Upload folder using huggingface_hub
Browse files- .gitattributes +1 -0
- .summary/0/events.out.tfevents.1746906469.a5c04b73a903 +3 -0
- README.md +56 -0
- checkpoint_p0/best_000000837_3428352_reward_24.982.pth +3 -0
- checkpoint_p0/checkpoint_000000758_3104768.pth +3 -0
- checkpoint_p0/checkpoint_000000978_4005888.pth +3 -0
- config.json +142 -0
- replay.mp4 +3 -0
- sf_log.txt +820 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
.summary/0/events.out.tfevents.1746906469.a5c04b73a903
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:52f60cba0cbaeeb413ce49ca4fe9a45a1c5df3c11873dc37bff16c9c2928529f
|
3 |
+
size 414896
|
README.md
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: sample-factory
|
3 |
+
tags:
|
4 |
+
- deep-reinforcement-learning
|
5 |
+
- reinforcement-learning
|
6 |
+
- sample-factory
|
7 |
+
model-index:
|
8 |
+
- name: APPO
|
9 |
+
results:
|
10 |
+
- task:
|
11 |
+
type: reinforcement-learning
|
12 |
+
name: reinforcement-learning
|
13 |
+
dataset:
|
14 |
+
name: doom_health_gathering_supreme
|
15 |
+
type: doom_health_gathering_supreme
|
16 |
+
metrics:
|
17 |
+
- type: mean_reward
|
18 |
+
value: 8.87 +/- 3.11
|
19 |
+
name: mean_reward
|
20 |
+
verified: false
|
21 |
+
---
|
22 |
+
|
23 |
+
A(n) **APPO** model trained on the **doom_health_gathering_supreme** environment.
|
24 |
+
|
25 |
+
This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory.
|
26 |
+
Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/
|
27 |
+
|
28 |
+
|
29 |
+
## Downloading the model
|
30 |
+
|
31 |
+
After installing Sample-Factory, download the model with:
|
32 |
+
```
|
33 |
+
python -m sample_factory.huggingface.load_from_hub -r aalva/rl_course_vizdoom_health_gathering_supreme
|
34 |
+
```
|
35 |
+
|
36 |
+
|
37 |
+
## Using the model
|
38 |
+
|
39 |
+
To run the model after download, use the `enjoy` script corresponding to this environment:
|
40 |
+
```
|
41 |
+
python -m <path.to.enjoy.module> --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme
|
42 |
+
```
|
43 |
+
|
44 |
+
|
45 |
+
You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag.
|
46 |
+
See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details
|
47 |
+
|
48 |
+
## Training with this model
|
49 |
+
|
50 |
+
To continue training with this model, use the `train` script corresponding to this environment:
|
51 |
+
```
|
52 |
+
python -m <path.to.train.module> --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme --restart_behavior=resume --train_for_env_steps=10000000000
|
53 |
+
```
|
54 |
+
|
55 |
+
Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
|
56 |
+
|
checkpoint_p0/best_000000837_3428352_reward_24.982.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9861194eea11ff9fbc61443149466498835e1c7fbf2d74e446e114a9bedc08fb
|
3 |
+
size 34929051
|
checkpoint_p0/checkpoint_000000758_3104768.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:05214fdd4a509ed3b0fced95e86733ba80745befcff840228079e1abfe7b66ff
|
3 |
+
size 34929477
|
checkpoint_p0/checkpoint_000000978_4005888.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:644312ea5817fa6200ccf6a6183fea47fd9744bdad5790aa9585b033c950f353
|
3 |
+
size 34929541
|
config.json
ADDED
@@ -0,0 +1,142 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"help": false,
|
3 |
+
"algo": "APPO",
|
4 |
+
"env": "doom_health_gathering_supreme",
|
5 |
+
"experiment": "default_experiment",
|
6 |
+
"train_dir": "/kaggle/working/train_dir",
|
7 |
+
"restart_behavior": "resume",
|
8 |
+
"device": "gpu",
|
9 |
+
"seed": null,
|
10 |
+
"num_policies": 1,
|
11 |
+
"async_rl": true,
|
12 |
+
"serial_mode": false,
|
13 |
+
"batched_sampling": false,
|
14 |
+
"num_batches_to_accumulate": 2,
|
15 |
+
"worker_num_splits": 2,
|
16 |
+
"policy_workers_per_policy": 1,
|
17 |
+
"max_policy_lag": 1000,
|
18 |
+
"num_workers": 8,
|
19 |
+
"num_envs_per_worker": 4,
|
20 |
+
"batch_size": 1024,
|
21 |
+
"num_batches_per_epoch": 1,
|
22 |
+
"num_epochs": 1,
|
23 |
+
"rollout": 32,
|
24 |
+
"recurrence": 32,
|
25 |
+
"shuffle_minibatches": false,
|
26 |
+
"gamma": 0.99,
|
27 |
+
"reward_scale": 1.0,
|
28 |
+
"reward_clip": 1000.0,
|
29 |
+
"value_bootstrap": false,
|
30 |
+
"normalize_returns": true,
|
31 |
+
"exploration_loss_coeff": 0.001,
|
32 |
+
"value_loss_coeff": 0.5,
|
33 |
+
"kl_loss_coeff": 0.0,
|
34 |
+
"exploration_loss": "symmetric_kl",
|
35 |
+
"gae_lambda": 0.95,
|
36 |
+
"ppo_clip_ratio": 0.1,
|
37 |
+
"ppo_clip_value": 0.2,
|
38 |
+
"with_vtrace": false,
|
39 |
+
"vtrace_rho": 1.0,
|
40 |
+
"vtrace_c": 1.0,
|
41 |
+
"optimizer": "adam",
|
42 |
+
"adam_eps": 1e-06,
|
43 |
+
"adam_beta1": 0.9,
|
44 |
+
"adam_beta2": 0.999,
|
45 |
+
"max_grad_norm": 4.0,
|
46 |
+
"learning_rate": 0.0001,
|
47 |
+
"lr_schedule": "constant",
|
48 |
+
"lr_schedule_kl_threshold": 0.008,
|
49 |
+
"lr_adaptive_min": 1e-06,
|
50 |
+
"lr_adaptive_max": 0.01,
|
51 |
+
"obs_subtract_mean": 0.0,
|
52 |
+
"obs_scale": 255.0,
|
53 |
+
"normalize_input": true,
|
54 |
+
"normalize_input_keys": null,
|
55 |
+
"decorrelate_experience_max_seconds": 0,
|
56 |
+
"decorrelate_envs_on_one_worker": true,
|
57 |
+
"actor_worker_gpus": [],
|
58 |
+
"set_workers_cpu_affinity": true,
|
59 |
+
"force_envs_single_thread": false,
|
60 |
+
"default_niceness": 0,
|
61 |
+
"log_to_file": true,
|
62 |
+
"experiment_summaries_interval": 10,
|
63 |
+
"flush_summaries_interval": 30,
|
64 |
+
"stats_avg": 100,
|
65 |
+
"summaries_use_frameskip": true,
|
66 |
+
"heartbeat_interval": 20,
|
67 |
+
"heartbeat_reporting_interval": 600,
|
68 |
+
"train_for_env_steps": 4000000,
|
69 |
+
"train_for_seconds": 10000000000,
|
70 |
+
"save_every_sec": 120,
|
71 |
+
"keep_checkpoints": 2,
|
72 |
+
"load_checkpoint_kind": "latest",
|
73 |
+
"save_milestones_sec": -1,
|
74 |
+
"save_best_every_sec": 5,
|
75 |
+
"save_best_metric": "reward",
|
76 |
+
"save_best_after": 100000,
|
77 |
+
"benchmark": false,
|
78 |
+
"encoder_mlp_layers": [
|
79 |
+
512,
|
80 |
+
512
|
81 |
+
],
|
82 |
+
"encoder_conv_architecture": "convnet_simple",
|
83 |
+
"encoder_conv_mlp_layers": [
|
84 |
+
512
|
85 |
+
],
|
86 |
+
"use_rnn": true,
|
87 |
+
"rnn_size": 512,
|
88 |
+
"rnn_type": "gru",
|
89 |
+
"rnn_num_layers": 1,
|
90 |
+
"decoder_mlp_layers": [],
|
91 |
+
"nonlinearity": "elu",
|
92 |
+
"policy_initialization": "orthogonal",
|
93 |
+
"policy_init_gain": 1.0,
|
94 |
+
"actor_critic_share_weights": true,
|
95 |
+
"adaptive_stddev": true,
|
96 |
+
"continuous_tanh_scale": 0.0,
|
97 |
+
"initial_stddev": 1.0,
|
98 |
+
"use_env_info_cache": false,
|
99 |
+
"env_gpu_actions": false,
|
100 |
+
"env_gpu_observations": true,
|
101 |
+
"env_frameskip": 4,
|
102 |
+
"env_framestack": 1,
|
103 |
+
"pixel_format": "CHW",
|
104 |
+
"use_record_episode_statistics": false,
|
105 |
+
"with_wandb": false,
|
106 |
+
"wandb_user": null,
|
107 |
+
"wandb_project": "sample_factory",
|
108 |
+
"wandb_group": null,
|
109 |
+
"wandb_job_type": "SF",
|
110 |
+
"wandb_tags": [],
|
111 |
+
"with_pbt": false,
|
112 |
+
"pbt_mix_policies_in_one_env": true,
|
113 |
+
"pbt_period_env_steps": 5000000,
|
114 |
+
"pbt_start_mutation": 20000000,
|
115 |
+
"pbt_replace_fraction": 0.3,
|
116 |
+
"pbt_mutation_rate": 0.15,
|
117 |
+
"pbt_replace_reward_gap": 0.1,
|
118 |
+
"pbt_replace_reward_gap_absolute": 1e-06,
|
119 |
+
"pbt_optimize_gamma": false,
|
120 |
+
"pbt_target_objective": "true_objective",
|
121 |
+
"pbt_perturb_min": 1.1,
|
122 |
+
"pbt_perturb_max": 1.5,
|
123 |
+
"num_agents": -1,
|
124 |
+
"num_humans": 0,
|
125 |
+
"num_bots": -1,
|
126 |
+
"start_bot_difficulty": null,
|
127 |
+
"timelimit": null,
|
128 |
+
"res_w": 128,
|
129 |
+
"res_h": 72,
|
130 |
+
"wide_aspect_ratio": false,
|
131 |
+
"eval_env_frameskip": 1,
|
132 |
+
"fps": 35,
|
133 |
+
"command_line": "--env=doom_health_gathering_supreme --num_workers=8 --num_envs_per_worker=4 --train_for_env_steps=4000000",
|
134 |
+
"cli_args": {
|
135 |
+
"env": "doom_health_gathering_supreme",
|
136 |
+
"num_workers": 8,
|
137 |
+
"num_envs_per_worker": 4,
|
138 |
+
"train_for_env_steps": 4000000
|
139 |
+
},
|
140 |
+
"git_hash": "unknown",
|
141 |
+
"git_repo_name": "not a git repository"
|
142 |
+
}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cca4f77fe62e2478c36871a333f8545d053e05f3ae8b4e201605b848e2373731
|
3 |
+
size 16775115
|
sf_log.txt
ADDED
@@ -0,0 +1,820 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[2025-05-10 19:47:54,490][00031] Saving configuration to /kaggle/working/train_dir/default_experiment/config.json...
|
2 |
+
[2025-05-10 19:47:54,492][00031] Rollout worker 0 uses device cpu
|
3 |
+
[2025-05-10 19:47:54,493][00031] Rollout worker 1 uses device cpu
|
4 |
+
[2025-05-10 19:47:54,493][00031] Rollout worker 2 uses device cpu
|
5 |
+
[2025-05-10 19:47:54,494][00031] Rollout worker 3 uses device cpu
|
6 |
+
[2025-05-10 19:47:54,495][00031] Rollout worker 4 uses device cpu
|
7 |
+
[2025-05-10 19:47:54,495][00031] Rollout worker 5 uses device cpu
|
8 |
+
[2025-05-10 19:47:54,496][00031] Rollout worker 6 uses device cpu
|
9 |
+
[2025-05-10 19:47:54,498][00031] Rollout worker 7 uses device cpu
|
10 |
+
[2025-05-10 19:47:54,639][00031] Using GPUs [0] for process 0 (actually maps to GPUs [0])
|
11 |
+
[2025-05-10 19:47:54,640][00031] InferenceWorker_p0-w0: min num requests: 2
|
12 |
+
[2025-05-10 19:47:54,687][00031] Starting all processes...
|
13 |
+
[2025-05-10 19:47:54,688][00031] Starting process learner_proc0
|
14 |
+
[2025-05-10 19:47:54,792][00031] Starting all processes...
