--- base_model: cardiffnlp/twitter-roberta-base-sentiment-latest tags: - generated_from_trainer metrics: - accuracy model-index: - name: twitter-roberta-base-sentiment-latest-clickbait-task1-20-epoch-post results: [] --- # twitter-roberta-base-sentiment-latest-clickbait-task1-20-epoch-post This model is a fine-tuned version of [cardiffnlp/twitter-roberta-base-sentiment-latest](https://huggingface.co/cardiffnlp/twitter-roberta-base-sentiment-latest) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.6694 - Accuracy: 0.7175 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 200 | 0.7795 | 0.655 | | No log | 2.0 | 400 | 0.8334 | 0.6925 | | 0.7177 | 3.0 | 600 | 0.8965 | 0.6925 | | 0.7177 | 4.0 | 800 | 1.0902 | 0.7075 | | 0.272 | 5.0 | 1000 | 1.3332 | 0.6875 | | 0.272 | 6.0 | 1200 | 1.7338 | 0.6925 | | 0.272 | 7.0 | 1400 | 2.0445 | 0.675 | | 0.0924 | 8.0 | 1600 | 2.1525 | 0.7 | | 0.0924 | 9.0 | 1800 | 2.2859 | 0.69 | | 0.0515 | 10.0 | 2000 | 2.3061 | 0.7175 | | 0.0515 | 11.0 | 2200 | 2.3235 | 0.71 | | 0.0515 | 12.0 | 2400 | 2.5036 | 0.69 | | 0.0213 | 13.0 | 2600 | 2.5110 | 0.7 | | 0.0213 | 14.0 | 2800 | 2.5487 | 0.7 | | 0.0162 | 15.0 | 3000 | 2.5632 | 0.7125 | | 0.0162 | 16.0 | 3200 | 2.5690 | 0.7075 | | 0.0162 | 17.0 | 3400 | 2.6913 | 0.685 | | 0.0085 | 18.0 | 3600 | 2.7971 | 0.7 | | 0.0085 | 19.0 | 3800 | 2.7057 | 0.715 | | 0.0048 | 20.0 | 4000 | 2.6694 | 0.7175 | ### Framework versions - Transformers 4.44.0.dev0 - Pytorch 2.4.0+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1