--- license: apache-2.0 base_model: distil-whisper/distil-large-v3.5 tags: - whisper - automatic-speech-recognition - audio - hf-asr-leaderboard - hindi - medical - indic - multilingual language: - hi - en - bn - ta - te - gu - kn - ml - mr - pa - ur library_name: transformers pipeline_tag: automatic-speech-recognition --- # United Medical ASR Indic (Accelerated Training) This model is a fine-tuned version of [distil-whisper/distil-large-v3.5](https://huggingface.co/distil-whisper/distil-large-v3.5) for multilingual medical speech recognition across Indian languages, trained using HuggingFace Accelerate for optimal performance. ## Performance Optimizations - **Multi-GPU Training**: Distributed training across available GPUs - **Mixed Precision**: FP16 training for 2x speed improvement - **Gradient Accumulation**: Effective large batch sizes - **Memory Optimization**: Gradient checkpointing and efficient data loading - **Batch Processing**: Locations processed in optimized batches ## Model Description - **Base Model**: distil-whisper/distil-large-v3.5 - **Languages**: Multiple Indian languages (Hindi, English, Bengali, Tamil, Telugu, Gujarati, Kannada, Malayalam, Marathi, Punjabi, Urdu) - **Domain**: Medical ASR for Indic languages - **Training**: Accelerated sequential fine-tuning with batch processing ## Usage ```python from transformers import WhisperProcessor, WhisperForConditionalGeneration import torch processor = WhisperProcessor.from_pretrained("abar-uwc/united-med-asr-indic") model = WhisperForConditionalGeneration.from_pretrained("abar-uwc/united-med-asr-indic") # The model will automatically detect and transcribe in the appropriate language ```