|
15 |
+
[2025-05-10 19:47:54,803][00031] Starting process inference_proc0-0
|
16 |
+
[2025-05-10 19:47:54,804][00031] Starting process rollout_proc0
|
17 |
+
[2025-05-10 19:47:54,804][00031] Starting process rollout_proc1
|
18 |
+
[2025-05-10 19:47:54,805][00031] Starting process rollout_proc2
|
19 |
+
[2025-05-10 19:47:54,805][00031] Starting process rollout_proc3
|
20 |
+
[2025-05-10 19:47:54,806][00031] Starting process rollout_proc4
|
21 |
+
[2025-05-10 19:47:54,807][00031] Starting process rollout_proc5
|
22 |
+
[2025-05-10 19:47:54,807][00031] Starting process rollout_proc6
|
23 |
+
[2025-05-10 19:47:54,811][00031] Starting process rollout_proc7
|
24 |
+
[2025-05-10 19:48:02,599][00206] Worker 5 uses CPU cores [1]
|
25 |
+
[2025-05-10 19:48:02,746][00187] Using GPUs [0] for process 0 (actually maps to GPUs [0])
|
26 |
+
[2025-05-10 19:48:02,746][00187] Set environment var CUDA_VISIBLE_DEVICES to '0' (GPU indices [0]) for learning process 0
|
27 |
+
[2025-05-10 19:48:02,798][00187] Num visible devices: 1
|
28 |
+
[2025-05-10 19:48:02,818][00187] Starting seed is not provided
|
29 |
+
[2025-05-10 19:48:02,818][00187] Using GPUs [0] for process 0 (actually maps to GPUs [0])
|
30 |
+
[2025-05-10 19:48:02,818][00187] Initializing actor-critic model on device cuda:0
|
31 |
+
[2025-05-10 19:48:02,819][00187] RunningMeanStd input shape: (3, 72, 128)
|
32 |
+
[2025-05-10 19:48:02,824][00187] RunningMeanStd input shape: (1,)
|
33 |
+
[2025-05-10 19:48:02,867][00187] ConvEncoder: input_channels=3
|
34 |
+
[2025-05-10 19:48:02,970][00207] Worker 6 uses CPU cores [2]
|
35 |
+
[2025-05-10 19:48:03,292][00200] Using GPUs [0] for process 0 (actually maps to GPUs [0])
|
36 |
+
[2025-05-10 19:48:03,294][00200] Set environment var CUDA_VISIBLE_DEVICES to '0' (GPU indices [0]) for inference process 0
|
37 |
+
[2025-05-10 19:48:03,310][00201] Worker 0 uses CPU cores [0]
|
38 |
+
[2025-05-10 19:48:03,355][00200] Num visible devices: 1
|
39 |
+
[2025-05-10 19:48:03,372][00205] Worker 4 uses CPU cores [0]
|
40 |
+
[2025-05-10 19:48:03,390][00202] Worker 1 uses CPU cores [1]
|
41 |
+
[2025-05-10 19:48:03,391][00187] Conv encoder output size: 512
|
42 |
+
[2025-05-10 19:48:03,391][00187] Policy head output size: 512
|
43 |
+
[2025-05-10 19:48:03,417][00203] Worker 2 uses CPU cores [2]
|
44 |
+
[2025-05-10 19:48:03,462][00187] Created Actor Critic model with architecture:
|
45 |
+
[2025-05-10 19:48:03,462][00187] ActorCriticSharedWeights(
|
46 |
+
(obs_normalizer): ObservationNormalizer(
|
47 |
+
(running_mean_std): RunningMeanStdDictInPlace(
|
48 |
+
(running_mean_std): ModuleDict(
|
49 |
+
(obs): RunningMeanStdInPlace()
|
50 |
+
)
|
51 |
+
)
|
52 |
+
)
|
53 |
+
(returns_normalizer): RecursiveScriptModule(original_name=RunningMeanStdInPlace)
|
54 |
+
(encoder): VizdoomEncoder(
|
55 |
+
(basic_encoder): ConvEncoder(
|
56 |
+
(enc): RecursiveScriptModule(
|
57 |
+
original_name=ConvEncoderImpl
|
58 |
+
(conv_head): RecursiveScriptModule(
|
59 |
+
original_name=Sequential
|
60 |
+
(0): RecursiveScriptModule(original_name=Conv2d)
|
61 |
+
(1): RecursiveScriptModule(original_name=ELU)
|
62 |
+
(2): RecursiveScriptModule(original_name=Conv2d)
|
63 |
+
(3): RecursiveScriptModule(original_name=ELU)
|
64 |
+
(4): RecursiveScriptModule(original_name=Conv2d)
|
65 |
+
(5): RecursiveScriptModule(original_name=ELU)
|
66 |
+
)
|
67 |
+
(mlp_layers): RecursiveScriptModule(
|
68 |
+
original_name=Sequential
|
69 |
+
(0): RecursiveScriptModule(original_name=Linear)
|
70 |
+
(1): RecursiveScriptModule(original_name=ELU)
|
71 |
+
)
|
72 |
+
)
|
73 |
+
)
|
74 |
+
)
|
75 |
+
(core): ModelCoreRNN(
|
76 |
+
(core): GRU(512, 512)
|
77 |
+
)
|
78 |
+
(decoder): MlpDecoder(
|
79 |
+
(mlp): Identity()
|
80 |
+
)
|
81 |
+
(critic_linear): Linear(in_features=512, out_features=1, bias=True)
|
82 |
+
(action_parameterization): ActionParameterizationDefault(
|
83 |
+
(distribution_linear): Linear(in_features=512, out_features=5, bias=True)
|
84 |
+
)
|
85 |
+
)
|
86 |
+
[2025-05-10 19:48:03,550][00208] Worker 7 uses CPU cores [3]
|
87 |
+
[2025-05-10 19:48:03,630][00204] Worker 3 uses CPU cores [3]
|
88 |
+
[2025-05-10 19:48:03,747][00187] Using optimizer <class 'torch.optim.adam.Adam'>
|
89 |
+
[2025-05-10 19:48:06,164][00187] No checkpoints found
|
90 |
+
[2025-05-10 19:48:06,164][00187] Did not load from checkpoint, starting from scratch!
|
91 |
+
[2025-05-10 19:48:06,164][00187] Initialized policy 0 weights for model version 0
|
92 |
+
[2025-05-10 19:48:06,166][00187] LearnerWorker_p0 finished initialization!
|
93 |
+
[2025-05-10 19:48:06,167][00187] Using GPUs [0] for process 0 (actually maps to GPUs [0])
|
94 |
+
[2025-05-10 19:48:06,280][00200] RunningMeanStd input shape: (3, 72, 128)
|
95 |
+
[2025-05-10 19:48:06,281][00200] RunningMeanStd input shape: (1,)
|
96 |
+
[2025-05-10 19:48:06,293][00200] ConvEncoder: input_channels=3
|
97 |
+
[2025-05-10 19:48:06,415][00200] Conv encoder output size: 512
|
98 |
+
[2025-05-10 19:48:06,415][00200] Policy head output size: 512
|
99 |
+
[2025-05-10 19:48:06,483][00031] Inference worker 0-0 is ready!
|
100 |
+
[2025-05-10 19:48:06,484][00031] All inference workers are ready! Signal rollout workers to start!
|
101 |
+
[2025-05-10 19:48:06,604][00203] Doom resolution: 160x120, resize resolution: (128, 72)
|
102 |
+
[2025-05-10 19:48:06,605][00208] Doom resolution: 160x120, resize resolution: (128, 72)
|
103 |
+
[2025-05-10 19:48:06,607][00206] Doom resolution: 160x120, resize resolution: (128, 72)
|
104 |
+
[2025-05-10 19:48:06,606][00204] Doom resolution: 160x120, resize resolution: (128, 72)
|
105 |
+
[2025-05-10 19:48:06,608][00205] Doom resolution: 160x120, resize resolution: (128, 72)
|
106 |
+
[2025-05-10 19:48:06,606][00201] Doom resolution: 160x120, resize resolution: (128, 72)
|
107 |
+
[2025-05-10 19:48:06,610][00207] Doom resolution: 160x120, resize resolution: (128, 72)
|
108 |
+
[2025-05-10 19:48:06,609][00202] Doom resolution: 160x120, resize resolution: (128, 72)
|
109 |
+
[2025-05-10 19:48:07,202][00202] Decorrelating experience for 0 frames...
|
110 |
+
[2025-05-10 19:48:07,202][00205] Decorrelating experience for 0 frames...
|
111 |
+
[2025-05-10 19:48:07,582][00204] Decorrelating experience for 0 frames...
|
112 |
+
[2025-05-10 19:48:07,585][00203] Decorrelating experience for 0 frames...
|
113 |
+
[2025-05-10 19:48:07,588][00207] Decorrelating experience for 0 frames...
|
114 |
+
[2025-05-10 19:48:07,586][00208] Decorrelating experience for 0 frames...
|
115 |
+
[2025-05-10 19:48:07,921][00201] Decorrelating experience for 0 frames...
|
116 |
+
[2025-05-10 19:48:07,929][00205] Decorrelating experience for 32 frames...
|
117 |
+
[2025-05-10 19:48:08,069][00206] Decorrelating experience for 0 frames...
|
118 |
+
[2025-05-10 19:48:08,080][00202] Decorrelating experience for 32 frames...
|
119 |
+
[2025-05-10 19:48:08,393][00203] Decorrelating experience for 32 frames...
|
120 |
+
[2025-05-10 19:48:08,488][00204] Decorrelating experience for 32 frames...
|
121 |
+
[2025-05-10 19:48:08,491][00208] Decorrelating experience for 32 frames...
|
122 |
+
[2025-05-10 19:48:08,692][00202] Decorrelating experience for 64 frames...
|
123 |
+
[2025-05-10 19:48:08,799][00201] Decorrelating experience for 32 frames...
|
124 |
+
[2025-05-10 19:48:09,075][00205] Decorrelating experience for 64 frames...
|
125 |
+
[2025-05-10 19:48:09,191][00207] Decorrelating experience for 32 frames...
|
126 |
+
[2025-05-10 19:48:09,204][00202] Decorrelating experience for 96 frames...
|
127 |
+
[2025-05-10 19:48:09,329][00204] Decorrelating experience for 64 frames...
|
128 |
+
[2025-05-10 19:48:09,596][00203] Decorrelating experience for 64 frames...
|
129 |
+
[2025-05-10 19:48:09,742][00031] Fps is (10 sec: nan, 60 sec: nan, 300 sec: nan). Total num frames: 0. Throughput: 0: nan. Samples: 0. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0)
|
130 |
+
[2025-05-10 19:48:09,932][00208] Decorrelating experience for 64 frames...
|
131 |
+
[2025-05-10 19:48:09,962][00201] Decorrelating experience for 64 frames...
|
132 |
+
[2025-05-10 19:48:10,066][00205] Decorrelating experience for 96 frames...
|
133 |
+
[2025-05-10 19:48:10,175][00203] Decorrelating experience for 96 frames...
|
134 |
+
[2025-05-10 19:48:10,291][00206] Decorrelating experience for 32 frames...
|
135 |
+
[2025-05-10 19:48:10,407][00204] Decorrelating experience for 96 frames...
|
136 |
+
[2025-05-10 19:48:10,816][00207] Decorrelating experience for 64 frames...
|
137 |
+
[2025-05-10 19:48:10,938][00208] Decorrelating experience for 96 frames...
|
138 |
+
[2025-05-10 19:48:11,401][00206] Decorrelating experience for 64 frames...
|
139 |
+
[2025-05-10 19:48:11,475][00201] Decorrelating experience for 96 frames...
|
140 |
+
[2025-05-10 19:48:12,052][00207] Decorrelating experience for 96 frames...
|
141 |
+
[2025-05-10 19:48:12,430][00206] Decorrelating experience for 96 frames...
|
142 |
+
[2025-05-10 19:48:12,807][00187] Signal inference workers to stop experience collection...
|
143 |
+
[2025-05-10 19:48:12,814][00200] InferenceWorker_p0-w0: stopping experience collection
|
144 |
+
[2025-05-10 19:48:14,626][00031] Heartbeat connected on Batcher_0
|
145 |
+
[2025-05-10 19:48:14,639][00031] Heartbeat connected on InferenceWorker_p0-w0
|
146 |
+
[2025-05-10 19:48:14,650][00031] Heartbeat connected on RolloutWorker_w0
|
147 |
+
[2025-05-10 19:48:14,653][00031] Heartbeat connected on RolloutWorker_w1
|
148 |
+
[2025-05-10 19:48:14,662][00031] Heartbeat connected on RolloutWorker_w2
|
149 |
+
[2025-05-10 19:48:14,665][00031] Heartbeat connected on RolloutWorker_w3
|
150 |
+
[2025-05-10 19:48:14,670][00031] Heartbeat connected on RolloutWorker_w4
|
151 |
+
[2025-05-10 19:48:14,676][00031] Heartbeat connected on RolloutWorker_w5
|
152 |
+
[2025-05-10 19:48:14,683][00031] Heartbeat connected on RolloutWorker_w6
|
153 |
+
[2025-05-10 19:48:14,687][00031] Heartbeat connected on RolloutWorker_w7
|
154 |
+
[2025-05-10 19:48:14,741][00031] Fps is (10 sec: 0.0, 60 sec: 0.0, 300 sec: 0.0). Total num frames: 0. Throughput: 0: 448.0. Samples: 2240. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0)
|
155 |
+
[2025-05-10 19:48:14,742][00031] Avg episode reward: [(0, '2.993')]
|
156 |
+
[2025-05-10 19:48:15,124][00187] Signal inference workers to resume experience collection...
|
157 |
+
[2025-05-10 19:48:15,125][00200] InferenceWorker_p0-w0: resuming experience collection
|
158 |
+
[2025-05-10 19:48:15,454][00031] Heartbeat connected on LearnerWorker_p0
|
159 |
+
[2025-05-10 19:48:18,794][00200] Updated weights for policy 0, policy_version 10 (0.0105)
|
160 |
+
[2025-05-10 19:48:19,742][00031] Fps is (10 sec: 4915.2, 60 sec: 4915.2, 300 sec: 4915.2). Total num frames: 49152. Throughput: 0: 1020.0. Samples: 10200. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
161 |
+
[2025-05-10 19:48:19,744][00031] Avg episode reward: [(0, '4.380')]
|
162 |
+
[2025-05-10 19:48:23,580][00200] Updated weights for policy 0, policy_version 20 (0.0015)
|
163 |
+
[2025-05-10 19:48:24,741][00031] Fps is (10 sec: 9011.1, 60 sec: 6007.5, 300 sec: 6007.5). Total num frames: 90112. Throughput: 0: 1514.8. Samples: 22722. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
164 |
+
[2025-05-10 19:48:24,743][00031] Avg episode reward: [(0, '4.240')]
|
165 |
+
[2025-05-10 19:48:28,216][00200] Updated weights for policy 0, policy_version 30 (0.0020)
|
166 |
+
[2025-05-10 19:48:29,742][00031] Fps is (10 sec: 8601.6, 60 sec: 6758.4, 300 sec: 6758.4). Total num frames: 135168. Throughput: 0: 1487.8. Samples: 29756. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
167 |
+
[2025-05-10 19:48:29,743][00031] Avg episode reward: [(0, '4.376')]
|
168 |
+
[2025-05-10 19:48:29,753][00187] Saving new best policy, reward=4.376!
