--- library_name: transformers license: mit base_model: intfloat/e5-large tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: intfloat-e5-large-arabic-fp16 results: [] --- # intfloat-e5-large-arabic-fp16 This model is a fine-tuned version of [intfloat/e5-large](https://huggingface.co/intfloat/e5-large) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6571 - Accuracy: 0.7295 - Precision: 0.7252 - Recall: 0.7295 - F1: 0.7229 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 128 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.3 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 1.1453 | 0.3636 | 50 | 0.9382 | 0.5823 | 0.4522 | 0.5823 | 0.5088 | | 0.9116 | 0.7273 | 100 | 0.8151 | 0.6568 | 0.6543 | 0.6568 | 0.6162 | | 0.8321 | 1.0873 | 150 | 0.8027 | 0.6645 | 0.6610 | 0.6645 | 0.6379 | | 0.8035 | 1.4509 | 200 | 0.7924 | 0.6777 | 0.6807 | 0.6777 | 0.6628 | | 0.7746 | 1.8145 | 250 | 0.9196 | 0.6141 | 0.6605 | 0.6141 | 0.6040 | | 0.7751 | 2.1745 | 300 | 0.7843 | 0.6677 | 0.6741 | 0.6677 | 0.6650 | | 0.753 | 2.5382 | 350 | 0.7799 | 0.6568 | 0.6968 | 0.6568 | 0.6672 | | 0.731 | 2.9018 | 400 | 0.7178 | 0.7123 | 0.7160 | 0.7123 | 0.6950 | | 0.7133 | 3.2618 | 450 | 0.6932 | 0.71 | 0.7151 | 0.71 | 0.7117 | | 0.7057 | 3.6255 | 500 | 0.7281 | 0.6986 | 0.7044 | 0.6986 | 0.6988 | | 0.6831 | 3.9891 | 550 | 0.6745 | 0.7309 | 0.7296 | 0.7309 | 0.7195 | | 0.6486 | 4.3491 | 600 | 0.6571 | 0.7295 | 0.7252 | 0.7295 | 0.7229 | | 0.6378 | 4.7127 | 650 | 0.6701 | 0.7232 | 0.7217 | 0.7232 | 0.7223 | | 0.6281 | 5.0727 | 700 | 0.6627 | 0.7386 | 0.7350 | 0.7386 | 0.7360 | | 0.5938 | 5.4364 | 750 | 0.6814 | 0.7155 | 0.7229 | 0.7155 | 0.7181 | ### Framework versions - Transformers 4.51.1 - Pytorch 2.6.0+cu124 - Datasets 3.5.0 - Tokenizers 0.21.1