--- tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:713657 - loss:MultipleNegativesRankingLoss base_model: TechWolf/ConTeXT-Skill-Extraction-base widget: - source_sentence: Successfully gather data from diverse sources, ensuring data integrity and accuracy. sentences: - gather data - set up basic recording - use global distribution system - source_sentence: Learn to mix paints efficiently and effectively in this hands-on workshop. sentences: - design optical prototypes - manage production of footwear or leather goods - prepare colour mixtures - source_sentence: Developed and implemented quality control measures for pre-stitching processes and techniques for footwear and leather goods. sentences: - operate heavy construction machinery without supervision - pre-stitching processes and techniques for footwear and leather goods - deburring machine parts - source_sentence: Improved efficiency in preparing fruits and vegetables for pre-processing by implementing optimized workflows. sentences: - think proactively - recommend orthopedic goods to customers depending on their condition - prepare fruits and vegetables for pre-processing - source_sentence: Skilled in mixing construction grouts while adhering to strict contamination control measures. sentences: - oversee logistics of finished products - think creatively - mix construction grouts pipeline_tag: sentence-similarity library_name: sentence-transformers --- # SentenceTransformer based on TechWolf/ConTeXT-Skill-Extraction-base This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [TechWolf/ConTeXT-Skill-Extraction-base](https://huggingface.co/TechWolf/ConTeXT-Skill-Extraction-base). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [TechWolf/ConTeXT-Skill-Extraction-base](https://huggingface.co/TechWolf/ConTeXT-Skill-Extraction-base) - **Maximum Sequence Length:** 512 tokens - **Output Dimensionality:** 768 dimensions - **Similarity Function:** Cosine Similarity ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("sentence_transformers_model_id") # Run inference sentences = [ 'Skilled in mixing construction grouts while adhering to strict contamination control measures.', 'mix construction grouts', 'oversee logistics of finished products', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 768] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` ## Training Details ### Training Dataset #### Unnamed Dataset * Size: 713,657 training samples * Columns: sentence_0, sentence_1, and label * Approximate statistics based on the first 1000 samples: | | sentence_0 | sentence_1 | label | |:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:--------------------------------------------------------------| | type | string | string | float | | details | | | | * Samples: | sentence_0 | sentence_1 | label | |:--------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------|:-----------------| | Successfully provided stabilisation care in emergency situations, contributing to positive patient outcomes. | provide stabilisation care in emergency | 1.0 | | This training program covers advanced methods to remove coating from delicate