|
169 |
+
[2025-05-10 19:48:32,616][00200] Updated weights for policy 0, policy_version 40 (0.0016)
|
170 |
+
[2025-05-10 19:48:34,741][00031] Fps is (10 sec: 9011.3, 60 sec: 7209.0, 300 sec: 7209.0). Total num frames: 180224. Throughput: 0: 1749.9. Samples: 43748. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
171 |
+
[2025-05-10 19:48:34,743][00031] Avg episode reward: [(0, '4.350')]
|
172 |
+
[2025-05-10 19:48:36,953][00200] Updated weights for policy 0, policy_version 50 (0.0018)
|
173 |
+
[2025-05-10 19:48:39,742][00031] Fps is (10 sec: 9420.7, 60 sec: 7645.9, 300 sec: 7645.9). Total num frames: 229376. Throughput: 0: 1931.5. Samples: 57946. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
174 |
+
[2025-05-10 19:48:39,744][00031] Avg episode reward: [(0, '4.514')]
|
175 |
+
[2025-05-10 19:48:39,759][00187] Saving new best policy, reward=4.514!
|
176 |
+
[2025-05-10 19:48:41,313][00200] Updated weights for policy 0, policy_version 60 (0.0018)
|
177 |
+
[2025-05-10 19:48:44,741][00031] Fps is (10 sec: 9830.3, 60 sec: 7958.0, 300 sec: 7958.0). Total num frames: 278528. Throughput: 0: 1855.9. Samples: 64956. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
178 |
+
[2025-05-10 19:48:44,743][00031] Avg episode reward: [(0, '4.615')]
|
179 |
+
[2025-05-10 19:48:44,747][00187] Saving new best policy, reward=4.615!
|
180 |
+
[2025-05-10 19:48:45,587][00200] Updated weights for policy 0, policy_version 70 (0.0017)
|
181 |
+
[2025-05-10 19:48:49,741][00031] Fps is (10 sec: 9420.9, 60 sec: 8089.6, 300 sec: 8089.6). Total num frames: 323584. Throughput: 0: 1977.9. Samples: 79114. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
|
182 |
+
[2025-05-10 19:48:49,743][00031] Avg episode reward: [(0, '4.443')]
|
183 |
+
[2025-05-10 19:48:49,965][00200] Updated weights for policy 0, policy_version 80 (0.0016)
|
184 |
+
[2025-05-10 19:48:54,323][00200] Updated weights for policy 0, policy_version 90 (0.0018)
|
185 |
+
[2025-05-10 19:48:54,741][00031] Fps is (10 sec: 9011.3, 60 sec: 8192.0, 300 sec: 8192.0). Total num frames: 368640. Throughput: 0: 2072.2. Samples: 93250. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
186 |
+
[2025-05-10 19:48:54,743][00031] Avg episode reward: [(0, '4.505')]
|
187 |
+
[2025-05-10 19:48:59,351][00200] Updated weights for policy 0, policy_version 100 (0.0017)
|
188 |
+
[2025-05-10 19:48:59,742][00031] Fps is (10 sec: 8601.6, 60 sec: 8192.0, 300 sec: 8192.0). Total num frames: 409600. Throughput: 0: 2143.5. Samples: 98696. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
|
189 |
+
[2025-05-10 19:48:59,744][00031] Avg episode reward: [(0, '4.452')]
|
190 |
+
[2025-05-10 19:49:03,704][00200] Updated weights for policy 0, policy_version 110 (0.0017)
|
191 |
+
[2025-05-10 19:49:04,741][00031] Fps is (10 sec: 9011.1, 60 sec: 8341.0, 300 sec: 8341.0). Total num frames: 458752. Throughput: 0: 2278.9. Samples: 112752. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
192 |
+
[2025-05-10 19:49:04,742][00031] Avg episode reward: [(0, '4.584')]
|
193 |
+
[2025-05-10 19:49:07,980][00200] Updated weights for policy 0, policy_version 120 (0.0017)
|
194 |
+
[2025-05-10 19:49:09,741][00031] Fps is (10 sec: 9830.4, 60 sec: 8465.1, 300 sec: 8465.1). Total num frames: 507904. Throughput: 0: 2319.3. Samples: 127090. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
|
195 |
+
[2025-05-10 19:49:09,744][00031] Avg episode reward: [(0, '4.550')]
|
196 |
+
[2025-05-10 19:49:12,388][00200] Updated weights for policy 0, policy_version 130 (0.0017)
|
197 |
+
[2025-05-10 19:49:14,742][00031] Fps is (10 sec: 9420.5, 60 sec: 9215.9, 300 sec: 8507.1). Total num frames: 552960. Throughput: 0: 2318.2. Samples: 134074. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
198 |
+
[2025-05-10 19:49:14,743][00031] Avg episode reward: [(0, '4.670')]
|
199 |
+
[2025-05-10 19:49:14,746][00187] Saving new best policy, reward=4.670!
|
200 |
+
[2025-05-10 19:49:16,680][00200] Updated weights for policy 0, policy_version 140 (0.0019)
|
201 |
+
[2025-05-10 19:49:19,742][00031] Fps is (10 sec: 9420.5, 60 sec: 9216.0, 300 sec: 8601.6). Total num frames: 602112. Throughput: 0: 2322.4. Samples: 148258. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
202 |
+
[2025-05-10 19:49:19,745][00031] Avg episode reward: [(0, '4.493')]
|
203 |
+
[2025-05-10 19:49:21,054][00200] Updated weights for policy 0, policy_version 150 (0.0017)
|
204 |
+
[2025-05-10 19:49:24,742][00031] Fps is (10 sec: 9420.1, 60 sec: 9284.1, 300 sec: 8628.8). Total num frames: 647168. Throughput: 0: 2324.7. Samples: 162558. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
|
205 |
+
[2025-05-10 19:49:24,745][00031] Avg episode reward: [(0, '4.724')]
|
206 |
+
[2025-05-10 19:49:24,746][00187] Saving new best policy, reward=4.724!
|
207 |
+
[2025-05-10 19:49:25,302][00200] Updated weights for policy 0, policy_version 160 (0.0016)
|
208 |
+
[2025-05-10 19:49:29,741][00031] Fps is (10 sec: 8601.9, 60 sec: 9216.0, 300 sec: 8601.6). Total num frames: 688128. Throughput: 0: 2326.8. Samples: 169662. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
|
209 |
+
[2025-05-10 19:49:29,744][00031] Avg episode reward: [(0, '4.505')]
|
210 |
+
[2025-05-10 19:49:30,278][00200] Updated weights for policy 0, policy_version 170 (0.0015)
|
211 |
+
[2025-05-10 19:49:34,741][00031] Fps is (10 sec: 9012.3, 60 sec: 9284.3, 300 sec: 8673.9). Total num frames: 737280. Throughput: 0: 2288.7. Samples: 182106. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
212 |
+
[2025-05-10 19:49:34,742][00200] Updated weights for policy 0, policy_version 180 (0.0019)
|
213 |
+
[2025-05-10 19:49:34,743][00031] Avg episode reward: [(0, '4.412')]
|
214 |
+
[2025-05-10 19:49:39,049][00200] Updated weights for policy 0, policy_version 190 (0.0018)
|
215 |
+
[2025-05-10 19:49:39,741][00031] Fps is (10 sec: 9420.8, 60 sec: 9216.0, 300 sec: 8692.6). Total num frames: 782336. Throughput: 0: 2289.3. Samples: 196270. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
216 |
+
[2025-05-10 19:49:39,744][00031] Avg episode reward: [(0, '4.615')]
|
217 |
+
[2025-05-10 19:49:43,293][00200] Updated weights for policy 0, policy_version 200 (0.0017)
|
218 |
+
[2025-05-10 19:49:44,741][00031] Fps is (10 sec: 9420.7, 60 sec: 9216.0, 300 sec: 8752.5). Total num frames: 831488. Throughput: 0: 2327.6. Samples: 203440. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
219 |
+
[2025-05-10 19:49:44,743][00031] Avg episode reward: [(0, '4.477')]
|
220 |
+
[2025-05-10 19:49:47,680][00200] Updated weights for policy 0, policy_version 210 (0.0014)
|
221 |
+
[2025-05-10 19:49:49,741][00031] Fps is (10 sec: 9420.8, 60 sec: 9216.0, 300 sec: 8765.5). Total num frames: 876544. Throughput: 0: 2332.6. Samples: 217718. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
222 |
+
[2025-05-10 19:49:49,743][00031] Avg episode reward: [(0, '4.481')]
|
223 |
+
[2025-05-10 19:49:49,805][00187] Saving /kaggle/working/train_dir/default_experiment/checkpoint_p0/checkpoint_000000215_880640.pth...
|
224 |
+
[2025-05-10 19:49:52,065][00200] Updated weights for policy 0, policy_version 220 (0.0018)
|
225 |
+
[2025-05-10 19:49:54,741][00031] Fps is (10 sec: 9420.8, 60 sec: 9284.3, 300 sec: 8816.2). Total num frames: 925696. Throughput: 0: 2326.1. Samples: 231766. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
226 |
+
[2025-05-10 19:49:54,745][00031] Avg episode reward: [(0, '4.352')]
|
227 |
+
[2025-05-10 19:49:56,339][00200] Updated weights for policy 0, policy_version 230 (0.0016)
|
228 |
+
[2025-05-10 19:49:59,742][00031] Fps is (10 sec: 9420.7, 60 sec: 9352.5, 300 sec: 8825.0). Total num frames: 970752. Throughput: 0: 2328.1. Samples: 238838. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
229 |
+
[2025-05-10 19:49:59,748][00031] Avg episode reward: [(0, '4.548')]
|
230 |
+
[2025-05-10 19:50:00,817][00200] Updated weights for policy 0, policy_version 240 (0.0018)
|
231 |
+
[2025-05-10 19:50:04,741][00031] Fps is (10 sec: 8601.6, 60 sec: 9216.0, 300 sec: 8797.5). Total num frames: 1011712. Throughput: 0: 2292.5. Samples: 251418. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
|
232 |
+
[2025-05-10 19:50:04,743][00031] Avg episode reward: [(0, '4.565')]
|
233 |
+
[2025-05-10 19:50:05,650][00200] Updated weights for policy 0, policy_version 250 (0.0015)
|
234 |
+
[2025-05-10 19:50:09,742][00031] Fps is (10 sec: 9011.1, 60 sec: 9216.0, 300 sec: 8840.5). Total num frames: 1060864. Throughput: 0: 2295.5. Samples: 265856. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
235 |
+
[2025-05-10 19:50:09,744][00031] Avg episode reward: [(0, '4.754')]
|
236 |
+
[2025-05-10 19:50:09,752][00187] Saving new best policy, reward=4.754!
|
237 |
+
[2025-05-10 19:50:10,018][00200] Updated weights for policy 0, policy_version 260 (0.0018)
|
238 |
+
[2025-05-10 19:50:14,241][00200] Updated weights for policy 0, policy_version 270 (0.0017)
|
239 |
+
[2025-05-10 19:50:14,741][00031] Fps is (10 sec: 9830.4, 60 sec: 9284.3, 300 sec: 8880.1). Total num frames: 1110016. Throughput: 0: 2296.1. Samples: 272986. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
240 |
+
[2025-05-10 19:50:14,742][00031] Avg episode reward: [(0, '5.059')]
|
241 |
+
[2025-05-10 19:50:14,744][00187] Saving new best policy, reward=5.059!
|
242 |
+
[2025-05-10 19:50:18,523][00200] Updated weights for policy 0, policy_version 280 (0.0014)
|
243 |
+
[2025-05-10 19:50:19,741][00031] Fps is (10 sec: 9421.1, 60 sec: 9216.0, 300 sec: 8885.2). Total num frames: 1155072. Throughput: 0: 2338.2. Samples: 287326. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
244 |
+
[2025-05-10 19:50:19,745][00031] Avg episode reward: [(0, '5.490')]
|
245 |
+
[2025-05-10 19:50:19,805][00187] Saving new best policy, reward=5.490!
|
246 |
+
[2025-05-10 19:50:22,897][00200] Updated weights for policy 0, policy_version 290 (0.0017)
|
247 |
+
[2025-05-10 19:50:24,742][00031] Fps is (10 sec: 9420.6, 60 sec: 9284.4, 300 sec: 8920.2). Total num frames: 1204224. Throughput: 0: 2341.1. Samples: 301618. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
248 |
+
[2025-05-10 19:50:24,744][00031] Avg episode reward: [(0, '5.497')]
|
249 |
+
[2025-05-10 19:50:24,747][00187] Saving new best policy, reward=5.497!
|
250 |
+
[2025-05-10 19:50:27,139][00200] Updated weights for policy 0, policy_version 300 (0.0017)
|
251 |
+
[2025-05-10 19:50:29,741][00031] Fps is (10 sec: 9830.5, 60 sec: 9420.8, 300 sec: 8952.7). Total num frames: 1253376. Throughput: 0: 2339.9. Samples: 308734. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
252 |
+
[2025-05-10 19:50:29,744][00031] Avg episode reward: [(0, '5.779')]
|
253 |
+
[2025-05-10 19:50:29,754][00187] Saving new best policy, reward=5.779!
