x4_, size=x4.shape[2:], mode='bilinear', align_corners=True) |
|
class_preds = self.cls_head(self.avgpool(x4).view(x4.shape[0], -1)) if self.training and self.config.auxiliary_classification else None |
|
if self.config.cxt: |
|
x4 = torch.cat( |
|
( |
|
*[ |
|
F.interpolate(x1, size=x4.shape[2:], mode='bilinear', align_corners=True), |
|
F.interpolate(x2, size=x4.shape[2:], mode='bilinear', align_corners=True), |
|
F.interpolate(x3, size=x4.shape[2:], mode='bilinear', align_corners=True), |
|
][-len(self.config.cxt):], |
|
x4 |
|
), |
|
dim=1 |
|
) |
|
return (x1, x2, x3, x4), class_preds |
|
|
|
def forward_ori(self, x): |
|
|
|
(x1, x2, x3, x4), class_preds = self.forward_enc(x) |
|
if self.config.squeeze_block: |
|
x4 = self.squeeze_module(x4) |
|
|
|
features = [x, x1, x2, x3, x4] |
|
if self.training and self.config.out_ref: |
|
features.append(laplacian(torch.mean(x, dim=1).unsqueeze(1), kernel_size=5)) |
|
scaled_preds = self.decoder(features) |
|
return scaled_preds, class_preds |
|
|
|
def forward(self, x): |
|
scaled_preds, class_preds = self.forward_ori(x) |
|
class_preds_lst = [class_preds] |
|
return [scaled_preds, class_preds_lst] if self.training else scaled_preds |
|
|
|
|
|
class Decoder(nn.Module): |
|
def __init__(self, channels): |
|
super(Decoder, self).__init__() |
|
self.config = Config() |
|
DecoderBlock = eval(self.config.dec_blk) |
|
LateralBlock = eval(self.config.lat_blk) |
|
|
|
if self.config.dec_ipt: |
|
self.split = self.config.dec_ipt_split |
|
N_dec_ipt = 64 |
|
DBlock = SimpleConvs |
|
ic = 64 |
|
ipt_cha_opt = 1 |
|
self.ipt_blk5 = DBlock(2**10*3 if self.split else 3, [N_dec_ipt, channels[0]//8][ipt_cha_opt], inter_channels=ic) |
|
self.ipt_blk4 = DBlock(2**8*3 if self.split else 3, [N_dec_ipt, channels[0]//8][ipt_cha_opt], inter_channels=ic) |
|
self.ipt_blk3 = DBlock(2**6*3 if self.split else 3, [N_dec_ipt, channels[1]//8][ipt_cha_opt], inter_channels=ic) |
|
self.ipt_blk2 = DBlock(2**4*3 if self.split else 3, [N_dec_ipt, channels[2]//8][ipt_cha_opt], inter_channels=ic) |
|
self.ipt_blk1 = DBlock(2**0*3 if self.split else 3, [N_dec_ipt, channels[3]//8][ipt_cha_opt], inter_channels=ic) |
|
else: |
|
self.split = None |
|
|
|
self.decoder_block4 = DecoderBlock(channels[0]+([N_dec_ipt, channels[0]//8][ipt_cha_opt] if self.config.dec_ipt else 0), channels[1]) |
|
self.decoder_block3 = DecoderBlock(channels[1]+([N_dec_ipt, channels[0]//8][ipt_cha_opt] if self.config.dec_ipt else 0), channels[2]) |
|
self.decoder_block2 = DecoderBlock(channels[2]+([N_dec_ipt, channels[1]//8][ipt_cha_opt] if self.config.dec_ipt else 0), channels[3]) |
|
self.decoder_block1 = DecoderBlock(channels[3]+([N_dec_ipt, channels[2]//8][ipt_cha_opt] if self.config.dec_ipt else 0), channels[3]//2) |
|
self.conv_out1 = nn.Sequential(nn.Conv2d(channels[3]//2+([N_dec_ipt, channels[3]//8][ipt_cha_opt] if self.config.dec_ipt else 0), 1, 1, 1, 0)) |
|
|
|
self.lateral_block4 = LateralBlock(channels[1], channels[1]) |
|