components. | remove coating | 1.0 | | Utilized statistical modelling to analyse booking patterns and forecast future demand. | analyse booking patterns | 1.0 | * Loss: [MultipleNegativesRankingLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters: ```json { "scale": 20.0, "similarity_fct": "cos_sim" } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `per_device_train_batch_size`: 16 - `per_device_eval_batch_size`: 16 - `fp16`: True - `multi_dataset_batch_sampler`: round_robin #### All Hyperparameters
Click to expand - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: no - `prediction_loss_only`: True - `per_device_train_batch_size`: 16 - `per_device_eval_batch_size`: 16 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 5e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1 - `num_train_epochs`: 3 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.0 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: True - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: None - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `include_for_metrics`: [] - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `eval_use_gather_object`: False - `average_tokens_across_devices`: False - `prompts`: None - `batch_sampler`: batch_sampler - `multi_dataset_batch_sampler`: round_robin
### Training Logs
Click to expand | Epoch | Step | Training Loss | |:------:|:------:|:-------------:| | 0.0112 | 500 | 0.276 | | 0.0224 | 1000 | 0.2541 | | 0.0336 | 1500 | 0.2507 | | 0.0448 | 2000 | 0.2276 | | 0.0560 | 2500 | 0.2356 | | 0.0673 | 3000 | 0.2153 | | 0.0785 | 3500 | 0.2166 | | 0.0897 | 4000 | 0.2108 | | 0.1009 | 4500 | 0.2011 | | 0.1121 | 5000 | 0.2098 | | 0.1233 | 5500 | 0.2018 | | 0.1345 | 6000 | 0.1879 | | 0.1457 | 6500 | 0.1954 | | 0.1569 | 7000 | 0.1927 | | 0.1681 | 7500 | 0.1983 | | 0.1794 | 8000 | 0.1833 | | 0.1906 | 8500 | 0.1893 | | 0.2018 | 9000 | 0.1992 | | 0.2130 | 9500 | 0.1838 | | 0.2242 | 10000 | 0.1713 | | 0.2354 | 10500 | 0.1839 | | 0.2466 | 11000 | 0.1727 | | 0.2578 | 11500 | 0.1777 | | 0.2690 | 12000 | 0.1691 | | 0.2802 | 12500 | 0.1777 | | 0.2915 | 13000 | 0.1627 | | 0.3027 | 13500 | 0.1647 | | 0.3139 | 14000 | 0.1627 | | 0.3251 | 14500 | 0.1546 | | 0.3363 | 15000 | 0.1689 | | 0.3475 | 15500 | 0.1462 | | 0.3587 | 16000 | 0.1492 | | 0.3699 | 16500 | 0.158 | | 0.3811 | 17000 | 0.1537 | | 0.3923 | 17500 | 0.1597 | | 0.4036 | 18000 | 0.1567 | | 0.4148 | 18500 | 0.1607 | | 0.4260 | 19000 | 0.1629 | | 0.4372 | 19500 | 0.1418 | | 0.4484 | 20000 | 0.1606 | | 0.4596 | 20500 | 0.1537 | | 0.4708 | 21000 | 0.1463 | | 0.4820 | 21500 | 0.1372 | | 0.4932 | 22000 | 0.1466 | | 0.5044 | 22500 | 0.1349 | | 0.5156 | 23000 | 0.1586 | | 0.5269 | 23500 | 0.1365 | | 0.5381 | 24000 | 0.1321 | | 0.5493 | 24500 | 0.1549 | | 0.5605 | 25000 | 0.1399 | | 0.5717 | 25500 | 0.1283 | | 0.5829 | 26000 | 0.1423 | | 0.5941 | 26500 | 0.1355 | | 0.6053 | 27000 | 0.1443 | | 0.6165 | 27500 | 0.1417 | | 0.6277 | 28000 | 0.1452 | | 0.6390 | 28500 | 0.1395 | | 0.6502 | 29000 | 0.1422 | | 0.6614 | 29500 | 0.1262 | | 0.6726 | 30000 | 0.1289 | | 0.6838 | 30500 | 0.1363 | | 0.6950 | 31000 | 0.1372 | | 0.7062 | 31500 | 0.1272 | | 0.7174 | 32000 | 0.1309 | | 0.7286 | 32500 | 0.1291 | | 0.7398 | 33000 | 0.1297 | | 0.7511 | 33500 | 0.1226 | | 0.7623 | 34000 | 0.1311 | | 0.7735 | 34500 | 0.1201 | | 0.7847 | 35000 | 0.1363 | | 0.7959 | 35500 | 0.1306 | | 0.8071 | 36000 | 0.1223 | | 0.8183 | 36500 | 0.1173 | | 0.8295 | 37000 | 0.1242 | | 0.8407 | 37500 | 0.125 | | 0.8519 | 38000 | 0.1384 | | 0.8632 | 38500 | 0.1196 | | 0.8744 | 39000 | 0.1251 | | 0.8856 | 39500 | 0.1201 | | 0.8968 | 40000 | 0.1199 | | 0.9080 | 40500 | 0.1298 | | 0.9192 | 41000 | 0.1223 | | 0.9304 | 41500 | 0.1335 | | 0.9416 | 42000 | 0.1194 | | 0.9528 | 42500 | 0.1124 | | 0.9640 | 43000 | 0.1127 | | 0.9752 | 43500 | 0.1126 | | 0.9865 | 44000 | 0.1242 | | 0.9977 | 44500 | 0.1241 | | 1.0089 | 45000 | 0.1061 | | 1.0201 | 45500 | 0.084 | | 1.0313 | 46000 | 0.1004 | | 1.0425 | 46500 | 0.0898 | | 1.0537 | 47000 | 0.0921 | | 1.0649 | 47500 | 0.097 | | 1.0761 | 48000 | 0.0877 | | 1.0873 | 48500 | 0.098 | | 1.0986 | 49000 | 0.1078 | | 1.1098 | 49500 | 0.0947 | | 1.1210 | 50000 | 0.1051 | | 1.1322 | 50500 | 0.0981 | | 1.1434 | 51000 | 0.0965 | | 1.1546 | 51500 | 0.0893 | | 1.1658 | 52000 | 0.0969 | | 1.1770 | 52500 | 0.097 | | 1.1882 | 53000 | 0.1023 | | 1.1994 | 53500 | 0.1036 | | 1.2107 | 54000 | 0.0903 | | 1.2219 | 54500 | 0.1 | | 1.2331 | 55000 | 0.0949 | | 1.2443 | 55500 | 0.0893 | | 1.2555 | 56000 | 0.0966 | | 1.2667 | 56500 | 0.094 | | 1.2779 | 57000 | 0.0955 | | 1.2891 | 57500 | 0.0917 | | 1.3003 | 58000 | 0.084 | | 1.3115 | 58500 | 0.0859 | | 1.3228 | 59000 | 0.0888 | | 1.3340 | 59500 | 0.0847 | | 1.3452 | 60000 | 0.0846 | | 1.3564 | 60500 | 0.0868 | | 1.3676 | 61000 | 0.0904 | | 1.3788 | 61500 | 0.0848 | | 1.3900 | 62000 | 0.0929 | | 1.4012 | 62500 | 0.0851 | | 1.4124 | 63000 | 0.0989 | | 1.4236 | 63500 | 0.0814 | | 1.4348 | 64000 | 0.0881 | | 1.4461 | 64500 | 0.0909 | | 1.4573 | 65000 | 0.0951 | | 1.4685 | 65500 | 0.0856 | | 1.4797 | 66000 | 0.0914 | | 1.4909 | 66500 | 0.0932 | | 1.5021 | 67000 | 0.0855 | | 1.5133 | 67500 | 0.09 | | 1.5245 | 68000 | 0.0801 | | 1.5357 | 68500 | 0.087 | | 1.5469 | 69000 | 0.0866 | | 1.5582 | 69500 | 0.0867 | | 1.5694 | 70000 | 0.0959 | | 1.5806 | 70500 | 0.0922 | | 1.5918 | 71000 | 0.0898 | | 1.6030 | 71500 | 0.0823 | | 1.6142 | 72000 | 0.088 | | 1.6254 | 72500 | 0.0832 | | 1.6366 | 73000 | 0.0985 | | 1.6478 | 73500 | 0.0944 | | 1.6590 | 74000 | 0.0931 | | 1.6703 | 74500 | 0.0808 | | 1.6815 | 75000 | 0.0877 | | 1.6927 | 75500 | 0.0746 | | 1.7039 | 76000 | 0.0842 | | 1.7151 | 76500 | 0.088 | | 1.7263 | 77000 | 0.0792 | | 1.7375 | 77500 | 0.0718 | | 1.7487 | 78000 | 0.0941 | | 1.7599 | 78500 | 0.0843 | | 1.7711 | 79000 | 0.0835 | | 1.7824 | 79500 | 0.0878 | | 1.7936 | 80000 | 0.0771 | | 1.8048 | 80500 | 0.0829 | | 1.8160 | 81000 | 0.086 | | 1.8272 | 81500 | 0.0802 | | 1.8384 | 82000 | 0.0901 | | 1.8496 | 82500 | 0.0859 | | 1.8608 | 83000 | 0.0871 | | 1.8720 | 83500 | 0.0787 | | 1.8832 | 84000 | 0.0894 | | 1.8944 | 84500 | 0.0895 | | 1.9057 | 85000 | 0.0912 | | 1.9169 | 85500 | 0.0795 | | 1.9281 | 86000 | 0.0775 | | 1.9393 | 86500 | 0.0693 | | 1.9505 | 87000 | 0.0811 | | 1.9617 | 87500 | 0.076 | | 1.9729 | 