|
254 |
+
[2025-05-10 19:50:31,503][00200] Updated weights for policy 0, policy_version 310 (0.0017)
|
255 |
+
[2025-05-10 19:50:34,741][00031] Fps is (10 sec: 9011.4, 60 sec: 9284.3, 300 sec: 8926.5). Total num frames: 1294336. Throughput: 0: 2334.8. Samples: 322786. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
256 |
+
[2025-05-10 19:50:34,742][00031] Avg episode reward: [(0, '6.334')]
|
257 |
+
[2025-05-10 19:50:34,746][00187] Saving new best policy, reward=6.334!
|
258 |
+
[2025-05-10 19:50:36,333][00200] Updated weights for policy 0, policy_version 320 (0.0017)
|
259 |
+
[2025-05-10 19:50:39,741][00031] Fps is (10 sec: 8601.6, 60 sec: 9284.3, 300 sec: 8929.3). Total num frames: 1339392. Throughput: 0: 2308.2. Samples: 335634. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
|
260 |
+
[2025-05-10 19:50:39,743][00031] Avg episode reward: [(0, '7.028')]
|
261 |
+
[2025-05-10 19:50:39,754][00187] Saving new best policy, reward=7.028!
|
262 |
+
[2025-05-10 19:50:40,793][00200] Updated weights for policy 0, policy_version 330 (0.0015)
|
263 |
+
[2025-05-10 19:50:44,742][00031] Fps is (10 sec: 9420.4, 60 sec: 9284.2, 300 sec: 8958.3). Total num frames: 1388544. Throughput: 0: 2306.3. Samples: 342624. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
264 |
+
[2025-05-10 19:50:44,745][00031] Avg episode reward: [(0, '6.814')]
|
265 |
+
[2025-05-10 19:50:45,065][00200] Updated weights for policy 0, policy_version 340 (0.0018)
|
266 |
+
[2025-05-10 19:50:49,387][00200] Updated weights for policy 0, policy_version 350 (0.0017)
|
267 |
+
[2025-05-10 19:50:49,741][00031] Fps is (10 sec: 9420.8, 60 sec: 9284.3, 300 sec: 8960.0). Total num frames: 1433600. Throughput: 0: 2344.8. Samples: 356932. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
268 |
+
[2025-05-10 19:50:49,743][00031] Avg episode reward: [(0, '8.756')]
|
269 |
+
[2025-05-10 19:50:49,753][00187] Saving new best policy, reward=8.756!
|
270 |
+
[2025-05-10 19:50:53,791][00200] Updated weights for policy 0, policy_version 360 (0.0019)
|
271 |
+
[2025-05-10 19:50:54,741][00031] Fps is (10 sec: 9421.2, 60 sec: 9284.3, 300 sec: 8986.4). Total num frames: 1482752. Throughput: 0: 2335.0. Samples: 370932. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
272 |
+
[2025-05-10 19:50:54,745][00031] Avg episode reward: [(0, '8.241')]
|
273 |
+
[2025-05-10 19:50:58,250][00200] Updated weights for policy 0, policy_version 370 (0.0015)
|
274 |
+
[2025-05-10 19:50:59,741][00031] Fps is (10 sec: 9420.8, 60 sec: 9284.3, 300 sec: 8987.1). Total num frames: 1527808. Throughput: 0: 2330.8. Samples: 377870. Policy #0 lag: (min: 0.0, avg: 0.8, max: 2.0)
|
275 |
+
[2025-05-10 19:50:59,743][00031] Avg episode reward: [(0, '7.479')]
|
276 |
+
[2025-05-10 19:51:02,549][00200] Updated weights for policy 0, policy_version 380 (0.0017)
|
277 |
+
[2025-05-10 19:51:04,741][00031] Fps is (10 sec: 9420.8, 60 sec: 9420.8, 300 sec: 9011.2). Total num frames: 1576960. Throughput: 0: 2323.4. Samples: 391880. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
|
278 |
+
[2025-05-10 19:51:04,743][00031] Avg episode reward: [(0, '8.174')]
|
279 |
+
[2025-05-10 19:51:07,319][00200] Updated weights for policy 0, policy_version 390 (0.0017)
|
280 |
+
[2025-05-10 19:51:09,741][00031] Fps is (10 sec: 9011.2, 60 sec: 9284.3, 300 sec: 8988.5). Total num frames: 1617920. Throughput: 0: 2289.4. Samples: 404642. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
|
281 |
+
[2025-05-10 19:51:09,743][00031] Avg episode reward: [(0, '8.886')]
|
282 |
+
[2025-05-10 19:51:09,752][00187] Saving new best policy, reward=8.886!
|
283 |
+
[2025-05-10 19:51:11,994][00200] Updated weights for policy 0, policy_version 400 (0.0019)
|
284 |
+
[2025-05-10 19:51:14,741][00031] Fps is (10 sec: 8601.7, 60 sec: 9216.0, 300 sec: 8989.1). Total num frames: 1662976. Throughput: 0: 2282.3. Samples: 411438. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
285 |
+
[2025-05-10 19:51:14,743][00031] Avg episode reward: [(0, '9.292')]
|
286 |
+
[2025-05-10 19:51:14,745][00187] Saving new best policy, reward=9.292!
|
287 |
+
[2025-05-10 19:51:16,375][00200] Updated weights for policy 0, policy_version 410 (0.0019)
|
288 |
+
[2025-05-10 19:51:19,741][00031] Fps is (10 sec: 9011.2, 60 sec: 9216.0, 300 sec: 8989.6). Total num frames: 1708032. Throughput: 0: 2281.7. Samples: 425464. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
|
289 |
+
[2025-05-10 19:51:19,744][00031] Avg episode reward: [(0, '10.152')]
|
290 |
+
[2025-05-10 19:51:19,754][00187] Saving new best policy, reward=10.152!
|
291 |
+
[2025-05-10 19:51:20,877][00200] Updated weights for policy 0, policy_version 420 (0.0018)
|
292 |
+
[2025-05-10 19:51:24,741][00031] Fps is (10 sec: 9011.1, 60 sec: 9147.8, 300 sec: 8990.2). Total num frames: 1753088. Throughput: 0: 2300.6. Samples: 439160. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
293 |
+
[2025-05-10 19:51:24,743][00031] Avg episode reward: [(0, '10.967')]
|
294 |
+
[2025-05-10 19:51:24,746][00187] Saving new best policy, reward=10.967!
|
295 |
+
[2025-05-10 19:51:25,336][00200] Updated weights for policy 0, policy_version 430 (0.0015)
|
296 |
+
[2025-05-10 19:51:29,625][00200] Updated weights for policy 0, policy_version 440 (0.0016)
|
297 |
+
[2025-05-10 19:51:29,741][00031] Fps is (10 sec: 9420.8, 60 sec: 9147.7, 300 sec: 9011.2). Total num frames: 1802240. Throughput: 0: 2301.5. Samples: 446190. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
298 |
+
[2025-05-10 19:51:29,743][00031] Avg episode reward: [(0, '9.521')]
|
299 |
+
[2025-05-10 19:51:33,971][00200] Updated weights for policy 0, policy_version 450 (0.0016)
|
300 |
+
[2025-05-10 19:51:34,741][00031] Fps is (10 sec: 9420.9, 60 sec: 9216.0, 300 sec: 9011.2). Total num frames: 1847296. Throughput: 0: 2299.8. Samples: 460424. Policy #0 lag: (min: 0.0, avg: 0.8, max: 2.0)
|
301 |
+
[2025-05-10 19:51:34,742][00031] Avg episode reward: [(0, '9.754')]
|
302 |
+
[2025-05-10 19:51:38,271][00200] Updated weights for policy 0, policy_version 460 (0.0019)
|
303 |
+
[2025-05-10 19:51:39,741][00031] Fps is (10 sec: 9011.2, 60 sec: 9216.0, 300 sec: 9011.2). Total num frames: 1892352. Throughput: 0: 2288.5. Samples: 473914. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
304 |
+
[2025-05-10 19:51:39,742][00031] Avg episode reward: [(0, '12.792')]
|
305 |
+
[2025-05-10 19:51:39,755][00187] Saving new best policy, reward=12.792!
|
306 |
+
[2025-05-10 19:51:43,251][00200] Updated weights for policy 0, policy_version 470 (0.0025)
|
307 |
+
[2025-05-10 19:51:44,741][00031] Fps is (10 sec: 9011.1, 60 sec: 9147.8, 300 sec: 9011.2). Total num frames: 1937408. Throughput: 0: 2271.8. Samples: 480100. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
308 |
+
[2025-05-10 19:51:44,743][00031] Avg episode reward: [(0, '12.889')]
|
309 |
+
[2025-05-10 19:51:44,744][00187] Saving new best policy, reward=12.889!
|
310 |
+
[2025-05-10 19:51:47,674][00200] Updated weights for policy 0, policy_version 480 (0.0015)
|
311 |
+
[2025-05-10 19:51:49,741][00031] Fps is (10 sec: 9011.2, 60 sec: 9147.7, 300 sec: 9011.2). Total num frames: 1982464. Throughput: 0: 2272.0. Samples: 494118. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
312 |
+
[2025-05-10 19:51:49,743][00031] Avg episode reward: [(0, '12.484')]
|
313 |
+
[2025-05-10 19:51:49,777][00187] Saving /kaggle/working/train_dir/default_experiment/checkpoint_p0/checkpoint_000000485_1986560.pth...
|
314 |
+
[2025-05-10 19:51:52,045][00200] Updated weights for policy 0, policy_version 490 (0.0016)
|
315 |
+
[2025-05-10 19:51:54,741][00031] Fps is (10 sec: 9420.8, 60 sec: 9147.7, 300 sec: 9029.4). Total num frames: 2031616. Throughput: 0: 2300.5. Samples: 508166. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
316 |
+
[2025-05-10 19:51:54,743][00031] Avg episode reward: [(0, '12.508')]
|
317 |
+
[2025-05-10 19:51:56,421][00200] Updated weights for policy 0, policy_version 500 (0.0018)
|
318 |
+
[2025-05-10 19:51:59,742][00031] Fps is (10 sec: 9420.7, 60 sec: 9147.7, 300 sec: 9029.0). Total num frames: 2076672. Throughput: 0: 2305.3. Samples: 515178. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
319 |
+
[2025-05-10 19:51:59,744][00031] Avg episode reward: [(0, '14.127')]
|
320 |
+
[2025-05-10 19:51:59,753][00187] Saving new best policy, reward=14.127!
|
321 |
+
[2025-05-10 19:52:00,814][00200] Updated weights for policy 0, policy_version 510 (0.0016)
|
322 |
+
[2025-05-10 19:52:04,741][00031] Fps is (10 sec: 9420.9, 60 sec: 9147.7, 300 sec: 9046.1). Total num frames: 2125824. Throughput: 0: 2303.2. Samples: 529108. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
323 |
+
[2025-05-10 19:52:04,743][00031] Avg episode reward: [(0, '14.486')]
|
324 |
+
[2025-05-10 19:52:04,744][00187] Saving new best policy, reward=14.486!
|
325 |
+
[2025-05-10 19:52:05,173][00200] Updated weights for policy 0, policy_version 520 (0.0016)
|
326 |
+
[2025-05-10 19:52:09,350][00200] Updated weights for policy 0, policy_version 530 (0.0016)
|
327 |
+
[2025-05-10 19:52:09,742][00031] Fps is (10 sec: 9420.8, 60 sec: 9216.0, 300 sec: 9045.3). Total num frames: 2170880. Throughput: 0: 2320.3. Samples: 543574. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
|
328 |
+
[2025-05-10 19:52:09,743][00031] Avg episode reward: [(0, '14.430')]
|
329 |
+
[2025-05-10 19:52:14,417][00200] Updated weights for policy 0, policy_version 540 (0.0014)
|
330 |
+
[2025-05-10 19:52:14,741][00031] Fps is (10 sec: 8601.6, 60 sec: 9147.7, 300 sec: 9027.9). Total num frames: 2211840. Throughput: 0: 2302.2. Samples: 549790. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
331 |
+
[2025-05-10 19:52:14,743][00031] Avg episode reward: [(0, '15.557')]
|
332 |
+
[2025-05-10 19:52:14,744][00187] Saving new best policy, reward=15.557!
|
333 |
+
[2025-05-10 19:52:18,688][00200] Updated weights for policy 0, policy_version 550 (0.0016)
|
334 |
+
[2025-05-10 19:52:19,741][00031] Fps is (10 sec: 9011.3, 60 sec: 9216.0, 300 sec: 9044.0). Total num frames: 2260992. Throughput: 0: 2289.1. Samples: 563434. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
335 |
+
[2025-05-10 19:52:19,743][00031] Avg episode reward: [(0, '15.791')]
|
336 |
+
[2025-05-10 19:52:19,754][00187] Saving new best policy, reward=15.791!
|
337 |
+
[2025-05-10 19:52:23,071][00200] Updated weights for policy 0, policy_version 560 (0.0018)
|
338 |
+
[2025-05-10 19:52:24,741][00031] Fps is (10 sec: 9420.8, 60 sec: 9216.0, 300 sec: 9043.3). Total num frames: 2306048. Throughput: 0: 2303.5. Samples: 577570. Policy #0 lag: (min: 0.0, avg: 0.8, max: 2.0)
|
339 |
+
[2025-05-10 19:52:24,743][00031] Avg episode reward: [(0, '15.734')]
|
340 |
+
[2025-05-10 19:52:27,302][00200] Updated weights for policy 0, policy_version 570 (0.0017)
|
341 |
+
[2025-05-10 19:52:29,741][00031] Fps is (10 sec: 9420.8, 60 sec: 9216.0, 300 sec: 9058.5). Total num frames: 2355200. Throughput: 0: 2328.4. Samples: 584880. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
342 |
+
[2025-05-10 19:52:29,742][00031] Avg episode reward: [(0, '16.379')]
|
343 |
+
[2025-05-10 19:52:29,783][00187] Saving new best policy, reward=16.379!
