Update README.md
Browse files
README.md
CHANGED
|
@@ -104,13 +104,13 @@ Way 2 (not sure but it is significantly faster than Way 1 above - therefore I re
|
|
| 104 |
|
| 105 |
import torch
|
| 106 |
import transformers
|
|
|
|
| 107 |
import trl
|
| 108 |
from trl import AutoModelForCausalLMWithValueHead, PPOConfig, PPOTrainer
|
| 109 |
print(torch.__version__)
|
| 110 |
print(transformers.__version__)
|
| 111 |
print(trl.__version__)
|
| 112 |
-
|
| 113 |
-
print_in_box_simple)
|
| 114 |
|
| 115 |
'''
|
| 116 |
1.13.0+cu117
|
|
@@ -118,7 +118,6 @@ from util import (print_in_box,
|
|
| 118 |
0.7.11
|
| 119 |
'''
|
| 120 |
|
| 121 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 122 |
|
| 123 |
model_tokenizer = "abdullahalzubaer/NeuralHermes-2.5-Mistral-7B" #lets try my model
|
| 124 |
# model_tokenizer = "mistralai/Mistral-7B-Instruct-v0.2"
|
|
@@ -127,8 +126,8 @@ model_tokenizer = "abdullahalzubaer/NeuralHermes-2.5-Mistral-7B" #lets try my mo
|
|
| 127 |
model = AutoModelForCausalLM.from_pretrained(model_tokenizer)
|
| 128 |
tokenizer = AutoTokenizer.from_pretrained(model_tokenizer)
|
| 129 |
|
| 130 |
-
|
| 131 |
-
|
| 132 |
|
| 133 |
# Check available GPUs and print their names
|
| 134 |
gpu_count = torch.cuda.device_count()
|
|
@@ -141,17 +140,6 @@ device_id = 3 # Change this to select a different GPU
|
|
| 141 |
device = f"cuda:{device_id}" if torch.cuda.is_available() else "cpu"
|
| 142 |
print(f"Using device: {device}")
|
| 143 |
|
| 144 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 145 |
-
|
| 146 |
-
model_tokenizer = "abdullahalzubaer/NeuralHermes-2.5-Mistral-7B" #lets try my model
|
| 147 |
-
# model_tokenizer = "mistralai/Mistral-7B-Instruct-v0.2"
|
| 148 |
-
# model_tokenizer = "mistralai/Mixtral-8x7B-Instruct-v0.1"
|
| 149 |
-
|
| 150 |
-
model = AutoModelForCausalLM.from_pretrained(model_tokenizer)
|
| 151 |
-
tokenizer = AutoTokenizer.from_pretrained(model_tokenizer)
|
| 152 |
-
|
| 153 |
-
print_in_box(f"Loaded Model = {model.config._name_or_path}")
|
| 154 |
-
print_in_box(f"Loaded Tokenizer = {tokenizer.name_or_path}")
|
| 155 |
|
| 156 |
your_prompt="""What is a Large Language Model?"""
|
| 157 |
|
|
|
|
| 104 |
|
| 105 |
import torch
|
| 106 |
import transformers
|
| 107 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 108 |
import trl
|
| 109 |
from trl import AutoModelForCausalLMWithValueHead, PPOConfig, PPOTrainer
|
| 110 |
print(torch.__version__)
|
| 111 |
print(transformers.__version__)
|
| 112 |
print(trl.__version__)
|
| 113 |
+
|
|
|
|
| 114 |
|
| 115 |
'''
|
| 116 |
1.13.0+cu117
|
|
|
|
| 118 |
0.7.11
|
| 119 |
'''
|
| 120 |
|
|
|
|
| 121 |
|
| 122 |
model_tokenizer = "abdullahalzubaer/NeuralHermes-2.5-Mistral-7B" #lets try my model
|
| 123 |
# model_tokenizer = "mistralai/Mistral-7B-Instruct-v0.2"
|
|
|
|
| 126 |
model = AutoModelForCausalLM.from_pretrained(model_tokenizer)
|
| 127 |
tokenizer = AutoTokenizer.from_pretrained(model_tokenizer)
|
| 128 |
|
| 129 |
+
print(f"Loaded Model = {model.config._name_or_path}")
|
| 130 |
+
print(f"Loaded Tokenizer = {tokenizer.name_or_path}")
|
| 131 |
|
| 132 |
# Check available GPUs and print their names
|
| 133 |
gpu_count = torch.cuda.device_count()
|
|
|
|
| 140 |
device = f"cuda:{device_id}" if torch.cuda.is_available() else "cpu"
|
| 141 |
print(f"Using device: {device}")
|
| 142 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 143 |
|
| 144 |
your_prompt="""What is a Large Language Model?"""
|
| 145 |
|