--- base_model: - hubertsiuzdak/snac_24khz --- SNAC in safetensors format. ```py import json from pathlib import Path import safetensors.torch import torch import torchaudio from snac import SNAC config = json.loads(Path("config.json").read_text(encoding="utf-8")) model = SNAC(**config) state_dict = safetensors.torch.load_file("model.safetensors") model.load_state_dict(state_dict) model.cuda().eval() input, sr = torchaudio.load("input.wav") input = torchaudio.functional.resample(input, sr, model.sampling_rate) input = input.cuda().unsqueeze(0) with torch.inference_mode(): codes = model.encode(input) output = model.decode(codes) output = output.cpu().squeeze(0) torchaudio.save("output.wav", output, model.sampling_rate) ```