|
344 |
+
[2025-05-10 19:52:31,629][00200] Updated weights for policy 0, policy_version 580 (0.0016)
|
345 |
+
[2025-05-10 19:52:34,741][00031] Fps is (10 sec: 9830.4, 60 sec: 9284.3, 300 sec: 9073.0). Total num frames: 2404352. Throughput: 0: 2335.0. Samples: 599192. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
346 |
+
[2025-05-10 19:52:34,744][00031] Avg episode reward: [(0, '17.857')]
|
347 |
+
[2025-05-10 19:52:34,746][00187] Saving new best policy, reward=17.857!
|
348 |
+
[2025-05-10 19:52:35,853][00200] Updated weights for policy 0, policy_version 590 (0.0015)
|
349 |
+
[2025-05-10 19:52:39,741][00031] Fps is (10 sec: 9830.4, 60 sec: 9352.5, 300 sec: 9087.1). Total num frames: 2453504. Throughput: 0: 2342.5. Samples: 613580. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
350 |
+
[2025-05-10 19:52:39,742][00031] Avg episode reward: [(0, '16.599')]
|
351 |
+
[2025-05-10 19:52:40,109][00200] Updated weights for policy 0, policy_version 600 (0.0015)
|
352 |
+
[2025-05-10 19:52:44,619][00200] Updated weights for policy 0, policy_version 610 (0.0016)
|
353 |
+
[2025-05-10 19:52:44,741][00031] Fps is (10 sec: 9420.8, 60 sec: 9352.5, 300 sec: 9085.7). Total num frames: 2498560. Throughput: 0: 2345.1. Samples: 620708. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
354 |
+
[2025-05-10 19:52:44,743][00031] Avg episode reward: [(0, '15.061')]
|
355 |
+
[2025-05-10 19:52:49,421][00200] Updated weights for policy 0, policy_version 620 (0.0019)
|
356 |
+
[2025-05-10 19:52:49,741][00031] Fps is (10 sec: 8601.6, 60 sec: 9284.3, 300 sec: 9069.7). Total num frames: 2539520. Throughput: 0: 2316.1. Samples: 633334. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
|
357 |
+
[2025-05-10 19:52:49,743][00031] Avg episode reward: [(0, '17.832')]
|
358 |
+
[2025-05-10 19:52:53,752][00200] Updated weights for policy 0, policy_version 630 (0.0014)
|
359 |
+
[2025-05-10 19:52:54,741][00031] Fps is (10 sec: 9011.2, 60 sec: 9284.3, 300 sec: 9083.1). Total num frames: 2588672. Throughput: 0: 2310.8. Samples: 647558. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
360 |
+
[2025-05-10 19:52:54,743][00031] Avg episode reward: [(0, '19.165')]
|
361 |
+
[2025-05-10 19:52:54,745][00187] Saving new best policy, reward=19.165!
|
362 |
+
[2025-05-10 19:52:58,119][00200] Updated weights for policy 0, policy_version 640 (0.0017)
|
363 |
+
[2025-05-10 19:52:59,742][00031] Fps is (10 sec: 9420.2, 60 sec: 9284.2, 300 sec: 9081.8). Total num frames: 2633728. Throughput: 0: 2328.5. Samples: 654576. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
364 |
+
[2025-05-10 19:52:59,748][00031] Avg episode reward: [(0, '17.556')]
|
365 |
+
[2025-05-10 19:53:02,441][00200] Updated weights for policy 0, policy_version 650 (0.0019)
|
366 |
+
[2025-05-10 19:53:04,741][00031] Fps is (10 sec: 9420.7, 60 sec: 9284.2, 300 sec: 9094.5). Total num frames: 2682880. Throughput: 0: 2339.4. Samples: 668706. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
367 |
+
[2025-05-10 19:53:04,743][00031] Avg episode reward: [(0, '17.121')]
|
368 |
+
[2025-05-10 19:53:06,652][00200] Updated weights for policy 0, policy_version 660 (0.0018)
|
369 |
+
[2025-05-10 19:53:09,742][00031] Fps is (10 sec: 9830.9, 60 sec: 9352.5, 300 sec: 9261.1). Total num frames: 2732032. Throughput: 0: 2348.5. Samples: 683252. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
|
370 |
+
[2025-05-10 19:53:09,744][00031] Avg episode reward: [(0, '17.316')]
|
371 |
+
[2025-05-10 19:53:10,905][00200] Updated weights for policy 0, policy_version 670 (0.0014)
|
372 |
+
[2025-05-10 19:53:14,741][00031] Fps is (10 sec: 9420.8, 60 sec: 9420.8, 300 sec: 9247.2). Total num frames: 2777088. Throughput: 0: 2343.8. Samples: 690350. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
|
373 |
+
[2025-05-10 19:53:14,744][00031] Avg episode reward: [(0, '17.371')]
|
374 |
+
[2025-05-10 19:53:15,265][00200] Updated weights for policy 0, policy_version 680 (0.0013)
|
375 |
+
[2025-05-10 19:53:19,741][00031] Fps is (10 sec: 8601.7, 60 sec: 9284.3, 300 sec: 9247.2). Total num frames: 2818048. Throughput: 0: 2318.4. Samples: 703520. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
376 |
+
[2025-05-10 19:53:19,742][00031] Avg episode reward: [(0, '17.110')]
|
377 |
+
[2025-05-10 19:53:20,224][00200] Updated weights for policy 0, policy_version 690 (0.0019)
|
378 |
+
[2025-05-10 19:53:24,561][00200] Updated weights for policy 0, policy_version 700 (0.0017)
|
379 |
+
[2025-05-10 19:53:24,741][00031] Fps is (10 sec: 9011.2, 60 sec: 9352.5, 300 sec: 9261.1). Total num frames: 2867200. Throughput: 0: 2307.1. Samples: 717398. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
380 |
+
[2025-05-10 19:53:24,743][00031] Avg episode reward: [(0, '17.884')]
|
381 |
+
[2025-05-10 19:53:28,784][00200] Updated weights for policy 0, policy_version 710 (0.0014)
|
382 |
+
[2025-05-10 19:53:29,741][00031] Fps is (10 sec: 9830.4, 60 sec: 9352.5, 300 sec: 9275.0). Total num frames: 2916352. Throughput: 0: 2306.0. Samples: 724478. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
|
383 |
+
[2025-05-10 19:53:29,747][00031] Avg episode reward: [(0, '19.150')]
|
384 |
+
[2025-05-10 19:53:33,120][00200] Updated weights for policy 0, policy_version 720 (0.0015)
|
385 |
+
[2025-05-10 19:53:34,741][00031] Fps is (10 sec: 9420.8, 60 sec: 9284.3, 300 sec: 9261.1). Total num frames: 2961408. Throughput: 0: 2345.2. Samples: 738870. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
386 |
+
[2025-05-10 19:53:34,744][00031] Avg episode reward: [(0, '20.760')]
|
387 |
+
[2025-05-10 19:53:34,746][00187] Saving new best policy, reward=20.760!
|
388 |
+
[2025-05-10 19:53:37,353][00200] Updated weights for policy 0, policy_version 730 (0.0017)
|
389 |
+
[2025-05-10 19:53:39,741][00031] Fps is (10 sec: 9420.9, 60 sec: 9284.3, 300 sec: 9261.1). Total num frames: 3010560. Throughput: 0: 2349.5. Samples: 753286. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
390 |
+
[2025-05-10 19:53:39,743][00031] Avg episode reward: [(0, '21.914')]
|
391 |
+
[2025-05-10 19:53:39,755][00187] Saving new best policy, reward=21.914!
|
392 |
+
[2025-05-10 19:53:41,681][00200] Updated weights for policy 0, policy_version 740 (0.0016)
|
393 |
+
[2025-05-10 19:53:44,743][00031] Fps is (10 sec: 9829.1, 60 sec: 9352.3, 300 sec: 9275.0). Total num frames: 3059712. Throughput: 0: 2351.7. Samples: 760402. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
394 |
+
[2025-05-10 19:53:44,744][00031] Avg episode reward: [(0, '24.210')]
|
395 |
+
[2025-05-10 19:53:44,746][00187] Saving new best policy, reward=24.210!
|
396 |
+
[2025-05-10 19:53:46,030][00200] Updated weights for policy 0, policy_version 750 (0.0021)
|
397 |
+
[2025-05-10 19:53:49,741][00031] Fps is (10 sec: 9420.7, 60 sec: 9420.8, 300 sec: 9275.0). Total num frames: 3104768. Throughput: 0: 2352.6. Samples: 774574. Policy #0 lag: (min: 0.0, avg: 0.8, max: 2.0)
|
398 |
+
[2025-05-10 19:53:49,746][00031] Avg episode reward: [(0, '24.487')]
|
399 |
+
[2025-05-10 19:53:49,760][00187] Saving /kaggle/working/train_dir/default_experiment/checkpoint_p0/checkpoint_000000758_3104768.pth...
|
400 |
+
[2025-05-10 19:53:49,847][00187] Removing /kaggle/working/train_dir/default_experiment/checkpoint_p0/checkpoint_000000215_880640.pth
|
401 |
+
[2025-05-10 19:53:49,861][00187] Saving new best policy, reward=24.487!
|
402 |
+
[2025-05-10 19:53:50,772][00200] Updated weights for policy 0, policy_version 760 (0.0013)
|
403 |
+
[2025-05-10 19:53:54,742][00031] Fps is (10 sec: 8602.5, 60 sec: 9284.2, 300 sec: 9275.0). Total num frames: 3145728. Throughput: 0: 2311.0. Samples: 787248. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
404 |
+
[2025-05-10 19:53:54,743][00031] Avg episode reward: [(0, '20.059')]
|
405 |
+
[2025-05-10 19:53:55,280][00200] Updated weights for policy 0, policy_version 770 (0.0014)
|
406 |
+
[2025-05-10 19:53:59,699][00200] Updated weights for policy 0, policy_version 780 (0.0014)
|
407 |
+
[2025-05-10 19:53:59,742][00031] Fps is (10 sec: 9011.0, 60 sec: 9352.6, 300 sec: 9275.0). Total num frames: 3194880. Throughput: 0: 2308.2. Samples: 794220. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
408 |
+
[2025-05-10 19:53:59,743][00031] Avg episode reward: [(0, '18.747')]
|
409 |
+
[2025-05-10 19:54:03,936][00200] Updated weights for policy 0, policy_version 790 (0.0015)
|
410 |
+
[2025-05-10 19:54:04,742][00031] Fps is (10 sec: 9420.7, 60 sec: 9284.2, 300 sec: 9261.1). Total num frames: 3239936. Throughput: 0: 2334.4. Samples: 808570. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
411 |
+
[2025-05-10 19:54:04,745][00031] Avg episode reward: [(0, '19.168')]
|
412 |
+
[2025-05-10 19:54:08,084][00200] Updated weights for policy 0, policy_version 800 (0.0016)
|
413 |
+
[2025-05-10 19:54:09,744][00031] Fps is (10 sec: 9418.9, 60 sec: 9283.9, 300 sec: 9274.9). Total num frames: 3289088. Throughput: 0: 2351.7. Samples: 823228. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
414 |
+
[2025-05-10 19:54:09,745][00031] Avg episode reward: [(0, '21.339')]
|
415 |
+
[2025-05-10 19:54:12,420][00200] Updated weights for policy 0, policy_version 810 (0.0016)
|
416 |
+
[2025-05-10 19:54:14,741][00031] Fps is (10 sec: 9830.7, 60 sec: 9352.5, 300 sec: 9275.0). Total num frames: 3338240. Throughput: 0: 2353.1. Samples: 830366. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
417 |
+
[2025-05-10 19:54:14,744][00031] Avg episode reward: [(0, '20.072')]
|
418 |
+
[2025-05-10 19:54:16,643][00200] Updated weights for policy 0, policy_version 820 (0.0016)
|
419 |
+
[2025-05-10 19:54:19,741][00031] Fps is (10 sec: 9832.6, 60 sec: 9489.1, 300 sec: 9288.9). Total num frames: 3387392. Throughput: 0: 2354.8. Samples: 844836. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
420 |
+
[2025-05-10 19:54:19,744][00031] Avg episode reward: [(0, '23.435')]
|
421 |
+
[2025-05-10 19:54:20,922][00200] Updated weights for policy 0, policy_version 830 (0.0018)
|
422 |
+
[2025-05-10 19:54:24,741][00031] Fps is (10 sec: 9011.1, 60 sec: 9352.5, 300 sec: 9288.9). Total num frames: 3428352. Throughput: 0: 2321.3. Samples: 857744. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
423 |
+
[2025-05-10 19:54:24,743][00031] Avg episode reward: [(0, '24.982')]
|
424 |
+
[2025-05-10 19:54:24,744][00187] Saving new best policy, reward=24.982!