self.lateral_block3 = LateralBlock(channels[2], channels[2]) |
|
self.lateral_block2 = LateralBlock(channels[3], channels[3]) |
|
|
|
if self.config.ms_supervision: |
|
self.conv_ms_spvn_4 = nn.Conv2d(channels[1], 1, 1, 1, 0) |
|
self.conv_ms_spvn_3 = nn.Conv2d(channels[2], 1, 1, 1, 0) |
|
self.conv_ms_spvn_2 = nn.Conv2d(channels[3], 1, 1, 1, 0) |
|
|
|
if self.config.out_ref: |
|
_N = 16 |
|
self.gdt_convs_4 = nn.Sequential(nn.Conv2d(channels[1], _N, 3, 1, 1), nn.BatchNorm2d(_N) if self.config.batch_size > 1 else nn.Identity(), nn.ReLU(inplace=True)) |
|
self.gdt_convs_3 = nn.Sequential(nn.Conv2d(channels[2], _N, 3, 1, 1), nn.BatchNorm2d(_N) if self.config.batch_size > 1 else nn.Identity(), nn.ReLU(inplace=True)) |
|
self.gdt_convs_2 = nn.Sequential(nn.Conv2d(channels[3], _N, 3, 1, 1), nn.BatchNorm2d(_N) if self.config.batch_size > 1 else nn.Identity(), nn.ReLU(inplace=True)) |
|
|
|
self.gdt_convs_pred_4 = nn.Sequential(nn.Conv2d(_N, 1, 1, 1, 0)) |
|
self.gdt_convs_pred_3 = nn.Sequential(nn.Conv2d(_N, 1, 1, 1, 0)) |
|
self.gdt_convs_pred_2 = nn.Sequential(nn.Conv2d(_N, 1, 1, 1, 0)) |
|
|
|
self.gdt_convs_attn_4 = nn.Sequential(nn.Conv2d(_N, 1, 1, 1, 0)) |
|
self.gdt_convs_attn_3 = nn.Sequential(nn.Conv2d(_N, 1, 1, 1, 0)) |
|
self.gdt_convs_attn_2 = nn.Sequential(nn.Conv2d(_N, 1, 1, 1, 0)) |
|
|
|
def get_patches_batch(self, x, p): |
|
_size_h, _size_w = p.shape[2:] |
|
patches_batch = [] |
|
for idx in range(x.shape[0]): |
|
columns_x = torch.split(x[idx], split_size_or_sections=_size_w, dim=-1) |
|
patches_x = [] |
|
for column_x in columns_x: |
|
patches_x += [p.unsqueeze(0) for p in torch.split(column_x, split_size_or_sections=_size_h, dim=-2)] |
|
patch_sample = torch.cat(patches_x, dim=1) |
|
patches_batch.append(patch_sample) |
|
return torch.cat(patches_batch, dim=0) |
|
|
|
def forward(self, features): |
|
if self.training and self.config.out_ref: |
|
outs_gdt_pred = [] |
|
outs_gdt_label = [] |
|
x, x1, x2, x3, x4, gdt_gt = features |
|
else: |
|
x, x1, x2, x3, x4 = features |
|
outs = [] |
|
|
|
if self.config.dec_ipt: |
|
patches_batch = self.get_patches_batch(x, x4) if self.split else x |
|
x4 = torch.cat((x4, self.ipt_blk5(F.interpolate(patches_batch, size=x4.shape[2:], mode='bilinear', align_corners=True))), 1) |
|
p4 = self.decoder_block4(x4) |
|
m4 = self.conv_ms_spvn_4(p4) if self.config.ms_supervision else None |
|
if self.config.out_ref: |
|
p4_gdt = self.gdt_convs_4(p4) |
|
if self.training: |
|
|
|
m4_dia = m4 |
|
gdt_label_main_4 = gdt_gt * F.interpolate(m4_dia, size=gdt_gt.shape[2:], mode='bilinear', align_corners=True) |
|
outs_gdt_label.append(gdt_label_main_4) |
|
|
|
gdt_pred_4 = self.gdt_convs_pred_4(p4_gdt) |
|
outs_gdt_pred.append(gdt_pred_4) |
|
gdt_attn_4 = self.gdt_convs_attn_4(p4_gdt).sigmoid() |
|
|
|
p4 = p4 * gdt_attn_4 |
|
_p4 = F.interpolate(p4, size=x3.shape[2:], mode='bilinear', align_corners=True) |
|
_p3 = _p4 + self.lateral_block4(x3) |
|
|
|
if self.config.dec_ipt: |
|
