Update README.md
Browse files
README.md
CHANGED
|
@@ -73,26 +73,59 @@ dParallel-Dream-Distill Dataset</a></td>
|
|
| 73 |
|
| 74 |
## 🚀 Quick Start:
|
| 75 |
```python
|
| 76 |
-
from transformers import AutoTokenizer
|
| 77 |
-
from model.modeling_llada import LLaDAModelLM
|
| 78 |
-
from generate import generate
|
| 79 |
import torch
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 96 |
```
|
| 97 |
|
| 98 |
|
|
|
|
| 73 |
|
| 74 |
## 🚀 Quick Start:
|
| 75 |
```python
|
|
|
|
|
|
|
|
|
|
| 76 |
import torch
|
| 77 |
+
from transformers import AutoModel, AutoTokenizer
|
| 78 |
+
import types
|
| 79 |
+
|
| 80 |
+
model_path = "Zigeng/dParallel_Dream_7B_Instruct"
|
| 81 |
+
model = AutoModel.from_pretrained(model_path, torch_dtype=torch.bfloat16, trust_remote_code=True)
|
| 82 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
| 83 |
+
model = model.to("cuda").eval()
|
| 84 |
+
|
| 85 |
+
from model.generation_utils_semiar import DreamGenerationMixin
|
| 86 |
+
model.diffusion_generate = types.MethodType(DreamGenerationMixin.diffusion_generate, model)
|
| 87 |
+
model._sample = types.MethodType(DreamGenerationMixin._sample, model)
|
| 88 |
+
|
| 89 |
+
|
| 90 |
+
messages = [
|
| 91 |
+
{"role": "user", "content": "Toulouse has twice as many sheep as Charleston. Charleston has 4 times as many sheep as Seattle. How many sheep do Toulouse, Charleston, and Seattle have together if Seattle has 20 sheep? Let's think step by step."}
|
| 92 |
+
]
|
| 93 |
+
|
| 94 |
+
inputs = tokenizer.apply_chat_template(
|
| 95 |
+
messages,
|
| 96 |
+
tokenize=False,
|
| 97 |
+
add_generation_prompt=True
|
| 98 |
+
)
|
| 99 |
+
|
| 100 |
+
inputs = tokenizer.apply_chat_template(
|
| 101 |
+
messages, return_tensors="pt", return_dict=True, add_generation_prompt=True
|
| 102 |
+
)
|
| 103 |
+
input_ids = inputs.input_ids.to(device="cuda")
|
| 104 |
+
attention_mask = inputs.attention_mask.to(device="cuda")
|
| 105 |
+
|
| 106 |
+
output, nfe = model.diffusion_generate(
|
| 107 |
+
input_ids,
|
| 108 |
+
attention_mask=attention_mask,
|
| 109 |
+
max_new_tokens=256,
|
| 110 |
+
output_history=False,
|
| 111 |
+
return_dict_in_generate=True,
|
| 112 |
+
steps=256,
|
| 113 |
+
temperature=0.,
|
| 114 |
+
top_p=None,
|
| 115 |
+
alg="entropy_threshold",
|
| 116 |
+
alg_temp=0.1,
|
| 117 |
+
top_k=None,
|
| 118 |
+
block_length=32,
|
| 119 |
+
threshold=0.5,
|
| 120 |
+
)
|
| 121 |
+
|
| 122 |
+
generations = [
|
| 123 |
+
tokenizer.decode(g[0:].tolist())
|
| 124 |
+
for p, g in zip(input_ids, output.sequences)
|
| 125 |
+
]
|
| 126 |
+
|
| 127 |
+
print(generations[0].split(tokenizer.eos_token)[0])
|
| 128 |
+
print("NFE:", nfe)
|
| 129 |
```
|
| 130 |
|
| 131 |
|