|
425 |
+
[2025-05-10 19:54:25,883][00200] Updated weights for policy 0, policy_version 840 (0.0019)
|
426 |
+
[2025-05-10 19:54:29,743][00031] Fps is (10 sec: 9010.1, 60 sec: 9352.3, 300 sec: 9288.9). Total num frames: 3477504. Throughput: 0: 2323.8. Samples: 864972. Policy #0 lag: (min: 0.0, avg: 0.8, max: 2.0)
|
427 |
+
[2025-05-10 19:54:29,744][00031] Avg episode reward: [(0, '21.124')]
|
428 |
+
[2025-05-10 19:54:30,071][00200] Updated weights for policy 0, policy_version 850 (0.0017)
|
429 |
+
[2025-05-10 19:54:34,332][00200] Updated weights for policy 0, policy_version 860 (0.0015)
|
430 |
+
[2025-05-10 19:54:34,741][00031] Fps is (10 sec: 9420.8, 60 sec: 9352.5, 300 sec: 9288.9). Total num frames: 3522560. Throughput: 0: 2326.5. Samples: 879266. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
431 |
+
[2025-05-10 19:54:34,744][00031] Avg episode reward: [(0, '21.630')]
|
432 |
+
[2025-05-10 19:54:38,515][00200] Updated weights for policy 0, policy_version 870 (0.0014)
|
433 |
+
[2025-05-10 19:54:39,741][00031] Fps is (10 sec: 9422.1, 60 sec: 9352.5, 300 sec: 9288.9). Total num frames: 3571712. Throughput: 0: 2367.5. Samples: 893784. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
|
434 |
+
[2025-05-10 19:54:39,742][00031] Avg episode reward: [(0, '22.069')]
|
435 |
+
[2025-05-10 19:54:42,826][00200] Updated weights for policy 0, policy_version 880 (0.0016)
|
436 |
+
[2025-05-10 19:54:44,742][00031] Fps is (10 sec: 9830.1, 60 sec: 9352.7, 300 sec: 9302.8). Total num frames: 3620864. Throughput: 0: 2369.9. Samples: 900866. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
437 |
+
[2025-05-10 19:54:44,744][00031] Avg episode reward: [(0, '21.017')]
|
438 |
+
[2025-05-10 19:54:47,108][00200] Updated weights for policy 0, policy_version 890 (0.0015)
|
439 |
+
[2025-05-10 19:54:49,741][00031] Fps is (10 sec: 9830.3, 60 sec: 9420.8, 300 sec: 9302.8). Total num frames: 3670016. Throughput: 0: 2371.9. Samples: 915306. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
|
440 |
+
[2025-05-10 19:54:49,743][00031] Avg episode reward: [(0, '20.522')]
|
441 |
+
[2025-05-10 19:54:51,454][00200] Updated weights for policy 0, policy_version 900 (0.0016)
|
442 |
+
[2025-05-10 19:54:54,741][00031] Fps is (10 sec: 9421.1, 60 sec: 9489.1, 300 sec: 9302.8). Total num frames: 3715072. Throughput: 0: 2366.5. Samples: 929714. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
443 |
+
[2025-05-10 19:54:54,746][00031] Avg episode reward: [(0, '21.118')]
|
444 |
+
[2025-05-10 19:54:55,993][00200] Updated weights for policy 0, policy_version 910 (0.0017)
|
445 |
+
[2025-05-10 19:54:59,741][00031] Fps is (10 sec: 9011.2, 60 sec: 9420.8, 300 sec: 9316.7). Total num frames: 3760128. Throughput: 0: 2332.6. Samples: 935332. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
446 |
+
[2025-05-10 19:54:59,743][00031] Avg episode reward: [(0, '22.500')]
|
447 |
+
[2025-05-10 19:55:00,529][00200] Updated weights for policy 0, policy_version 920 (0.0015)
|
448 |
+
[2025-05-10 19:55:04,742][00031] Fps is (10 sec: 9010.7, 60 sec: 9420.8, 300 sec: 9302.8). Total num frames: 3805184. Throughput: 0: 2328.0. Samples: 949598. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
449 |
+
[2025-05-10 19:55:04,743][00031] Avg episode reward: [(0, '20.471')]
|
450 |
+
[2025-05-10 19:55:04,885][00200] Updated weights for policy 0, policy_version 930 (0.0019)
|
451 |
+
[2025-05-10 19:55:09,090][00200] Updated weights for policy 0, policy_version 940 (0.0016)
|
452 |
+
[2025-05-10 19:55:09,741][00031] Fps is (10 sec: 9420.8, 60 sec: 9421.1, 300 sec: 9302.8). Total num frames: 3854336. Throughput: 0: 2366.7. Samples: 964246. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
453 |
+
[2025-05-10 19:55:09,743][00031] Avg episode reward: [(0, '19.768')]
|
454 |
+
[2025-05-10 19:55:13,301][00200] Updated weights for policy 0, policy_version 950 (0.0014)
|
455 |
+
[2025-05-10 19:55:14,741][00031] Fps is (10 sec: 9831.0, 60 sec: 9420.8, 300 sec: 9316.7). Total num frames: 3903488. Throughput: 0: 2365.9. Samples: 971434. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
456 |
+
[2025-05-10 19:55:14,742][00031] Avg episode reward: [(0, '21.574')]
|
457 |
+
[2025-05-10 19:55:17,573][00200] Updated weights for policy 0, policy_version 960 (0.0015)
|
458 |
+
[2025-05-10 19:55:19,741][00031] Fps is (10 sec: 9830.4, 60 sec: 9420.8, 300 sec: 9316.7). Total num frames: 3952640. Throughput: 0: 2370.7. Samples: 985948. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
|
459 |
+
[2025-05-10 19:55:19,743][00031] Avg episode reward: [(0, '21.834')]
|
460 |
+
[2025-05-10 19:55:21,841][00200] Updated weights for policy 0, policy_version 970 (0.0016)
|
461 |
+
[2025-05-10 19:55:24,741][00031] Fps is (10 sec: 9420.8, 60 sec: 9489.1, 300 sec: 9302.8). Total num frames: 3997696. Throughput: 0: 2370.2. Samples: 1000442. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
|
462 |
+
[2025-05-10 19:55:24,744][00031] Avg episode reward: [(0, '22.816')]
|
463 |
+
[2025-05-10 19:55:25,190][00187] Stopping Batcher_0...
|
464 |
+
[2025-05-10 19:55:25,192][00187] Loop batcher_evt_loop terminating...
|
465 |
+
[2025-05-10 19:55:25,191][00187] Saving /kaggle/working/train_dir/default_experiment/checkpoint_p0/checkpoint_000000978_4005888.pth...
|
466 |
+
[2025-05-10 19:55:25,191][00031] Component Batcher_0 stopped!
|
467 |
+
[2025-05-10 19:55:25,224][00200] Weights refcount: 2 0
|
468 |
+
[2025-05-10 19:55:25,226][00200] Stopping InferenceWorker_p0-w0...
|
469 |
+
[2025-05-10 19:55:25,229][00200] Loop inference_proc0-0_evt_loop terminating...
|
470 |
+
[2025-05-10 19:55:25,227][00031] Component InferenceWorker_p0-w0 stopped!
|
471 |
+
[2025-05-10 19:55:25,285][00187] Removing /kaggle/working/train_dir/default_experiment/checkpoint_p0/checkpoint_000000485_1986560.pth
|
472 |
+
[2025-05-10 19:55:25,300][00187] Saving /kaggle/working/train_dir/default_experiment/checkpoint_p0/checkpoint_000000978_4005888.pth...
|
473 |
+
[2025-05-10 19:55:25,302][00206] Stopping RolloutWorker_w5...
|
474 |
+
[2025-05-10 19:55:25,302][00206] Loop rollout_proc5_evt_loop terminating...
|
475 |
+
[2025-05-10 19:55:25,301][00031] Component RolloutWorker_w2 stopped!
|
476 |
+
[2025-05-10 19:55:25,305][00031] Component RolloutWorker_w5 stopped!
|
477 |
+
[2025-05-10 19:55:25,307][00203] Stopping RolloutWorker_w2...
|
478 |
+
[2025-05-10 19:55:25,308][00203] Loop rollout_proc2_evt_loop terminating...
|
479 |
+
[2025-05-10 19:55:25,312][00031] Component RolloutWorker_w6 stopped!
|
480 |
+
[2025-05-10 19:55:25,311][00207] Stopping RolloutWorker_w6...
|
481 |
+
[2025-05-10 19:55:25,314][00031] Component RolloutWorker_w1 stopped!
|
482 |
+
[2025-05-10 19:55:25,313][00202] Stopping RolloutWorker_w1...
|
483 |
+
[2025-05-10 19:55:25,315][00202] Loop rollout_proc1_evt_loop terminating...
|
484 |
+
[2025-05-10 19:55:25,314][00207] Loop rollout_proc6_evt_loop terminating...
|
485 |
+
[2025-05-10 19:55:25,462][00187] Stopping LearnerWorker_p0...
|
486 |
+
[2025-05-10 19:55:25,462][00187] Loop learner_proc0_evt_loop terminating...
|
487 |
+
[2025-05-10 19:55:25,462][00031] Component LearnerWorker_p0 stopped!
|
488 |
+
[2025-05-10 19:55:25,497][00031] Component RolloutWorker_w7 stopped!
|
489 |
+
[2025-05-10 19:55:25,496][00208] Stopping RolloutWorker_w7...
|
490 |
+
[2025-05-10 19:55:25,500][00208] Loop rollout_proc7_evt_loop terminating...
|
491 |
+
[2025-05-10 19:55:25,501][00031] Component RolloutWorker_w3 stopped!
|
492 |
+
[2025-05-10 19:55:25,501][00204] Stopping RolloutWorker_w3...
|
493 |
+
[2025-05-10 19:55:25,503][00204] Loop rollout_proc3_evt_loop terminating...
|
494 |
+
[2025-05-10 19:55:25,509][00031] Component RolloutWorker_w0 stopped!
|
495 |
+
[2025-05-10 19:55:25,510][00205] Stopping RolloutWorker_w4...
|
496 |
+
[2025-05-10 19:55:25,511][00205] Loop rollout_proc4_evt_loop terminating...
|
497 |
+
[2025-05-10 19:55:25,512][00031] Component RolloutWorker_w4 stopped!
|
498 |
+
[2025-05-10 19:55:25,509][00201] Stopping RolloutWorker_w0...
|
499 |
+
[2025-05-10 19:55:25,517][00201] Loop rollout_proc0_evt_loop terminating...
|
500 |
+
[2025-05-10 19:55:25,515][00031] Waiting for process learner_proc0 to stop...
|
501 |
+
[2025-05-10 19:55:26,924][00031] Waiting for process inference_proc0-0 to join...
|
502 |
+
[2025-05-10 19:55:26,929][00031] Waiting for process rollout_proc0 to join...
|
503 |
+
[2025-05-10 19:55:27,203][00031] Waiting for process rollout_proc1 to join...
|
504 |
+
[2025-05-10 19:55:27,550][00031] Waiting for process rollout_proc2 to join...
|
505 |
+
[2025-05-10 19:55:27,552][00031] Waiting for process rollout_proc3 to join...
|
506 |
+
[2025-05-10 19:55:27,553][00031] Waiting for process rollout_proc4 to join...
|
507 |
+
[2025-05-10 19:55:27,554][00031] Waiting for process rollout_proc5 to join...
|
508 |
+
[2025-05-10 19:55:27,555][00031] Waiting for process rollout_proc6 to join...
|
509 |
+
[2025-05-10 19:55:27,556][00031] Waiting for process rollout_proc7 to join...
|
510 |
+
[2025-05-10 19:55:27,557][00031] Batcher 0 profile tree view:
|
511 |
+
batching: 20.5293, releasing_batches: 0.0235
|
512 |
+
[2025-05-10 19:55:27,558][00031] InferenceWorker_p0-w0 profile tree view:
|
513 |
+
wait_policy: 0.0000
|
514 |
+
wait_policy_total: 13.6289
|
515 |
+
update_model: 6.0515
|
516 |
+
weight_update: 0.0013
|
517 |
+
one_step: 0.0030
|
518 |
+
handle_policy_step: 397.8757
|
519 |
+
deserialize: 11.9171, stack: 2.4570, obs_to_device_normalize: 97.0456, forward: 195.9540, send_messages: 20.8423
|
520 |
+
prepare_outputs: 53.5468
|
521 |
+
to_cpu: 34.9484
|
522 |
+
[2025-05-10 19:55:27,558][00031] Learner 0 profile tree view:
|
523 |
+
misc: 0.0037, prepare_batch: 12.2781
|
524 |
+
train: 51.1951
|
525 |
+
epoch_init: 0.0045, minibatch_init: 0.0059, losses_postprocess: 0.5428, kl_divergence: 0.5473, after_optimizer: 22.6953
|
526 |
+
calculate_losses: 17.2665
|
527 |
+
losses_init: 0.0042, forward_head: 1.0267, bptt_initial: 11.9716, tail: 0.7288, advantages_returns: 0.1925, losses: 1.7550
|
528 |
+
bptt: 1.4069
|
529 |
+
bptt_forward_core: 1.3421
|
530 |
+
update: 9.7542
|
531 |
+
clip: 0.8316
|
532 |
+
[2025-05-10 19:55:27,559][00031] RolloutWorker_w0 profile tree view:
|
533 |
+
wait_for_trajectories: 0.1654, enqueue_policy_requests: 7.4893, env_step: 316.0504, overhead: 6.2936, complete_rollouts: 1.1252
|
534 |
+
save_policy_outputs: 8.8704
|
535 |
+
split_output_tensors: 3.4497
|
536 |
+
[2025-05-10 19:55:27,560][00031] RolloutWorker_w7 profile tree view:
|
537 |
+
wait_for_trajectories: 0.1546, enqueue_policy_requests: 7.7793, env_step: 314.2617, overhead: 6.5336, complete_rollouts: 1.0742
|
538 |
+
save_policy_outputs: 9.1472
|
539 |
+
split_output_tensors: 3.4687
|
540 |
+
[2025-05-10 19:55:27,562][00031] Loop Runner_EvtLoop terminating...
|
541 |
+
[2025-05-10 19:55:27,563][00031] Runner profile tree view:
|
542 |
+
main_loop: 452.8763
|
543 |
+
[2025-05-10 19:55:27,564][00031] Collected {0: 4005888}, FPS: 8845.4
|
544 |
+
[2025-05-10 19:55:27,996][00031] Loading existing experiment configuration from /kaggle/working/train_dir/default_experiment/config.json
|
545 |
+
[2025-05-10 19:55:27,997][00031] Overriding arg 'num_workers' with value 1 passed from command line
|
546 |
+
[2025-05-10 19:55:27,997][00031] Adding new argument 'no_render'=True that is not in the saved config file!
|
547 |
+
[2025-05-10 19:55:27,998][00031] Adding new argument 'save_video'=True that is not in the saved config file!