patches_batch = self.get_patches_batch(x, _p3) if self.split else x |
|
_p3 = torch.cat((_p3, self.ipt_blk4(F.interpolate(patches_batch, size=x3.shape[2:], mode='bilinear', align_corners=True))), 1) |
|
p3 = self.decoder_block3(_p3) |
|
m3 = self.conv_ms_spvn_3(p3) if self.config.ms_supervision else None |
|
if self.config.out_ref: |
|
p3_gdt = self.gdt_convs_3(p3) |
|
if self.training: |
|
|
|
|
|
|
|
m3_dia = m3 |
|
gdt_label_main_3 = gdt_gt * F.interpolate(m3_dia, size=gdt_gt.shape[2:], mode='bilinear', align_corners=True) |
|
outs_gdt_label.append(gdt_label_main_3) |
|
|
|
|
|
|
|
gdt_pred_3 = self.gdt_convs_pred_3(p3_gdt) |
|
outs_gdt_pred.append(gdt_pred_3) |
|
gdt_attn_3 = self.gdt_convs_attn_3(p3_gdt).sigmoid() |
|
|
|
|
|
p3 = p3 * gdt_attn_3 |
|
_p3 = F.interpolate(p3, size=x2.shape[2:], mode='bilinear', align_corners=True) |
|
_p2 = _p3 + self.lateral_block3(x2) |
|
|
|
if self.config.dec_ipt: |
|
patches_batch = self.get_patches_batch(x, _p2) if self.split else x |
|
_p2 = torch.cat((_p2, self.ipt_blk3(F.interpolate(patches_batch, size=x2.shape[2:], mode='bilinear', align_corners=True))), 1) |
|
p2 = self.decoder_block2(_p2) |
|
m2 = self.conv_ms_spvn_2(p2) if self.config.ms_supervision else None |
|
if self.config.out_ref: |
|
p2_gdt = self.gdt_convs_2(p2) |
|
if self.training: |
|
|
|
m2_dia = m2 |
|
gdt_label_main_2 = gdt_gt * F.interpolate(m2_dia, size=gdt_gt.shape[2:], mode='bilinear', align_corners=True) |
|
outs_gdt_label.append(gdt_label_main_2) |
|
|
|
gdt_pred_2 = self.gdt_convs_pred_2(p2_gdt) |
|
outs_gdt_pred.append(gdt_pred_2) |
|
gdt_attn_2 = self.gdt_convs_attn_2(p2_gdt).sigmoid() |
|
|
|
p2 = p2 * gdt_attn_2 |
|
_p2 = F.interpolate(p2, size=x1.shape[2:], mode='bilinear', align_corners=True) |
|
_p1 = _p2 + self.lateral_block2(x1) |
|
|
|
if self.config.dec_ipt: |
|
patches_batch = self.get_patches_batch(x, _p1) if self.split else x |
|
_p1 = torch.cat((_p1, self.ipt_blk2(F.interpolate(patches_batch, size=x1.shape[2:], mode='bilinear', align_corners=True))), 1) |
|
_p1 = self.decoder_block1(_p1) |
|
_p1 = F.interpolate(_p1, size=x.shape[2:], mode='bilinear', align_corners=True) |
|
|
|
if self.config.dec_ipt: |
|
patches_batch = self.get_patches_batch(x, _p1) if self.split else x |
|
_p1 = torch.cat((_p1, self.ipt_blk1(F.interpolate(patches_batch, size=x.shape[2:], mode='bilinear', align_corners=True))), 1) |
|
p1_out = self.conv_out1(_p1) |
|
|
|
if self.config.ms_supervision: |
|
outs.append(m4) |
|
outs.append(m3) |
|
outs.append(m2) |
|
outs.append(p1_out) |
|
return outs if not (self.config.out_ref and self.training) else ([outs_gdt_pred, outs_gdt_label], outs) |
|
|
|
|
|
class SimpleConvs(nn.Module): |
|
def __init__( |
|
self, in_channels: int, out_channels: int, inter_channels=64 |
|
) -> None: |
|
super().__init__() |
|
self.conv1 = nn.Conv2d(in_channels, inter_channels, 3, 1, 1) |
|
self.conv_out = nn.Conv2d(inter_channels, out_channels, 3, 1, 1) |
|
|
|
def forward(self, x): |
|
return self.conv_out(self.conv1(x)) |
|
|