88000 | 0.085 | | 1.9841 | 88500 | 0.0904 | | 1.9953 | 89000 | 0.087 | | 2.0065 | 89500 | 0.061 | | 2.0178 | 90000 | 0.0628 | | 2.0290 | 90500 | 0.0721 | | 2.0402 | 91000 | 0.0694 | | 2.0514 | 91500 | 0.0618 | | 2.0626 | 92000 | 0.0598 | | 2.0738 | 92500 | 0.0701 | | 2.0850 | 93000 | 0.0724 | | 2.0962 | 93500 | 0.0623 | | 2.1074 | 94000 | 0.0647 | | 2.1186 | 94500 | 0.0643 | | 2.1299 | 95000 | 0.066 | | 2.1411 | 95500 | 0.0653 | | 2.1523 | 96000 | 0.0648 | | 2.1635 | 96500 | 0.0616 | | 2.1747 | 97000 | 0.0661 | | 2.1859 | 97500 | 0.0678 | | 2.1971 | 98000 | 0.0621 | | 2.2083 | 98500 | 0.0699 | | 2.2195 | 99000 | 0.0631 | | 2.2307 | 99500 | 0.0701 | | 2.2420 | 100000 | 0.0663 | | 2.2532 | 100500 | 0.0559 | | 2.2644 | 101000 | 0.0667 | | 2.2756 | 101500 | 0.0695 | | 2.2868 | 102000 | 0.0655 | | 2.2980 | 102500 | 0.0668 | | 2.3092 | 103000 | 0.0661 | | 2.3204 | 103500 | 0.0638 | | 2.3316 | 104000 | 0.0686 | | 2.3428 | 104500 | 0.0628 | | 2.3540 | 105000 | 0.0649 | | 2.3653 | 105500 | 0.0603 | | 2.3765 | 106000 | 0.064 | | 2.3877 | 106500 | 0.0651 | | 2.3989 | 107000 | 0.0589 | | 2.4101 | 107500 | 0.0621 | | 2.4213 | 108000 | 0.061 | | 2.4325 | 108500 | 0.068 | | 2.4437 | 109000 | 0.0545 | | 2.4549 | 109500 | 0.0691 | | 2.4661 | 110000 | 0.0614 | | 2.4774 | 110500 | 0.0661 | | 2.4886 | 111000 | 0.0701 | | 2.4998 | 111500 | 0.0549 | | 2.5110 | 112000 | 0.0676 | | 2.5222 | 112500 | 0.0599 | | 2.5334 | 113000 | 0.0605 | | 2.5446 | 113500 | 0.0671 | | 2.5558 | 114000 | 0.0681 | | 2.5670 | 114500 | 0.063 | | 2.5782 | 115000 | 0.0586 | | 2.5895 | 115500 | 0.0629 | | 2.6007 | 116000 | 0.0586 | | 2.6119 | 116500 | 0.0668 | | 2.6231 | 117000 | 0.0606 | | 2.6343 | 117500 | 0.0521 | | 2.6455 | 118000 | 0.0619 | | 2.6567 | 118500 | 0.065 | | 2.6679 | 119000 | 0.052 | | 2.6791 | 119500 | 0.0628 | | 2.6903 | 120000 | 0.0642 | | 2.7016 | 120500 | 0.0614 | | 2.7128 | 121000 | 0.0663 | | 2.7240 | 121500 | 0.0569 | | 2.7352 | 122000 | 0.0648 | | 2.7464 | 122500 | 0.0616 | | 2.7576 | 123000 | 0.0536 | | 2.7688 | 123500 | 0.0669 | | 2.7800 | 124000 | 0.0612 | | 2.7912 | 124500 | 0.0555 | | 2.8024 | 125000 | 0.059 | | 2.8136 | 125500 | 0.0549 | | 2.8249 | 126000 | 0.0563 | | 2.8361 | 126500 | 0.0616 | | 2.8473 | 127000 | 0.06 | | 2.8585 | 127500 | 0.0606 | | 2.8697 | 128000 | 0.063 | | 2.8809 | 128500 | 0.0572 | | 2.8921 | 129000 | 0.0697 | | 2.9033 | 129500 | 0.0561 | | 2.9145 | 130000 | 0.065 | | 2.9257 | 130500 | 0.0525 | | 2.9370 | 131000 | 0.0597 | | 2.9482 | 131500 | 0.0604 | | 2.9594 | 132000 | 0.0534 | | 2.9706 | 132500 | 0.0553 | | 2.9818 | 133000 | 0.0593 | | 2.9930 | 133500 | 0.0554 |
### Framework Versions - Python: 3.12.6 - Sentence Transformers: 3.4.1 - Transformers: 4.49.0 - PyTorch: 2.5.1+cu121 - Accelerate: 1.5.1 - Datasets: 3.4.0 - Tokenizers: 0.21.0 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### MultipleNegativesRankingLoss ```bibtex @misc{henderson2017efficient, title={Efficient Natural Language Response Suggestion for Smart Reply}, author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, year={2017}, eprint={1705.00652}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```