|
548 |
+
[2025-05-10 19:55:27,999][00031] Adding new argument 'video_frames'=1000000000.0 that is not in the saved config file!
|
549 |
+
[2025-05-10 19:55:28,000][00031] Adding new argument 'video_name'=None that is not in the saved config file!
|
550 |
+
[2025-05-10 19:55:28,001][00031] Adding new argument 'max_num_frames'=1000000000.0 that is not in the saved config file!
|
551 |
+
[2025-05-10 19:55:28,002][00031] Adding new argument 'max_num_episodes'=10 that is not in the saved config file!
|
552 |
+
[2025-05-10 19:55:28,003][00031] Adding new argument 'push_to_hub'=False that is not in the saved config file!
|
553 |
+
[2025-05-10 19:55:28,003][00031] Adding new argument 'hf_repository'=None that is not in the saved config file!
|
554 |
+
[2025-05-10 19:55:28,004][00031] Adding new argument 'policy_index'=0 that is not in the saved config file!
|
555 |
+
[2025-05-10 19:55:28,006][00031] Adding new argument 'eval_deterministic'=False that is not in the saved config file!
|
556 |
+
[2025-05-10 19:55:28,006][00031] Adding new argument 'train_script'=None that is not in the saved config file!
|
557 |
+
[2025-05-10 19:55:28,007][00031] Adding new argument 'enjoy_script'=None that is not in the saved config file!
|
558 |
+
[2025-05-10 19:55:28,008][00031] Using frameskip 1 and render_action_repeat=4 for evaluation
|
559 |
+
[2025-05-10 19:55:28,038][00031] Doom resolution: 160x120, resize resolution: (128, 72)
|
560 |
+
[2025-05-10 19:55:28,041][00031] RunningMeanStd input shape: (3, 72, 128)
|
561 |
+
[2025-05-10 19:55:28,042][00031] RunningMeanStd input shape: (1,)
|
562 |
+
[2025-05-10 19:55:28,059][00031] ConvEncoder: input_channels=3
|
563 |
+
[2025-05-10 19:55:28,172][00031] Conv encoder output size: 512
|
564 |
+
[2025-05-10 19:55:28,173][00031] Policy head output size: 512
|
565 |
+
[2025-05-10 19:55:28,372][00031] Loading state from checkpoint /kaggle/working/train_dir/default_experiment/checkpoint_p0/checkpoint_000000978_4005888.pth...
|
566 |
+
[2025-05-10 19:55:29,224][00031] Num frames 100...
|
567 |
+
[2025-05-10 19:55:29,338][00031] Num frames 200...
|
568 |
+
[2025-05-10 19:55:29,457][00031] Num frames 300...
|
569 |
+
[2025-05-10 19:55:29,571][00031] Num frames 400...
|
570 |
+
[2025-05-10 19:55:29,686][00031] Num frames 500...
|
571 |
+
[2025-05-10 19:55:29,845][00031] Avg episode rewards: #0: 13.920, true rewards: #0: 5.920
|
572 |
+
[2025-05-10 19:55:29,846][00031] Avg episode reward: 13.920, avg true_objective: 5.920
|
573 |
+
[2025-05-10 19:55:29,857][00031] Num frames 600...
|
574 |
+
[2025-05-10 19:55:29,977][00031] Num frames 700...
|
575 |
+
[2025-05-10 19:55:30,098][00031] Num frames 800...
|
576 |
+
[2025-05-10 19:55:30,222][00031] Num frames 900...
|
577 |
+
[2025-05-10 19:55:30,344][00031] Num frames 1000...
|
578 |
+
[2025-05-10 19:55:30,464][00031] Num frames 1100...
|
579 |
+
[2025-05-10 19:55:30,585][00031] Num frames 1200...
|
580 |
+
[2025-05-10 19:55:30,713][00031] Num frames 1300...
|
581 |
+
[2025-05-10 19:55:30,834][00031] Num frames 1400...
|
582 |
+
[2025-05-10 19:55:30,961][00031] Num frames 1500...
|
583 |
+
[2025-05-10 19:55:31,072][00031] Num frames 1600...
|
584 |
+
[2025-05-10 19:55:31,209][00031] Num frames 1700...
|
585 |
+
[2025-05-10 19:55:31,320][00031] Num frames 1800...
|
586 |
+
[2025-05-10 19:55:31,433][00031] Num frames 1900...
|
587 |
+
[2025-05-10 19:55:31,547][00031] Num frames 2000...
|
588 |
+
[2025-05-10 19:55:31,660][00031] Num frames 2100...
|
589 |
+
[2025-05-10 19:55:31,784][00031] Avg episode rewards: #0: 23.775, true rewards: #0: 10.775
|
590 |
+
[2025-05-10 19:55:31,785][00031] Avg episode reward: 23.775, avg true_objective: 10.775
|
591 |
+
[2025-05-10 19:55:31,841][00031] Num frames 2200...
|
592 |
+
[2025-05-10 19:55:31,963][00031] Num frames 2300...
|
593 |
+
[2025-05-10 19:55:32,078][00031] Num frames 2400...
|
594 |
+
[2025-05-10 19:55:32,189][00031] Num frames 2500...
|
595 |
+
[2025-05-10 19:55:32,305][00031] Num frames 2600...
|
596 |
+
[2025-05-10 19:55:32,418][00031] Num frames 2700...
|
597 |
+
[2025-05-10 19:55:32,530][00031] Num frames 2800...
|
598 |
+
[2025-05-10 19:55:32,644][00031] Num frames 2900...
|
599 |
+
[2025-05-10 19:55:32,756][00031] Num frames 3000...
|
600 |
+
[2025-05-10 19:55:32,873][00031] Num frames 3100...
|
601 |
+
[2025-05-10 19:55:32,985][00031] Num frames 3200...
|
602 |
+
[2025-05-10 19:55:33,098][00031] Num frames 3300...
|
603 |
+
[2025-05-10 19:55:33,217][00031] Num frames 3400...
|
604 |
+
[2025-05-10 19:55:33,335][00031] Num frames 3500...
|
605 |
+
[2025-05-10 19:55:33,449][00031] Num frames 3600...
|
606 |
+
[2025-05-10 19:55:33,544][00031] Avg episode rewards: #0: 27.780, true rewards: #0: 12.113
|
607 |
+
[2025-05-10 19:55:33,545][00031] Avg episode reward: 27.780, avg true_objective: 12.113
|
608 |
+
[2025-05-10 19:55:33,618][00031] Num frames 3700...
|
609 |
+
[2025-05-10 19:55:33,730][00031] Num frames 3800...
|
610 |
+
[2025-05-10 19:55:33,842][00031] Num frames 3900...
|
611 |
+
[2025-05-10 19:55:33,955][00031] Num frames 4000...
|
612 |
+
[2025-05-10 19:55:34,030][00031] Avg episode rewards: #0: 21.795, true rewards: #0: 10.045
|
613 |
+
[2025-05-10 19:55:34,031][00031] Avg episode reward: 21.795, avg true_objective: 10.045
|
614 |
+
[2025-05-10 19:55:34,124][00031] Num frames 4100...
|
615 |
+
[2025-05-10 19:55:34,243][00031] Num frames 4200...
|
616 |
+
[2025-05-10 19:55:34,369][00031] Num frames 4300...
|
617 |
+
[2025-05-10 19:55:34,487][00031] Num frames 4400...
|
618 |
+
[2025-05-10 19:55:34,603][00031] Num frames 4500...
|
619 |
+
[2025-05-10 19:55:34,715][00031] Num frames 4600...
|
620 |
+
[2025-05-10 19:55:34,828][00031] Num frames 4700...
|
621 |
+
[2025-05-10 19:55:34,944][00031] Num frames 4800...
|
622 |
+
[2025-05-10 19:55:35,062][00031] Num frames 4900...
|
623 |
+
[2025-05-10 19:55:35,184][00031] Num frames 5000...
|
624 |
+
[2025-05-10 19:55:35,306][00031] Num frames 5100...
|
625 |
+
[2025-05-10 19:55:35,422][00031] Num frames 5200...
|
626 |
+
[2025-05-10 19:55:35,542][00031] Num frames 5300...
|
627 |
+
[2025-05-10 19:55:35,661][00031] Num frames 5400...
|
628 |
+
[2025-05-10 19:55:35,780][00031] Num frames 5500...
|
629 |
+
[2025-05-10 19:55:35,903][00031] Num frames 5600...
|
630 |
+
[2025-05-10 19:55:36,014][00031] Avg episode rewards: #0: 25.500, true rewards: #0: 11.300
|
631 |
+
[2025-05-10 19:55:36,014][00031] Avg episode reward: 25.500, avg true_objective: 11.300
|
632 |
+
[2025-05-10 19:55:36,071][00031] Num frames 5700...
|
633 |
+
[2025-05-10 19:55:36,184][00031] Num frames 5800...
|
634 |
+
[2025-05-10 19:55:36,299][00031] Num frames 5900...
|
635 |
+
[2025-05-10 19:55:36,414][00031] Num frames 6000...
|
636 |
+
[2025-05-10 19:55:36,528][00031] Num frames 6100...
|
637 |
+
[2025-05-10 19:55:36,646][00031] Num frames 6200...
|
638 |
+
[2025-05-10 19:55:36,767][00031] Num frames 6300...
|
639 |
+
[2025-05-10 19:55:36,883][00031] Num frames 6400...
|
640 |
+
[2025-05-10 19:55:36,999][00031] Num frames 6500...
|
641 |
+
[2025-05-10 19:55:37,119][00031] Num frames 6600...
|
642 |
+
[2025-05-10 19:55:37,231][00031] Num frames 6700...
|
643 |
+
[2025-05-10 19:55:37,345][00031] Num frames 6800...
|
644 |
+
[2025-05-10 19:55:37,456][00031] Num frames 6900...
|
645 |
+
[2025-05-10 19:55:37,570][00031] Num frames 7000...
|
646 |
+
[2025-05-10 19:55:37,691][00031] Num frames 7100...
|
647 |
+
[2025-05-10 19:55:37,812][00031] Num frames 7200...
|
648 |
+
[2025-05-10 19:55:37,930][00031] Num frames 7300...
|
649 |
+
[2025-05-10 19:55:38,010][00031] Avg episode rewards: #0: 29.035, true rewards: #0: 12.202
|
650 |
+
[2025-05-10 19:55:38,010][00031] Avg episode reward: 29.035, avg true_objective: 12.202
|
651 |
+
[2025-05-10 19:55:38,097][00031] Num frames 7400...
|
652 |
+
[2025-05-10 19:55:38,213][00031] Num frames 7500...
|
653 |
+
[2025-05-10 19:55:38,326][00031] Num frames 7600...
|
654 |
+
[2025-05-10 19:55:38,445][00031] Num frames 7700...
|
655 |
+
[2025-05-10 19:55:38,565][00031] Num frames 7800...
|
656 |
+
[2025-05-10 19:55:38,660][00031] Avg episode rewards: #0: 26.047, true rewards: #0: 11.190
|
657 |
+
[2025-05-10 19:55:38,661][00031] Avg episode reward: 26.047, avg true_objective: 11.190
|
658 |
+
[2025-05-10 19:55:38,737][00031] Num frames 7900...
|
659 |
+
[2025-05-10 19:55:38,856][00031] Num frames 8000...
|
660 |
+
[2025-05-10 19:55:38,977][00031] Num frames 8100...
|
661 |
+
[2025-05-10 19:55:39,096][00031] Num frames 8200...
|
662 |
+
[2025-05-10 19:55:39,214][00031] Num frames 8300...
|
663 |
+
[2025-05-10 19:55:39,333][00031] Num frames 8400...
|
664 |
+
[2025-05-10 19:55:39,451][00031] Num frames 8500...
|
665 |
+
[2025-05-10 19:55:39,570][00031] Num frames 8600...
|
666 |
+
[2025-05-10 19:55:39,691][00031] Num frames 8700...
|
667 |
+
[2025-05-10 19:55:39,811][00031] Num frames 8800...
|
668 |
+
[2025-05-10 19:55:39,929][00031] Num frames 8900...
|
669 |
+
[2025-05-10 19:55:40,042][00031] Num frames 9000...
|
670 |
+
[2025-05-10 19:55:40,157][00031] Num frames 9100...
|
671 |
+
[2025-05-10 19:55:40,273][00031] Num frames 9200...
|
672 |
+
[2025-05-10 19:55:40,389][00031] Num frames 9300...
|
673 |
+
[2025-05-10 19:55:40,507][00031] Num frames 9400...
|
674 |
+
[2025-05-10 19:55:40,633][00031] Avg episode rewards: #0: 26.955, true rewards: #0: 11.830
|
675 |
+
[2025-05-10 19:55:40,634][00031] Avg episode reward: 26.955, avg true_objective: 11.830
|
676 |
+
[2025-05-10 19:55:40,675][00031] Num frames 9500...
|
677 |
+
[2025-05-10 19:55:40,787][00031] Num frames 9600...
|
678 |
+
[2025-05-10 19:55:40,906][00031] Num frames 9700...
|
679 |
+
[2025-05-10 19:55:41,029][00031] Num frames 9800...
|
680 |
+
[2025-05-10 19:55:41,168][00031] Num frames 9900...
|
681 |
+
[2025-05-10 19:55:41,284][00031] Num frames 10000...
|
682 |
+
[2025-05-10 19:55:41,404][00031] Num frames 10100...
|
683 |
+
[2025-05-10 19:55:41,502][00031] Avg episode rewards: #0: 25.707, true rewards: #0: 11.262
|
684 |
+
[2025-05-10 19:55:41,503][00031] Avg episode reward: 25.707, avg true_objective: 11.262
|
685 |
+
[2025-05-10 19:55:41,580][00031] Num frames 10200...
|
686 |
+
[2025-05-10 19:55:41,700][00031] Num frames 10300...
|
687 |
+
[2025-05-10 19:55:41,814][00031] Num frames 10400...
|
688 |
+
[2025-05-10 19:55:41,932][00031] Avg episode rewards: #0: 23.556, true rewards: #0: 10.456
|
689 |
+
[2025-05-10 19:55:41,933][00031] Avg episode reward: 23.556, avg true_objective: 10.456
|
690 |
+
[2025-05-10 19:56:17,261][00031] Replay video saved to /kaggle/working/train_dir/default_experiment/replay.mp4!
|
691 |
+
[2025-05-10 19:57:48,043][00031] Loading existing experiment configuration from /kaggle/working/train_dir/default_experiment/config.json
|
692 |
+
[2025-05-10 19:57:48,044][00031] Overriding arg 'num_workers' with value 1 passed from command line
|
693 |
+
[2025-05-10 19:57:48,045][00031] Adding new argument 'no_render'=True that is not in the saved config file!
|
694 |
+
[2025-05-10 19:57:48,046][00031] Adding new argument 'save_video'=True that is not in the saved config file!
|
695 |
+
[2025-05-10 19:57:48,047][00031] Adding new argument 'video_frames'=1000000000.0 that is not in the saved config file!
|
696 |
+
[2025-05-10 19:57:48,048][00031] Adding new argument 'video_name'=None that is not in the saved config file!
|
697 |
+
[2025-05-10 19:57:48,049][00031] Adding new argument 'max_num_frames'=100000 that is not in the saved config file!
|
698 |
+
[2025-05-10 19:57:48,049][00031] Adding new argument 'max_num_episodes'=10 that is not in the saved config file!
|
699 |
+
[2025-05-10 19:57:48,051][00031] Adding new argument 'push_to_hub'=True that is not in the saved config file!
|
700 |
+
[2025-05-10 19:57:48,051][00031] Adding new argument 'hf_repository'='aalva/rl_course_vizdoom_health_gathering_supreme' that is not in the saved config file!
|
701 |
+
[2025-05-10 19:57:48,052][00031] Adding new argument 'policy_index'=0 that is not in the saved config file!
|
702 |
+
[2025-05-10 19:57:48,053][00031] Adding new argument 'eval_deterministic'=False that is not in the saved config file!
|
703 |
+
[2025-05-10 19:57:48,054][00031] Adding new argument 'train_script'=None that is not in the saved config file!
|
704 |
+
[2025-05-10 19:57:48,054][00031] Adding new argument 'enjoy_script'=None that is not in the saved config file!
|
705 |
+
[2025-05-10 19:57:48,055][00031] Using frameskip 1 and render_action_repeat=4 for evaluation
|
706 |
+
[2025-05-10 19:57:48,087][00031] RunningMeanStd input shape: (3, 72, 128)
|
707 |
+
[2025-05-10 19:57:48,088][00031] RunningMeanStd input shape: (1,)
|
708 |
+
[2025-05-10 19:57:48,099][00031] ConvEncoder: input_channels=3
|
709 |
+
[2025-05-10 19:57:48,132][00031] Conv encoder output size: 512
|
710 |
+
[2025-05-10 19:57:48,133][00031] Policy head output size: 512
|
711 |
+
[2025-05-10 19:57:48,154][00031] Loading state from checkpoint /kaggle/working/train_dir/default_experiment/checkpoint_p0/checkpoint_000000978_4005888.pth...
|
712 |
+
[2025-05-10 19:57:48,614][00031] Num frames 100...
|
713 |
+
[2025-05-10 19:57:48,727][00031] Num frames 200...
|
714 |
+
[2025-05-10 19:57:48,840][00031] Num frames 300...
|
715 |
+
[2025-05-10 19:57:48,952][00031] Num frames 400...
|
716 |
+
[2025-05-10 19:57:49,062][00031] Num frames 500...
|
717 |
+
[2025-05-10 19:57:49,179][00031] Num frames 600...
|
718 |
+
[2025-05-10 19:57:49,294][00031] Num frames 700...
|
719 |
+
[2025-05-10 19:57:49,402][00031] Num frames 800...
|
720 |
+
[2025-05-10 19:57:49,519][00031] Num frames 900...
|
721 |
+
[2025-05-10 19:57:49,634][00031] Num frames 1000...
|
722 |
+
[2025-05-10 19:57:49,774][00031] Avg episode rewards: #0: 23.700, true rewards: #0: 10.700
|
723 |
+
[2025-05-10 19:57:49,775][00031] Avg episode reward: 23.700, avg true_objective: 10.700
|
724 |
+
[2025-05-10 19:57:49,812][00031] Num frames 1100...
|
725 |
+
[2025-05-10 19:57:49,932][00031] Num frames 1200...
|
726 |
+
[2025-05-10 19:57:50,054][00031] Num frames 1300...
|
727 |
+
[2025-05-10 19:57:50,172][00031] Num frames 1400...
|
728 |
+
[2025-05-10 19:57:50,287][00031] Num frames 1500...
|
729 |
+
[2025-05-10 19:57:50,402][00031] Num frames 1600...
|
730 |
+
[2025-05-10 19:57:50,516][00031] Num frames 1700...
|
731 |
+
[2025-05-10 19:57:50,632][00031] Num frames 1800...
|
732 |
+
[2025-05-10 19:57:50,744][00031] Num frames 1900...
|
733 |
+
[2025-05-10 19:57:50,838][00031] Avg episode rewards: #0: 20.670, true rewards: #0: 9.670
|
734 |
+
[2025-05-10 19:57:50,839][00031] Avg episode reward: 20.670, avg true_objective: 9.670
|
735 |
+
[2025-05-10 19:57:50,916][00031] Num frames 2000...
|
736 |
+
[2025-05-10 19:57:51,040][00031] Num frames 2100...
|
737 |
+
[2025-05-10 19:57:51,177][00031] Num frames 2200...
|
738 |
+
[2025-05-10 19:57:51,297][00031] Num frames 2300...
|
739 |
+
[2025-05-10 19:57:51,418][00031] Num frames 2400...
|
740 |
+
[2025-05-10 19:57:51,540][00031] Num frames 2500...
|
741 |
+
[2025-05-10 19:57:51,660][00031] Num frames 2600...
|
742 |
+
[2025-05-10 19:57:51,777][00031] Num frames 2700...
|
743 |
+
[2025-05-10 19:57:51,894][00031] Num frames 2800...
|
744 |
+
[2025-05-10 19:57:52,056][00031] Avg episode rewards: #0: 20.647, true rewards: #0: 9.647
|
745 |
+
[2025-05-10 19:57:52,057][00031] Avg episode reward: 20.647, avg true_objective: 9.647
|
746 |
+
[2025-05-10 19:57:52,064][00031] Num frames 2900...
|
747 |
+
[2025-05-10 19:57:52,185][00031] Num frames 3000...
|
748 |
+
[2025-05-10 19:57:52,308][00031] Num frames 3100...
|
749 |
+
[2025-05-10 19:57:52,434][00031] Num frames 3200...
|
750 |
+
[2025-05-10 19:57:52,549][00031] Num frames 3300...
|
751 |
+
[2025-05-10 19:57:52,659][00031] Num frames 3400...
|
752 |
+
[2025-05-10 19:57:52,792][00031] Avg episode rewards: #0: 17.925, true rewards: #0: 8.675
|
753 |
+
[2025-05-10 19:57:52,793][00031] Avg episode reward: 17.925, avg true_objective: 8.675
|
754 |
+
[2025-05-10 19:57:52,828][00031] Num frames 3500...
|
755 |
+
[2025-05-10 19:57:52,945][00031] Num frames 3600...
|
756 |
+
[2025-05-10 19:57:53,054][00031] Num frames 3700...
|
757 |
+
[2025-05-10 19:57:53,168][00031] Num frames 3800...
|
758 |
+
[2025-05-10 19:57:53,288][00031] Num frames 3900...
|
759 |
+
[2025-05-10 19:57:53,436][00031] Avg episode rewards: #0: 16.156, true rewards: #0: 7.956
|
760 |
+
[2025-05-10 19:57:53,437][00031] Avg episode reward: 16.156, avg true_objective: 7.956
|
761 |
+
[2025-05-10 19:57:53,463][00031] Num frames 4000...
|
762 |
+
[2025-05-10 19:57:53,576][00031] Num frames 4100...
|
763 |
+
[2025-05-10 19:57:53,687][00031] Num frames 4200...
|
764 |
+
[2025-05-10 19:57:53,799][00031] Num frames 4300...
|
765 |
+
[2025-05-10 19:57:53,911][00031] Num frames 4400...
|
766 |
+
[2025-05-10 19:57:54,025][00031] Num frames 4500...
|
767 |
+
[2025-05-10 19:57:54,139][00031] Num frames 4600...
|
768 |
+
[2025-05-10 19:57:54,264][00031] Avg episode rewards: #0: 16.268, true rewards: #0: 7.768
|
769 |
+
[2025-05-10 19:57:54,265][00031] Avg episode reward: 16.268, avg true_objective: 7.768
|
770 |
+
[2025-05-10 19:57:54,314][00031] Num frames 4700...
|
771 |
+
[2025-05-10 19:57:54,432][00031] Num frames 4800...
|
772 |
+
[2025-05-10 19:57:54,546][00031] Num frames 4900...
|
773 |
+
[2025-05-10 19:57:54,662][00031] Num frames 5000...
|
774 |
+
[2025-05-10 19:57:54,783][00031] Num frames 5100...
|
775 |
+
[2025-05-10 19:57:54,902][00031] Num frames 5200...
|
776 |
+
[2025-05-10 19:57:55,019][00031] Num frames 5300...
|
777 |
+
[2025-05-10 19:57:55,140][00031] Num frames 5400...
|
778 |
+
[2025-05-10 19:57:55,258][00031] Num frames 5500...
|
779 |
+
[2025-05-10 19:57:55,370][00031] Num frames 5600...
|
780 |
+
[2025-05-10 19:57:55,481][00031] Num frames 5700...
|
781 |
+
[2025-05-10 19:57:55,596][00031] Num frames 5800...
|
782 |
+
[2025-05-10 19:57:55,704][00031] Avg episode rewards: #0: 17.779, true rewards: #0: 8.350
|
783 |
+
[2025-05-10 19:57:55,704][00031] Avg episode reward: 17.779, avg true_objective: 8.350
|
784 |
+
[2025-05-10 19:57:55,764][00031] Num frames 5900...
|
785 |
+
[2025-05-10 19:57:55,881][00031] Num frames 6000...
|
786 |
+
[2025-05-10 19:57:56,011][00031] Num frames 6100...
|
787 |
+
[2025-05-10 19:57:56,132][00031] Num frames 6200...
|
788 |
+
[2025-05-10 19:57:56,246][00031] Num frames 6300...
|
789 |
+
[2025-05-10 19:57:56,363][00031] Num frames 6400...
|
790 |
+
[2025-05-10 19:57:56,486][00031] Num frames 6500...
|
791 |
+
[2025-05-10 19:57:56,605][00031] Num frames 6600...
|
792 |
+
[2025-05-10 19:57:56,725][00031] Num frames 6700...
|
793 |
+
[2025-05-10 19:57:56,845][00031] Num frames 6800...
|
794 |
+
[2025-05-10 19:57:56,969][00031] Num frames 6900...
|
795 |
+
[2025-05-10 19:57:57,090][00031] Num frames 7000...
|
796 |
+
[2025-05-10 19:57:57,208][00031] Num frames 7100...
|
797 |
+
[2025-05-10 19:57:57,328][00031] Num frames 7200...
|
798 |
+
[2025-05-10 19:57:57,439][00031] Num frames 7300...
|
799 |
+
[2025-05-10 19:57:57,554][00031] Num frames 7400...
|
800 |
+
[2025-05-10 19:57:57,643][00031] Avg episode rewards: #0: 20.913, true rewards: #0: 9.287
|
801 |
+
[2025-05-10 19:57:57,644][00031] Avg episode reward: 20.913, avg true_objective: 9.287
|
802 |
+
[2025-05-10 19:57:57,722][00031] Num frames 7500...
|
803 |
+
[2025-05-10 19:57:57,836][00031] Num frames 7600...
|
804 |
+
[2025-05-10 19:57:57,950][00031] Num frames 7700...
|
805 |
+
[2025-05-10 19:57:58,070][00031] Num frames 7800...
|
806 |
+
[2025-05-10 19:57:58,183][00031] Num frames 7900...
|
807 |
+
[2025-05-10 19:57:58,298][00031] Num frames 8000...
|
808 |
+
[2025-05-10 19:57:58,410][00031] Num frames 8100...
|
809 |
+
[2025-05-10 19:57:58,523][00031] Num frames 8200...
|
810 |
+
[2025-05-10 19:57:58,614][00031] Avg episode rewards: #0: 20.256, true rewards: #0: 9.144
|
811 |
+
[2025-05-10 19:57:58,614][00031] Avg episode reward: 20.256, avg true_objective: 9.144
|
812 |
+
[2025-05-10 19:57:58,693][00031] Num frames 8300...
|
813 |
+
[2025-05-10 19:57:58,802][00031] Num frames 8400...
|
814 |
+
[2025-05-10 19:57:58,912][00031] Num frames 8500...
|
815 |
+
[2025-05-10 19:57:59,024][00031] Num frames 8600...
|
816 |
+
[2025-05-10 19:57:59,133][00031] Num frames 8700...
|
817 |
+
[2025-05-10 19:57:59,245][00031] Num frames 8800...
|
818 |
+
[2025-05-10 19:57:59,380][00031] Avg episode rewards: #0: 19.670, true rewards: #0: 8.870
|
819 |
+
[2025-05-10 19:57:59,381][00031] Avg episode reward: 19.670, avg true_objective: 8.870
|
820 |
+
[2025-05-10 19:58:29,074][00031] Replay video saved to /kaggle/working/train_dir/default_experiment/replay.mp4!
|